631
Views
14
CrossRef citations to date
0
Altmetric
Review Articles

A Critical Review of Properties and Analytical/Bioanalytical Methods for Characterization of Cetuximab

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 125-135 | Published online: 14 Mar 2019

References

  • Xiong, H. Q.; Rosenberg, A.; LoBuglio, A.; Schmidt, W.; Wolff, R. A.; Deutsch, J.; Needle, M.; Abbruzzese, J. L. Cetuximab, a Monoclonal Antibody Targeting the Epidermal Growth Factor Receptor, in Combination with Gemcitabine for Advanced Pancreatic Cancer: A Multicenter Phase II Trial. J. Clin. Oncol. 2004, 80, 2610–2616. DOI: 10.1200/JCO.2004.12.040.
  • Woodburn, J. R. The Epidermal Growth Factor Receptor and Its Inhibition in Cancer Therapy. Pharmacol. Ther. 1999, 82, 241–250. DOI: 10.1016/S0163-7258(98)00045-X.
  • Baselga, J. The EGFR as a Target for Anticancer Therapy-Focus on Cetuximab. Eur. J. Cancer 2001, 37, S16–S22. DOI: 10.1016/S0959-8049(01)00233-7.
  • Kirkpatrick, P.; Graham, J.; Muhsin, M. Cetuximab. Nat. Rev. Drug Discov. 2004, 3, 549–550. DOI: 10.1038/nrd1445.
  • Ross, J. S.; Gray, K. E.; Webb, I. J.; Gray, G. S.; Rolfe, M.; Schenkein, D. P.; Nanus, D. M.; Millowsky, M. I.; Bander, N. H. Antibody-Based Therapeutics: Focus on Prostate Cancer. Cancer Metastasis Rev. 2005, 24, 521–537. DOI: 10.1007/s10555-005-6194-0.
  • Cathomas, R.; Rothermundt, C.; Klingbiel, D.; Bubendorf, L.; Jaggi, R.; Betticher, D. C.; Brauchli, P.; Cotting, D.; Droege, C.; Winterhalder, R.; et al. Efficacy of Cetuximab in Metastatic Castration-Resistant Prostate Cancer Might Depend on EGFR and PTEN Expression: Results from a Phase II Trial (SAKK 08/07). Clin. Cancer Res. 2012, 18, 6049–6057. DOI: 10.1158/1078-0432.CCR-12-2219.
  • Loupakis, F.; Pollina, L.; Stasi, I.; Ruzzo, A.; Scartozzi, M.; Santini, D.; Masi, G.; Graziano, F.; Cremolini, C.; Rulli, E.; et al. PTEN Expression and KRAS Mutations on Primary Tumors and Metastases in the Prediction of Benefit from Cetuximab Plus Irinotecan for Patients with Metastatic Colorectal Cancer. J. Clin. Oncol. 2009, 27, 2622–2629. DOI: 10.1200/JCO.2008.20.2796.
  • Pirker, R.; Pereira, J. R.; Von Pawel, J.; Krzakowski, M.; Ramlau, R.; Park, K.; De Marinis, F.; Eberhardt, W. E. E.; Paz-Ares, L.; Störkel, S.; et al. EGFR Expression as a Predictor of Survival for First-Line Chemotherapy Plus Cetuximab in Patients with Advanced Non-Small-Cell Lung Cancer: Analysis of Data from the Phase 3 FLEX Study. Lancet Oncol. 2012, 13, 33–42. DOI: 10.1016/S1470-2045(11)70318-7.
  • Dubois, M.; Fenaille, F.; Clement, G.; Lechmann, M.; Tabet, J. C.; Ezan, E.; Becher, F. Immunopurification and Mass Spectrometric Quantification of the Active Form of a Chimeric Therapeutic Antibody in Human Serum. Anal. Chem. 2008, 80, 1737–1745. DOI: 10.1021/ac7021234.
  • Martínez-Ortega, A.; Herrera, A.; Salmerón-García, A.; Cabeza, J.; Cuadros-Rodríguez, L.; Navas, N. Study and ICH Validation of a Reverse-Phase Liquid Chromatographic Method for the Quantification of the Intact Monoclonal Antibody Cetuximab. J. Pharm. Anal. 2016, 6, 117–124. DOI: 10.1016/j.jpha.2015.11.007.
  • Ayoub, D.; Jabs, W.; Resemann, A.; Evers, W.; Evans, C.; Main, L.; Baessmann, C.; Wagner-Rousset, E.; Suckau, D.; Beck, A. Correct Primary Structure Assessment and Extensive Glyco-Profiling of Cetuximab by a Combination of Intact, Middle-Up, Middle-Down and Bottom-Up ESI and MALDI Mass Spectrometry Techniques. MAbs 2013, 5, 699–710. DOI: 10.4161/mabs.25423.
  • Fekete, S.; Beck, A.; Fekete, J.; Guillarme, D. Method Development for the Separation of Monoclonal Antibody Charge Variants in Cation Exchange Chromatography, Part I: Salt Gradient Approach. J. Pharm. Biomed. Anal. 2015, 102, 33–44. DOI: 10.1016/j.jpba.2014.08.035.
  • Shibata, K.; Naito, T.; Okamura, J.; Hosokawa, S.; Mineta, H.; Kawakami, J. Simple and Rapid LC-MS/MS Method for the Absolute Determination of Cetuximab in Human Serum Using an Immobilized Trypsin. J. Pharm. Biomed. Anal. 2017, 146, 266–272. DOI: 10.1016/j.jpba.2017.08.012.
  • Kinoshita, M.; Nakatsuji, Y.; Suzuki, S.; Hayakawa, T.; Kakehi, K. Quality Assurance of Monoclonal Antibody Pharmaceuticals Based on Their Charge Variants Using Microchip Isoelectric Focusing Method. J. Chromatogr. A 2013, 1309, 76–83. DOI: 10.1016/j.chroma.2013.08.021.
  • Gahoual, R.; Busnel, J. M.; Beck, A.; François, Y. N.; Leize-Wagner, E. Full Antibody Primary Structure and Microvariant Characterization in a Single Injection Using Transient Isotachophoresis and Sheathless Capillary Electrophoresis-Tandem Mass Spectrometry. Anal. Chem. 2014, 86, 9074–9081. DOI: 10.1021/ac502378e.
  • Biacchi, M.; Gahoual, R.; Said, N.; Beck, A.; Leize-Wagner, E.; François, Y. N. Glycoform Separation and Characterization of Cetuximab Variants by Middle-Up Off-Line Capillary Zone Electrophoresis-UV/Electrospray Ionization-MS. Anal. Chem. 2015, 87, 6240–6250. DOI: 10.1021/acs.analchem.5b00928.
  • Delbaldo, C.; Pierga, J. Y.; Dieras, V.; Faivre, S.; Laurence, V.; Vedovato, J. C.; Bonnay, M.; Mueser, M.; Nolting, A.; Kovar, A.; Raymond, E. Pharmacokinetic Profile of Cetuximab (ErbituxTM) Alone and in Combination with Irinotecan in Patients with Advanced EGFR-Positive Adenocarcinoma. Eur. J. Cancer 2005, 41, 1739–1745. DOI: 10.1016/j.ejca.2005.04.029.
  • Höbel, S.; Vornicescu, D.; Bauer, M.; Fischer, D.; Keusgen, M.; Aigner, A. A Novel Method for the Assessment of Targeted PEI-Based Nanoparticle Binding Based on a Static Surface Plasmon Resonance System. Anal. Chem. 2014, 86, 6827–6835. DOI: 10.1021/ac402001q.
  • Lee, J.; Choi, Y.; Kim, K.; Hong, S.; Park, H. Y.; Lee, T.; Cheon, G. J.; Song, R. Characterization and Cancer Cell Specific Binding Properties of Anti-EGFR Antibody Conjugated Quantum Dots. Bioconjug Chem. 2010, 21, 940–946. DOI: 10.1021/bc9004975.
  • Wu, G.; Barth, R. F.; Yang, W.; Chatterjee, M.; Tjarks, W.; Ciesielski, M. J.; Fenstermaker, R. A. Site-Specific Conjugation of Boron-Containing Dendrimers to anti-EGF Receptor Monoclonal Antibody Cetuximab (IMC-C225) and Its Evaluation as a Potential Delivery Agent for Neutron Capture Therapy. Bioconjug Chem. 2004, 15, 185–194. DOI: 10.1021/bc0341674.
  • Yip, W. L.; Weyergang, A.; Berg, K.; Tønnesen, H. H.; Selbo, P. K. Targeted Delivery and Enhanced Cytotoxicity of Cetuximab − Saporin by Photochemical Internalization in EGFR-Positive Cancer Cells. Mol. Pharmaceutics 2007, 4, 241–251. DOI: 10.1021/mp060105u.
  • