921
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Methods and Current Trends in Determination of Neuraminidase Activity and Evaluation of Neuraminidase Inhibitors

, , , &
Pages 350-367 | Published online: 24 Dec 2018

References

  • O’Shea, L. K.; Abdulkhalek, S.; Allison, S.; Neufeld, R. J.; Szewczuk, M. R. Therapeutic Targeting of Neu1 Sialidase with Oseltamivir Phosphate (Tamiflu®) Disables Cancer Cell Survival in Human Pancreatic Cancer with Acquired Chemoresistance. Onco Targets Ther. 2014, 7, 117–134.
  • Cairo, C. W. Inhibitors of the Human Neuraminidase Enzymes. MedChemComm. 2014, 5, 1067–1074.
  • Kashif, M.; Moreno-Herrera, A.; Lara-Ramirez, E. E.; Ramírez-Moreno, E.; Bocanegra-García, V.; Ashfaq, M.; Rivera, G. Recent Developments in Trans-Sialidase Inhibitors of Trypanosoma Cruzi. J. Drug Target. 2017, 25, 485–498.
  • Corfield, T. Bacterial sialidases-roles in pathogenicity and nutrition. Glycobiology 1992, 2, 509–521.
  • Schwerdtfeger, S. M.; Melzig, M. F.; Melzig, M. M. Sialidases in Biological Systems. Pharmazie 2010, 65, 551–561.
  • Spanakis, N.; Pitiriga, V.; Gennimata, V.; Tsakris, A. A Review of Neuraminidase Inhibitor Susceptibility in Influenza Strains. Expert Rev. Anti-Infect. Ther. 2014, 12, 1325–1336.
  • Sidwell, R. W.; Smee, D. F. In Vitro and in Vivo Assay Systems for Study of Influenza Virus Inhibitors. Antiviral Res. 2000, 48, 1–16.
  • Okomo-Adhiambo, M.; Sheu, T. G.; Gubareva, L. V. Assays for Monitoring Susceptibility of Influenza Viruses to Neuraminidase Inhibitors. Influenza Other Respir. Viruses 2013, 7, 44–49.
  • Beyleveld, G.; White, K. M.; Ayllon, J.; Shaw, M. L. New-Generation Screening Assays for the Detection of anti-Influenza Compounds Targeting Viral and Host Functions. Antiviral Res. 2013, 100, 120–132.
  • Cabezas, J. A.; Reglero, A.; Calvo, P. Glycosidases (Fucosidases, Galactosidases, Glucosidases, Hexosaminidases and Glucuronidase from Some Molluscs and Vertebrates, and Neuraminidase from Virus). Int. J. Biochem. 1983, 15, 243–259.
  • Achyuthan, K. E.; Achyuthan, A. M. Comparative Enzymology, Biochemistry and Pathophysiology of Human Exo-α-Sialidases (Neuraminidases). Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 2001, 129, 29–64.
  • Waters, P. J.; Lewry, E.; Pennock, C. A. Measurement of Sialic Acid in Serum and Urine: Clinical Applications and Limitations. Ann. Clin. Biochem. 1992, 29, 625–637.
  • Brady, R. O.; Codington, J. F.; Dain, J. A.; Jeanloz, R. W.; Ledeen, R. W.; McGuire, E. J.; Ng, S.-S.; Rosenberg, A.; Schengrund, C.-L.; Suzuki, K. Biological Roles of Sialic Acid; Rosenberg, A., Schengrund, C.-L., Eds.; Plenum Press: New York, 1976.
  • Galuska, S. P. Advances in Sialic Acid and Polysialic Acid Detection Methodologies. In Sialobiology: Structure, Biosynthesis and Function; Tiralongo, J., Martinez-Duncker, I., Eds.; Bentham Science Publishers: Sharjah, 2013. Vol. 28; pp 448–475.
  • Akimoto, Y.; Akiyoshi, S.; Ando, H.; Angata, T.; Antonopoulos, A.; Aoki, K.; Aoki-Kinoshita, K. F.; Arai, H.; Arai, H.; Arase, H. Glycoscience: Biology and Medicine; Tamiguchi, N., Endo, T., Hart, G. W., Seeberger, P. H., Wong, C.-H., Eds.; Springer: Tokyo, 2015.
  • Varki, A., Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., Darvill, A. G., Kinoshita, T., Packer, N. H., Prestegard, J. H., et al., Eds.; Essentials of Glycobiology, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, 2017.
  • Chen, X.; Varki, A. Advances in the Biology and Chemistry of Sialic Acids. ACS Chem. Biol. 2010, 5, 163–176.
  • Angata, T.; Varki, A. Chemical Diversity in the Sialic Acids and Related α-Keto Acids: An Evolutionary Perspective. Chem. Rev. 2002, 102, 439–469.
  • Lantos, A. B.; Carlevaro, G.; Araoz, B.; Ruiz Diaz, P.; Camara, M.; de los, M.; Buscaglia, C. A.; Bossi, M.; Yu, H.; Chen, X.; Bertozzi, C. R. Sialic Acid Glycobiology Unveils Trypanosoma Cruzi Trypomastigote Membrane Physiology. PLoS Pathog. 2016, 12, 1–29.
  • Koles, K.; Repnikova, E.; Pavlova, G.; Korochkin, L. I.; Panin, V. M. Sialylation in Protostomes: A Perspective from Drosophila Genetics and Biochemistry. Glycoconj. J. 2009, 26, 313–324.
  • Pearce, O. M. T.; Läubli, H. Sialic Acids in Cancer Biology and Immunity. Glycobiology 2016, 26, 111–128.
  • Cohen, M.; Varki, A. The sialome-far more than the sum of its parts. Omics 2010, 14, 455–464.
  • Knowles, M. R.; Boucher, R. C. Mucus Clearance as a Primary Innate Defense Mechanism for Mammalian Airways. J. Clin. Invest. 2002, 109, 571–577.
  • Springer, S. A.; Diaz, S. L.; Gagneux, P. Parallel Evolution of a Self-Signal: Humans and New World Monkeys Independently Lost the Cell Surface Sugar Neu5Gc. Immunogenetics 2014, 66, 671–674.
  • Ng, P. S. K.; Böhm, R.; Hartley-Tassell, L. E.; Steen, J. A.; Wang, H.; Lukowski, S. W.; Hawthorne, P. L.; Trezise, A. E. O.; Coloe, P. J.; Grimmond, S. M.; et al. Ferrets Exclusively Synthesize Neu5Ac and Express Naturally Humanized Influenza a Virus Receptors. Nat. Commun. 2014, 5, 5750.
  • Crocker, P. R.; Paulson, J. C.; Varki, A. Siglecs and Their Roles in the Immune System. Nat. Rev. Immunol. 2007, 7, 255–266.
  • Martin, M. J.; Rayner, J. C.; Gagneux, P.; Barnwell, J. W.; Varki, A. Evolution of Human–Chimpanzee Differences in Malaria Susceptibility: Relationship to Human Genetic Loss of N-Glycolylneuraminic Acid. Proc. Natl. Acad. Sci. 2005, 102, 12819–12824.
  • Varki, A. Sialic Acids in Human Health and Disease. Trends Mol. Med. 2008, 14, 351–360.
  • Lewis, A. L.; Lewis, W. G. Host Sialoglycans and Bacterial Sialidases: A Mucosal Perspective. Cell. Microbiol. 2012, 14, 1174–1182.
  • Vimr, E. R. Unified Theory of Bacterial Sialometabolism: How and Why Bacteria Metabolize Host Sialic Acids. ISRN Microbiol. 2013, 2013, 1.
  • de Graaf, M.; Fouchier, R. A. M. Role of Receptor Binding Specificity in Influenza a Virus Transmission and Pathogenesis. EMBO J. 2014, 33, 823–841.
  • Peng, W.; de Vries, R. P.; Grant, O. C.; Thompson, A. J.; McBride, R.; Tsogtbaatar, B.; Lee, P. S.; Razi, N.; Wilson, I. A.; Woods, R. J.; et al. Recent H3N2 Viruses Have Evolved Specificity for Extended Branched Human-Type Receptors Conferring Potential for Increased Avidity. Cell Host Microbe. 2017, 21, 23–34.
  • Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New Perspectives on Genomes, Pathways, Diseases and Drugs. Nucleic Acids Res. 2017, 45, D353–D361.
  • Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P. M.; Henrissat, B. The Carbohydrate-Active Enzymes Database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, 490–495.
  • Roggentin, P.; Schauer, R.; Hoyer, L. L.; Vimr, E. R. The Sialidase Superfamily and Its Spread by Horizontal Gene Transfer. Mol. Microbiol. 1993, 9, 915–921.
  • Juge, N.; Tailford, L.; Owen, C. D. Sialidases from Gut Bacteria: A Mini-Review. Biochem. Soc. Trans. 2016, 44, 166–175.
  • Peltola, V. T.; Mccullers, J. A. Respiratory Viruses Predisposing to Bacterial Infections: Role of Neuraminidase. Pediatr. Infect. Dis. J. 2004, 23, 87–97.
  • Giacopuzzi, E.; Bresciani, R.; Schauer, R.; Monti, E.; Borsani, G. New Insights on the Sialidase Protein Family Revealed by a Phylogenetic Analysis in Metazoa. PLoS One 2012, 7, e44193.
  • Monti, E.; Bonten, E.; D’Azzo, A.; Bresciani, R.; Venerando, B.; Borsani, G.; Schauer, R.; Tettamanti, G. Sialidases in Vertebrates. A Family Of Enzymes Tailored for Several Cell Functions. In Advances in Carbohydrate Chemistry and Biochemistry, Horton, D., Ed.; Academic Press: Cambridge, 2010, Vol. 64, pp 404–479.
  • Smith, A. M.; Adler, F. R.; Ribeiro, R. M.; Gutenkunst, R. N.; Mcauley, J. L.; Mccullers, J. A.; Perelson, A. S. Kinetics of Coinfection with Influenza a Virus and Streptococcus Pneumoniae. PLoS Pathog. 2013, 9, e1003238.
  • von Grafenstein, S.; Wallnoefer, H. G.; Kirchmair, J.; Fuchs, J. E.; Huber, R. G.; Schmidtke, M.; Sauerbrei, A.; Rollinger, J. M.; Liedl, K. R. Interface Dynamics Explain Assembly Dependency of Influenza Neuraminidase Catalytic Activity. J. Biomol. Struct. Dyn. 2015, 33, 104–120.
  • Rose, A. S.; Hildebrand, P. W. NGL Viewer: A Web Application for Molecular Visualization. Nucleic Acids Res. 2015, 43, W576–W579.
  • Ghosh, A. K.; Gemma, S. Neuraminidase Inhibitors for the Treatment of Influenza: Design and Discovery of Zanamivir and Oseltamivir. In Structure-Based Design of Drugs and Other Bioactive Molecules: Tools and Strategies; Ghosh, A. K., Gemma, S., Eds.; Wiley-VCH Verlag GmbH: Weinheim, 2015.; pp 397–409.
  • Choi, W.-S.; Jeong, J. H.; Kwon, J. J.; Ahn, S. J.; Lloren, K. K. S.; Kwon, H.-I.; Chae, H. B.; Hwang, J.; Kim, M. H.; Kim, C.-J.; et al. Screening for Neuraminidase Inhibitor Resistance Markers among Avian Influenza Viruses of the N4, N5, N6, and N8 Neuraminidase Subtypes. J. Virol. 2017, 92, e01580–e01517.
  • Chamni, S.; De-Eknamkul, W. Recent Progress and Challenges in the Discovery of New Neuraminidase Inhibitors. Expert Opin. Ther. Pat. 2013, 23, 409–423.
  • Hsu, K. C.; Hung, H. C.; Huangfu, W. C.; Sung, T. Y.; Eight Lin, T.; Fang, M. Y.; Chen, I. J.; Pathak, N.; Hsu, J. T. A.; Yang, J. M. Identification of Neuraminidase Inhibitors against Dual H274Y/I222R Mutant Strains. Sci. Rep. 2017, 7, 12336.
  • Hajzer, V.; Fišera, R.; Latika, A.; Durmis, J.; Kollár, J.; Frecer, V.; Tučeková, Z.; Miertuš, S.; Kostolanský, F.; Varečková, E.; et al. Stereoisomers of Oseltamivir – Synthesis, in Silico Prediction and Biological Evaluation. Org. Biomol. Chem. 2017, 15, 1828–1841.
  • Rungrotmongkol, T.; Udommaneethanakit, T.; Frecer, V.; Miertus, S. Combinatorial Design of Avian Influenza Neuraminidase Inhibitors Containing Pyrrolidine Core with a Reduced Susceptibility to Viral Drug Resistance. CCHTS. 2010, 13, 268–277.
  • Udommaneethanakit, T.; Rungrotmongkol, T.; Frecer, V.; Seneci, P.; Miertus, S.; Bren, U. Drugs against Avian Influenza a Virus: Design of Novel Sulfonate Inhibitors of Neuraminidase N1. CPD. 2014, 20, 3478–3487.
  • Copeland, R. a. Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists, 2nd ed.; John Wiley & Sons: Hoboken, New Jersey, 2013.
  • Richter, M.; Schumann, L.; Walther, E.; Hoffmann, A.; Braun, H.; Grienke, U.; Rollinger, J. M.; Grafenstein, S.; Von, Liedl, K. R.; Kirchmair, J.; et al. Complementary Assays Helping to Overcome Challenges for Identifying Neuraminidase Inhibitors. Futur. Virol. 2015, 10, 77–88.
  • Privalova, M.; Khorlin, A. Y. Substrates and Inhibitors of Neuraminidases. Communication 1. Synthesis of O-, S-, and N-Ketosides of N-Acetyl-D-Neuraminic Acid. Russ. Chem. Bull. 1969, 18, 2614–2619.
  • Levine, M. N.; Lavis, L. D.; Raines, R. T. Trimethyl Lock: A Stable Chromogenic Substrate for Esterases. Molecules 2008, 13, 204–211.
  • Hayre, J.; Xu, G.; Borgianni, L.; Taylor, G. L.; Andrew, P. W.; Docquier, J.; Oggioni, M. R. Optimization of a Direct Spectrophotometric Method to Investigate the Kinetics and Inhibition of Sialidases. BMC Biochem. 2012, 13, 19.
  • Wang, Y.; Gu, Z.; Xing, G. Continuous Fluorometric Assay for Sialidase Activity and Inhibition with Conjugated Polyelectrolytes. Chem. Asian J. 2012, 7, 489–492.
  • Fujii, I.; Iwabuchi, Y.; Teshima, T.; Shiba, T.; Kikuchi, M. X-Neu5Ac: A Novel Substrate for Chromogenic Neuraminidase Activity in Bacterial Expression Ikuo Assay of Systems. Bioorg. Med. Chem. 1993, 1, 147–149.
  • Saito, M.; Hagita, H.; Iwabuchi, Y.; Fujii, I.; Ikeda, K.; Ito, M. Fluorescent Cytochemical Detection of Sialidase Activity Using 5-Bromo-4-Chloroindol-3-Yl-α-D-N-Acetylneuraminic Acid as the Substrate. Histochem. Cell Biol. 2002, 117, 453–458.
  • Achyuthan, K. E. Fluorescent Assays to Quantitate Enzymatic Activities Yielding as End Product an Aqueous-Insoluble Indigo-Blue Dye. Langmuir. 2004, 20, 2424–2428.
  • Huang, K.; Wang, M. M.; Kulinich, A.; Yao, H. L.; Ma, H. Y.; Martínez, J. E. R.; Duan, X. C.; Chen, H.; Cai, Z. P.; Flitsch, S. L.; et al. Biochemical Characterisation of the Neuraminidase Pool of the Human Gut Symbiont Akkermansia Muciniphila. Carbohydr. Res. 2015, 415, 60–65.
  • Potier, M.; Mameli, L.; Bélisle, M.; Dallaire, L.; Melançon, S. B. Fluorometric Assay of Neuraminidase with a Sodium (4-Methylumbelliferyl-α-D-N-Acetylneuraminate) Substrate. Anal. Biochem. 1979, 94, 287–296.
  • Warner, T. G.; O’Brien, J. S. Synthesis of 2′-(4-Methylumbelliferyl)-α-D-N-Acetylneuraminic Acid and Detection of Skin Fibroblast Neuraminidase in Normal Humans and in Sialidosis. Biochemistry. 1979, 18, 2783–2787.
  • Leang, S.-K.; Hurt, A. C. Fluorescence-Based Neuraminidase Inhibition Assay to Assess the Susceptibility of Influenza Viruses to the Neuraminidase Inhibitor Class of Antivirals. J. Vis. Exp. 2017, 122, e55570.
  • Zhi, H.; Wang, J.; Wang, S.; Wei, Y. Fluorescent Properties of Hymecromone and Fluorimetric Analysis of Hymecromone in Compound Dantong Capsule. J. Spectrosc. 2013, 2013, 1.
  • Marathe, B. M.; Lévêque, V.; Klumpp, K.; Webster, R. G.; Govorkova, E. A. Determination of Neuraminidase Kinetic Constants Using Whole Influenza Virus Preparations and Correction for Spectroscopic Interference by a Fluorogenic Substrate. PLoS One. 2013, 8, e71401.
  • Ochoa, A.; Álvarez-Bohórquez, E.; Castillero, E.; Olguin, L. F. Detection of Enzyme Inhibitors in Crude Natural Extracts Using Droplet-Based Microfluidics Coupled to HPLC. Anal. Chem. 2017, 89, 4889–4896.
  • Kongkamnerd, J.; Milani, A.; Cattoli, G.; Terregino, C.; Capua, I.; Beneduce, L.; Gallotta, A.; Pengo, P.; Fassina, G.; Monthakantirat, O.; et al. The Quenching Effect of Flavonoids on 4-Methylumbelliferone, a Potential Pitfall in Fluorimetric Neuraminidase Inhibition Assays. J. Biomol. Screen. 2011, 16, 755–764.
  • Engstler, M.; Talhouk, J. W.; Smith, R. E.; Schauer, R. Chemical Synthesis of 4-Trifluoromethylumbelliferyl-α-D-N- Acetylneuraminic Acid Glycoside and Its Use for the Fluorometric Detection of Poorly Expressed Natural and Recombinant Sialidases. Anal. Biochem. 1997, 250, 176–180.
  • Chokhawala, H. A.; Yu, H.; Chen, X. High-Throughput Substrate Specificity Studies of Sialidases by Using Chemoenzymatically Synthesized Sialoside Libraries. ChemBioChem. 2007, 8, 194–201.
  • Kurebayashi, Y.; Takahashi, T.; Otsubo, T.; Ikeda, K.; Takahashi, S.; Takano, M.; Agarikuchi, T.; Sato, T.; Matsuda, Y.; Minami, A.; et al. Imaging of Influenza Virus Sialidase Activity in Living Cells. Sci. Rep. 2014, 4, 4877.
  • Kurebayashi, Y.; Takahashi, T.; Tamoto, C.; Sahara, K.; Otsubo, T.; Yokozawa, T.; Shibahara, N.; Wada, H.; Minami, A.; Ikeda, K.; et al. High-Efficiency Capture of Drug Resistant- Influenza Virus by Live Imaging of Sialidase Activity. PLoS One. 2016, 11, e0156400.
  • Mochalova, L. V.; Korchagina, E. Y.; Kurova, V. S.; Shtyria, J. A.; Gambaryan, A. S.; Bovin, N. V. Fluorescent Assay for Studying the Substrate Specificity of Neuraminidase. Anal. Biochem. 2005, 341, 190–193.
  • Mochalova, L.; Kurova, V.; Shtyrya, Y.; Korchagina, E.; Gambaryan, A. Oligosaccharide Specificity of Influenza H1N1 Virus Neuraminidases. Arch Virol. 2007, 152, 2047–2057.
  • Liu, W.; Gómez-Durán, C. F. A.; Smith, B. D. Fluorescent Neuraminidase Assay Based on Supramolecular Dye Capture after Enzymatic Cleavage. J. Am. Chem. Soc. 2017, 139, 6390–6395.
  • Buxton, R. C.; Edwards, B.; Juo, R. R.; Voyta, J. C.; Tisdale, M.; Bethell, R. C. Development of a Sensitive Chemiluminescent Neuraminidase Assay for the Determination of Influenza Virus Susceptibility to Zanamivir. Anal. Biochem. 2000, 280, 291–300.
  • Wetherall, N. T.; Trivedi, T.; Zeller, J.; Hodges-Savola, C.; McKimm-Breschkin, J. L.; Zambon, M.; Hayden, F. G. Evaluation of Neuraminidase Enzyme Assays Using Different Substrates to Measure Susceptibility of Influenza Virus Clinical Isolates to Neuraminidase Inhibitors: Report of the Neuraminidase Inhibitor Susceptibility Network. J. Clin. Microbiol. 2003, 41, 742–750.
  • LifeTechnologies. Applied Biosystems® NA-XTDTM and NA-FluorTM Influenza Neuraminidase Assay Kits; 2010.
  • Yang, W.; Liu, X.; Peng, X.; Li, P.; Wang, T.; Tai, G.; Li, X. J.; Zhou, Y. Synthesis of Novel N-Acetylneuraminic Acid Derivatives as Substrates for Rapid Detection of Influenza Virus Neuraminidase. Carbohydr. Res. 2012, 359, 92–96.
  • Marjuki, H.; Mishin, V. P.; Sleeman, K.; Okomo-Adhiambo, M.; Sheu, T. G.; Guo, L.; Xu, X.; Gubareva, L. V. Bioluminescence-Based Neuraminidase Inhibition Assay for Monitoring Influenza Virus Drug Susceptibility in Clinical Specimens. Antimicrob. Agents Chemother. 2013, 57, 5209–5215.
  • Tallman, J. F.; Brady, R. The Catabolism of Tay-Sachs Ganglioside in Rat Brain Lysosomes. J. Biol. Chem. 1972, 247, 7570–7575.
  • Tallman, J. F. J. F.; Fishman, P. H. P. H.; Henneberry, R. C. Determination of Sialidase Activities in HeLa Cells Using Gangliosides Specifically Labeled in N-Acetylneuraminic Acid. Arch. Biochem. Biophys. 1977, 182, 556–562.
  • Chigorno, V.; Cardace, G.; Pitto, M.; Sonnino, S.; Ghidoni, R.; Tettamanti, G. A Radiometric Assay for Ganglioside Sialidase Applied to the Determination of the Enzyme Subcellular Location in Cultured Human Fibroblasts. Anal. Biochem. 1986, 153, 283–294.
  • Corfield, A. P.; Bolton, C. H.; Turner, D. The Use of Radiolabeled Very-Low-Density Lipoprotein and Apolipoprotein C to Estimate Sialidase Activity in Human Serum and Various Rat Tissues. Biochem. Soc. Trans. 1982, 10, 464–465.
  • Bhavanandan, V. P.; Yeh, A. K.; Carubelli, R. Neuraminidase Assay Utilizing Sialyl-Oligosaccharide Substrates with Tritium-Labeled Aglycone. Anal. Biochem. 1975, 69, 385–394.
  • Kuriyama, M.; Someya, F.; Yamada, T.; Miyatake, T. Radioassay Method of Neuraminidase towards N-Acetylneuraminosyl Hexasaccharides. Clin. Chim. Acta 1982, 119, 73–80.
  • Acker, M. G.; Auld, D. S. Considerations for the Design and Reporting of Enzyme Assays in High-Throughput Screening Applications. Perspect. Sci. 2014, 1, 56–73.
  • Solano, M. I.; Woolfitt, A. R.; Williams, T. L.; Pierce, C. L.; Gubareva, L. V.; Mishin, V.; Barr, J. R. Quantification of Influenza Neuraminidase Activity by Ultra-High Performance Liquid Chromatography and Isotope Dilution Mass Spectrometry. Anal. Chem. 2017, 89, 3130–3137.
  • Paerels, G. B.; Schut, J. The Mechanism of the Periodate-Thiobarbituric Acid Reaction of Sialic Acids. Biochem. J. 1965, 96, 787–792.
  • Yao, K.; Ubuka, T.; Masuoka, N.; Kinuta, M.; Ohta, J.; Teraoka, T.; Futani, S. Assay of Sialidase Activity Using Ion-Exchange Chromatography and Acidic Ninhydrin Reaction. J. Chromatogr. B: Biomed. Sci. Appl. 1992, 581, 11–15.
  • Murayama, J. I.; Tomita, M.; Tsuji, A.; Hamada, A. Fluorimetric Assay of Sialic Acids. Anal. Biochem. 1976, 73, 535–538.
  • Warren, L. The Thiobarbituric Acid Assay of Sialic Acids. J. Biol. Chem. 1959, 234, 1971–1975.
  • Aminoff, D. Methods for the Quantitative Estimation of N-Acetylneuraminic Acid and Their Application to Hydrolysates of Sialomucoids. Biochem. J. 1961, 81, 384–392.
  • Aminoff, D. The Determination of Free Sialic Acid in the Presence of the Bound Compound. Virology 1959, 7, 355–357.
  • Webster, R.; Cox, N.; Stohr, K. WHO Manual on Animal Influenza Diagnosis and Surveillance. WHO/CDS/CDR/2002.5, World Health Organization: Geneva. 2002.
  • Sandbulte, M. R.; Gao, J.; Straight, T. M.; Eichelberger, M. C. A Miniaturized Assay for Influenza Neuraminidase-Inhibiting Antibodies Utilizing Reverse Genetics-Derived Antigens. Influenza Other Respir. Viruses 2009, 3, 233–240.
  • Horgan, I. E. A Modified Spectrophotometric Method for Determination of Nanogram Quantities of Sialic Acid. Clin. Chim. Acta 1981, 116, 409–415.
  • Hammond, K. S.; Papermaster, D. S. Fluorometric Assay of Sialic Acid in the Picomole Range: A Modification of the Thiobarbituric Acid Assay. Anal. Biochem. 1976, 74, 292–297.
  • Powell, L. D.; Hart, G. W. Quantitation of Picomole Levels of N-Acetyl- and N-Glycolylneuraminic Acids by a HPLC-Adaptation of the Thiobarbituric Acid Assay. Anal. Biochem. 1986, 157, 179–185.
  • Alwael, H.; Connolly, D.; Paull, B. Rapid and Sensitive Chromatographic Determination of Free Sialic Acid in Complex Bio-Pharma Fermentation Media Samples. Anal. Methods 2012, 4, 2668–2673.
  • Russ, G.; Varečková, E.; Styk, B. Steric Effects in the Reaction of Influenza Virus Neuraminidases with Antibodies. Acta Virol. 1974, 18, 299–306.
  • Kosik, I.; Yewdell, J. W. Influenza a Virus Hemagglutinin Specific Antibodies Interfere with Virion Neuraminidase Activity via Two Distinct Mechanisms. Virology 2017, 500, 178–183.
  • Matsuno, K.; Suzuki, S. Simple Fluorimetric Method for Quantification of Sialic Acids in Glycoproteins. Anal. Biochem. 2008, 375, 53–59.
  • Parker, R. B.; McCombs, J. E.; Kohler, J. J. Sialidase Specificity Determined by Chemoselective Modification of Complex Sialylated Glycans. ACS Chem. Biol. 2012, 7, 1509–1514.
  • McCombs, J. E.; Kohler, J. J. Pneumococcal Neuraminidase Substrates Identified through Comparative Proteomics Enabled by Chemoselective Labeling. Bioconjug. Chem. 2016, 27, 1013–1022.
  • Zeng, Y.; Ramya, T. N. C.; Dirksen, A.; Dawson, P. E.; Paulson, J. C. High-efficiency labeling of sialylated glycoproteins on living cells. Nat. Methods 2009, 6, 207–209.
  • Ramya, T. N. C.; Weerapana, E.; Cravatt, B. F.; Paulson, J. C. Glycoproteomics Enabled by Tagging Sialic Acid-or Galactose-Terminated Glycans. Glycobiology 2013, 23, 211–221.
  • McCombs, J. E.; Diaz, J. P.; Luebke, K. J.; Kohler, J. J. Glycan Specificity of Neuraminidases Determined in Microarray Format. Carbohydr. Res. 2016, 428, 31–40.
  • Reyes Martínez, J. E.; Šardzík, R.; Voglmeir, J.; Flitsch, S. L. Enzymatic Synthesis of Colorimetric Substrates to Determine α-2,3- and α-2,6-Specific Neuraminidase Activity. RSC Adv. 2013, 3, 21335–21338.
  • Kodama, H.; Baum, L. G.; Paulson, J. C. Synthesis of Linkage-Specific Sialoside Substrates for Colorimetric Assay of Neuraminidases. Carbohydr. Res. 1991, 218, 111–119.
  • Indurugalla, D.; Watson, J. N.; Bennet, A. J. Natural Sialoside Analogues for the Determination of Enzymatic Rate Constants. Org. Biomol. Chem. 2006, 4, 4453–4459.
  • Alon, R.; Bayer, E. A.; Wilchek, M. A Coupled Enzyme Assay for Measurement of Sialidase Activity. J. Biochem. Biophys. Methods. 1991, 22, 23–33.
  • Zhou, M.; Diwu, Z.; Panchuk-Voloshina, N.; Haugland, R. P. A Stable Nonfluorescent Derivative of Resorufin for the Fluorometric Determination of Trace Hydrogen Peroxide: Applications in Detecting the Activity of Phagocyte NADPH Oxidase and Other Oxidases. Anal. Biochem. 1997, 253, 162–168.
  • Nayak, D. P.; Reichl, U. Neuraminidase Activity Assays for Monitoring MDCK Cell Culture Derived Influenza Virus. J. Virol. Methods 2004, 122, 9–15.
  • Ziegler, D. W.; Hutchinson, H. D. Coupled-Enzyme System for Measuring Viral Neuraminidase Activity. Appl. Microbiol. 1972, 23, 1060–1066.
  • Cabezas, J. A.; Reglero, A.; Hannoun, C. A Fluorometric Procedure for Measuring the Neuraminidase Activity: Its Application to the Determination of This Activity in Influenza and Parainfluenza Viruses. Anal. Biochem. 1983, 131, 121–126.
  • Cabezas, J. A.; Pérez, N.; Llanillo, M.; Reglero, A.; Calvo, P. Sialidase Assay by Luminescence in the Low Picomole-Range of Sialic Acid Its Application to the Measurement of This Activity in Influenza Virus. Hoppe-Seyler’s Z. Physiol. Chem. 1984, 365, (415–418.
  • Varki, A.; Etzler, M. E.; Cummings, R. D.; Esko, J. D. Discovery and Classification of Glycan-Binding Proteins. In Essentials of Glycobiology; Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W., Etzler, M. E., Eds.; Cold Spring Harbor Laboratory Press: New York, 2009.
