341
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Human Ultraweak Photon Emission: Key Analytical Aspects, Results and Future Trends – A Review

ORCID Icon &
Pages 368-381 | Published online: 24 Dec 2018

References

  • Gurwitsch, A. Die mitogenetische strahlung. Monographien aus dem gesamtgebiet der physiologie der pflanzen und der tiere; Springer Nature: Switzerland, 2015.
  • Colli, L.; Facchini, U.; Guidotti, G.; Lonati, R. D.; Orsenigo, M.; Sommariva, O. Further measurements on the bioluminescence of the seedlings. Experientia. 1955, 11, 479–481.
  • van Wijk, R.; Schamhart, D. H. Regulatory aspects of low intensity photon emission. Experientia. 1988, 44, 586–593.
  • Edwards, R.; Ibision, M. C.; Jessel-Kenyon, J.; Taylor, R. B. Light emission from the human body. Compl. Med. Res. 1989, 3, 16–19.
  • Swinbanks, D. Japan: Body light points to health. Nature. 1986, 324, 203.
  • Usa, M.; Kobayashi, M.; Suzuki, S.; Ito, H.; Inaba, H. ITEJ Tech. Rep. 1991, 15, 1.
  • van Wijk, R.; van Wijk, E.; van Wietmarschen, H. A.; Greef, J. Towards whole-body ultra-weak photon counting and imaging with a focus on human beings: A review. J. Photochem. Photobiol. B. 2014, 139, 39–46.
  • Van Wijk, R.; Van Wijk E. Ultraweak photon emission from human body. In: Biophotonics, Shen X.; Van Wijk R., Eds.; Springer, Boston, MA, 2005; pp 173–184.
  • Van Wijk, R.; Kobayashi, M.; Van Wijk, E. P. A. Spatial characterization of human ultra-weak photon emission. In: Biophotonics and Coherent Systems in Biology, Beloussov, L. V.; Voeikov, V. L.; Martynyuk, V. S., Eds.; Springer, Boston, MA, 2007; pp 177–189.
  • Cifra, M.; Pospíšil, P. Ultra-weak photon emission from biological samples: Definition, mechanisms, properties, detection and applications. J. Photochem. Photobiol. B. 2014, 139, 2–10.
  • Pospíšil, P.; Prasad, A.; Rác, M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. J. Photochem. Photobiol. B. 2014, 139, 11–23.
  • Prasad, A.; Rossi, C.; Lamponi, S.; Pospíšil, P.; Foletti, A. New perspective in cell communication: Potential role of ultra-weak photon emission. J. Photochem. Photobiol. B. 2014, 139, 47–53.
  • Kobayashi, M. Highly sensitive imaging for ultra-weak photon emission from living organisms. J. Photochem. Photobiol. B. 2014, 139, 34–38.
  • Salari, V.; Valian, H.; Bassereh, H.; Bókkon, I.; Barkhordari, A. Ultraweak photon emission in the brain. J. Integr. Neurosci. 2015, 14, 419–429.
  • He, M.; Sun, M.; van Wijk, E.; van Wietmarschen, H.; van Wijk, R.; Wang, Z.; Wang, M.; Hankemeier, T.; van der Greef, J. A Chinese literature overview on ultra-weak photon emission as promising technology for studying system-based diagnostics. Complement. Ther. Med. 2016, 25, 20–26.
  • Abbott, T. M. C.; Kleinman, S. J. CCDs and PMTs: A simultaneous comparison. Interacting Binary Stars: A Symposium Held in Conjunction with the 105th Meeting of the Astronomical Society of the Pacific, Arizona, 1994, Vol. 56, pp 407–412.
  • Colli, L.; Facchini, U. Light emission by germinating plants. Nuovo Cim. 1954, 12, 150–153.
  • Edwards, R.; Ibison, M. C.; Jessel-Kenyon, J.; Taylor, R. B. Measurements of human bioluminescence. Acupunct. Electrother. Res. 1990, 15, 85–94.
  • Sauermann, G.; Mei, W.; Hoppe, U.; Stab, F. Ultraweak photon emission of human skin in vivo: Influence of topically applied antioxidants on human skin. Meth. Enzymol. 1999, 300, 419–428.
  • Nakamura, K.; Hiramatsu, M. Ultra-weak photon emission from human hand: Influence of temperature and oxygen concentration on emission. J. Photochem. Photobiol. B. 2005, 80, 156–160.
  • Cifra, M.; van Wijk, E.; van Wijk, R. Temperature induced changes of spontaneous photon emission from human hands, Piers 2008 Cambridge, Proceedings, Massachusetts, 2008, pp 907–911.
  • Kobayashi, M.; Kikuchi, D.; Okamura, H. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm. PLoS One. 2009, 4, e6256.
  • Schutgens, F. W. G.; Neogi, P.; van Wijk, E.; van Wijk, R.; Wikman, G.; Wiegant, F. A. C. The influence of adaptogens on ultraweak biophoton emission: A pilot-experiment. Phytother. Res. 2009, 23, 1103–1108.
  • Rastogi, A.; Pospíšil, P. Spontaneous ultraweak photon emission imaging of oxidative metabolic processes in human skin: Effect of molecular oxygen and antioxidant defense system. J. Biomed. Opt. 2011, 16, 096005.
  • Prasad, A.; Pospíšil, P. Two-dimensional imaging of spontaneous ultra-weak photon emission from the human skin: Role of reactive oxygen species. J. Biophotonics. 2011, 4, 840–849.
  • Cohen, S.; Popp, F. A. Low-level luminescence of the human skin. Skin Res. Technol. 1997, 3, 177–180.
  • Cohen, S.; Popp, F. Biophoton emission of the human body. J. Photochem. Photobiol. B. 1997, 40, 187–189.
  • Choi, C.; Woo, W.; Lee, M.; Yang, J.; Soh, K. Biophoton emission from the hands. J. Korean Phys. Soc. 2002, 41, 275–278.
  • Kim, T.; Nam, K.; Shin, H.; Lee, S.; Yang, J.; Soh, K. Biophoton emission from fingernails and fingerprints of living human subjects. Acupunct. Electrother. Res. 2002, 27, 85–94.
  • Jung, H.; Yang, J.; Woo, W.; Choi, C.; Yang, J.; Soh, K. Year-long biophoton measurements: Normalized frequency count analysis and seasonal dependency. J. Photochem. Photobiol. B. 2005, 78, 149–154.
  • van Wijk, E.; van Wijk, R. Multi-site recording and spectral analysis of spontaneous photon emission from human body. Complement. Med. Res. 2005, 12, 96–106.
  • van Wijk, R.; Kobayashi, M.; van Wijk, E. Anatomic characterization of human ultra-weak photon emission with a moveable photomultiplier and CCD imaging. J. Photochem. Photobiol. B. 2006, 83, 69–76.
  • van Wijk, R.; van Wijk, E. Studies on the mechanism for low-light effects utilizing color filters in the human ultra-weak photon emission field. Proc. SPIE 6428, Mechanisms for Low-Light Therapy II, 64280M, 2007.
  • Cifra, M.; v.; Wijk, E.; Koch, H.; Bosman, S.; van Wijk, R. Spontaneous ultra-weak photon emission from human hands is time dependent. Radioengineering. 2007, 16, 15–19.
  • Laager, F.; Choi, C.; Park, S.; Yang, J.; Soh, K. Year long measurement of biophoton emission of hands and feet. Neuroquantology. 2008, 6, 464–471.
  • Rastogi, A.; Pospíšil, P. Ultra-weak photon emission as a non-invasive tool for monitoring of oxidative processes in the epidermal cells of human skin: Comparative study on the dorsal and the palm side of the hand. Skin Res. Technol. 2010, 16, 365–370.
  • Zhao, X.; van Wijk, E.; Yan, Y.; van Wijk, R.; Yang, H.; Zhang, Y.; Wang, J. Ultra-weak photon emission of hands in aging prediction. J. Photochem. Photobiol. B. 2016, 162, 529–534.
  • Laager, F.; Park, S.; Yang, J.; Song, W.; Soh, K. Effects of exercises on biophoton emission of the wrist. Eur. J. Appl. Physiol. 2008, 102, 463–469.
  • Seo, D.; Laager, F.; Young, K.; Chang, H.; So, W.; Kim, H.; Soh, K.; Song, W. Ultra-weak photon emission during wrist curl and cycling exercises in trained healthy men. Electr. Biol. Med. 2012, 31, 122–131.
  • Choi, C.; Jung, H.; Woo, W.; Soh, K.; Yoon, G. Biophoton emission from the right and left hands. Optics Health Care Biom. Opt. 2002, 4916, 423–428.
  • Jung, H.; Woo, W. M.; Yang, J. M.; Choi, C.; Lee, J.; Yoon, G.; Yang, J. S.; Lee, S.; Soh, K. S. Left-right asymmetry of biophoton emission from hemiparesis patients. Indian J. Exp. Biol. 2003, 41, 452–456.
  • Yang, M.; Pang, J.; Liu, J.; Liu, Y.; Fan, H.; Han, J. Spectral discrimination between healthy people and cold patients using spontaneous photon emission. Biomed. Opt. Express. 2015, 6, 1331–1339.
  • Sun, M.; van Wijk, E.; Koval, S.; van Wijk, R.; He, M.; Wang, M.; Hankemeier, T.; van der Greef, J. Measuring ultra-weak photon emission as a non-invasive diagnostic tool for detecting early-stage type 2 diabetes: A step toward personalized medicine. J. Photochem. Photobiol. B. 2017, 166, 86–93.
  • van Wijk, E.; Ackerman, J.; van Wijk, R. Effect of meditation on ultraweak photon emission from hands and forehead. Complement. Med. Res. 2005, 12, 107–112.
  • van Wijk, E.; Koch, H.; Bosman, S.; van Wijk, R. Anatomic characterization of human ultra-weak photon emission in practitioners of transcendental meditation (TM) and control subjects. J. Altern. Complement. Med. 2006, 12, 31–38.
  • Van Wijk, E. P. A.; Lüdtke, R.; Van Wijk, R. Differential effects of relaxation techniques on ultraweak photon emission. J. Altern. Complement. Med. 2008, 14, 241–250.
  • Dotta, B. T.; Persinger, M. A. Increased photon emissions from the right but not the left hemisphere while imagining white light in the dark: The potential connection between consciousness and cerebral light. J. Consciousness Expl. Res. 2011, 2, 1463–1473.
  • Dotta, B. T.; Saroka, K. S.; Persinger, M. A. Increased photon emission from the head while imagining light in the dark is correlated with changes in electroencephalographic power: Support for Bokkon's biophoton hypothesis. Neurosci. Lett. 2012, 513, 151–154.
  • Caswell, J. M.; Dotta, B. T.; Persinger, M. A. Cerebral biophoton emission as a potential factor in non-local human-machine interaction. Neuroquantology. 2014, 12, 1–11.
  • Kobayashi, M.; Iwasa, T.; Tada, M. Polychromatic spectral pattern analysis of ultra-weak photon emissions from a human body. J. Photochem. Photobiol. B. 2016, 159, 186–190.
  • Ortega-Ojeda, F.; Calcerrada, M.; Ferrero, A.; Campos, J.; García-Ruiz, C. Measuring the human ultra-weak photon emission distribution using an electron-multiplying, charge-coupled device as a sensor. Sensors. 2018, 18, 1152.
  • Salari, V.; Bókkon, I.; Ghobadi, R.; Scholkmann, F.; Tuszynski, J. A. Relationship between intelligence and spectral characteristics of brain biophoton emission: Correlation does not automatically imply causation. Proc. Natl. Acad. Sci. USA. 2016, 113, E5540–E5541.
  • Kobayashi, M.; Takeda, M.; Sato, T.; Yamazaki, Y.; Kaneko, K.; Ito, K.; Kato, H.; Inaba, H. In vivo imaging of spontaneous ultraweak photon emission from a rat’s brain correlated with cerebral energy metabolism and oxidative stress. Neurosci. Res. 1999, 34, 103–113.
  • Kobayashi, M.; Takeda, M.; Ito, K.; Kato, H.; Inaba, H. Two-dimensional photon counting imaging and spatiotemporal characterization of ultraweak photon emission from a rat’s brain in vivo. J. Neurosci. Meth. 1999, 93, 163–168.
  • Kataoka, Y.; Cui, Y.; Yamagata, A.; Niigaki, M.; Hirohata, T.; Oishi, N.; Watanabe, Y. Activity-dependent neural tissue oxidation emits intrinsic ultraweak photons. Biochem. Biophys. Res. Commun. 2001, 285, 1007–1011.
  • Shanei, A.; Alinasab, Z.; Kiani, A.; Nematollahi, M. A. Detection of ultraweak photon emission (UPE) from cells as a tool for pathological studies. J. Biomed. Phys. Eng. 2017, 7, 389–396.
  • Burgos, R. C. R.; Schoeman, J. C.; Winden, L. J. v.; Červinková, K.; Ramautar, R.; Van Wijk, E. P. A.; Cifra, M.; Berger, R.; Hankemeier, T.; Greef, J. v d. Ultra-weak photon emission as a dynamic tool for monitoring oxidative stress metabolism. Sci. Rep. 2017, 7, 1229.
  • Burgos, R.; Zhang, W.; van Wijk, E.; Hankemeier, T.; Ramautar, R.; van der Greef, J. Cellular glutathione levels in hl-60 cells during respiratory burst are not correlated with ultra-weak photon emission. J. Photochem. Photobiol. B. 2017, 175, 291–296.
  • Scholkmann, F.; Fels, D.; Cifra, M. Non-chemical and non-contact cell-to-cell communication: A short review. Am. J. Transl. Res. 2013, 5, 586–593.
  • Fels, D. Cellular communication through light. PLoS One. 2009, 4, e5086.
  • Fels, D. Endogenous physical regulation of population density in the freshwater protozoan paramecium caudatum. Sci. Rep. 2017, 7, 13800.
  • Dotta, B. T.; Murugan, N. J.; Karbowski, L. M.; Lafrenie, R. M.; Persinger, M. A. Shifting wavelengths of ultraweak photon emissions from dying melanoma cells: Their chemical enhancement and blocking are predicted by Cosic’s theory of resonant recognition model for macromolecules. Naturwissenschaften. 2014, 101, 87–94.
  • He, M.; van Wijk, E.; van Wietmarschen, H.; Wang, M.; Sun, M.; Koval, S.; van Wijk, R.; Hankemeier, T.; van der Greef, J. Spontaneous ultra-weak photon emission in correlation to inflammatory metabolism and oxidative stress in a mouse model of collagen-induced arthritis. J. Photochem. Photobiol. B. 2017, 168, 98–106.
  • Kurian, P.; Obisesan, T. O.; Craddock, T. J. A. Oxidative species-induced excitonic transport in tubulin aromatic networks: Potential implications for neurodegenerative disease. J. Photochem. Photobiol. B. 2017, 175, 109–124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.