  • Dan, X.; Liu, W.; Ng, T. B. Development and Applications of Lectins as Biological Tools in Biomedical Research Xiuli. Med. Res. Rev. 2016, 36, 221–247.
  • Lambré, C. R.; Terzidis, H.; Greffard, A.; Webster, R. G. Measurement of anti-Influenza Neuraminidase Antibody Using a Peroxidase-Linked Lectin and Microtitre Plates Coated with Natural Substrates. J. Immunol. Methods. 1990, 135, 49–57.
  • Lambré, C. R.; Terzidis, H.; Greffard, A.; Webster, R. G. An Enzyme-Linked Lectin Assay for Sialidase. Clin. Chim. Acta. 1991, 198, 183–193.
  • Rogerieux, F.; Belaise, M.; Terzidis-Trabelsi, H.; Greffard, A.; Pilatte, Y.; Lambré, C. R. Determination of the Sialic Acid Linkage Specificity of Sialidases Using Lectins in a Solid Phase Assay. Anal. Biochem. 1993, 211, 200–204.
  • Katinger, D.; Mochalova, L.; Chinarev, A.; Bovin, N.; Romanova, J. Specificity of Neuraminidase Activity from Influenza Viruses Isolated in Different Hosts Tested with Novel Substrates. Arch. Virol. 2004, 149, 2131–2140.
  • Onodera, S. A Microplate Assay for Sialidase Activity Using Plant Lectin Binding to N-Acetyllactosamine. Biol. Pharm. Bull. 1994, 17, 29–33.
  • Couzens, L.; Gao, J.; Westgeest, K.; Sandbulte, M.; Lugovtsev, V.; Fouchier, R.; Eichelberger, M. An Optimized Enzyme-Linked Lectin Assay to Measure Influenza a Virus Neuraminidase Inhibition Antibody Titers in Human Sera. J. Virol. Methods 2014, 210, 7–14.
  • Sharon, N.; Lis, H. Lectins, 2nd ed.; Springer Netherlands: Dortrecht, 2007.
  • Fritz, R.; Sabarth, N.; Kiermayr, S.; Hohenadl, C.; Howard, M. K.; Ilk, R.; Kistner, O.; Ehrlich, H. J.; Barrett, P. N.; Kreil, T. R. A Vero Cell–Derived Whole-Virus H5N1 Vaccine Effectively Induces Neuraminidase-Inhibiting Antibodies. J. Infect. Dis. 2012, 205, 28–34.
  • Prevato, M.; Cozzi, R.; Pezzicoli, A.; Taddei, A. R.; Ferlenghi, I.; Nandi, A.; Montomoli, E.; Settembre, E. C.; Bertholet, S.; Bonci, A.; Legay, F. An Innovative Pseudotypes-Based Enzyme- Linked Lectin Assay for the Measurement of Functional anti-Neuraminidase Antibodies. PLoS One 2015, 10, e0135383.
  • Westgeest, K. B.; Bestebroer, T. M.; Spronken, M. I. J.; Gao, J.; Couzens, L.; Osterhaus, A. D. M. E.; Eichelberger, M.; Fouchier, R. A. M.; de Graaf, M. Optimization of an Enzyme-Linked Lectin Assay Suitable for Rapid Antigenic Characterization of the Neuraminidase of Human Influenza A(H3N2) Viruses. J. Virol. Methods 2015, 217, 55–63.
  • Park, C. W.; Kang, I.-C.; Choi, Y. Activity-Based Screening System for the Discovery of Neuraminidase Inhibitors Using Protein Chip Technology. BioChip J. 2012, 6, 133–138.
  • Lee, J.; Park, C.-W.; Kwon, H.-K.; Jung, S.; Jeong, H.-J.; Kang, I.-C.; Choi, Y. A Protein Chip Based Inhibitor Screening for Influenza Neuraminidases: The Importance of Glycan-Specific Recognition. BioChip J. 2014, 8, 209–217.
  • Pourceau, G.; Chevolot, Y.; Goudot, A.; Giroux, F.; Meyer, A.; Moulés, V.; Lina, B.; Cecioni, S.; Vidal, S.; Yu, H.; et al. Measurement of Enzymatic Activity and Specificity of Human and Avian Influenza Neuraminidases from Whole Virus by Glycoarray and MALDI-TOF Mass Spectrometry. ChemBioChem 2011, 12, 2071–2080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.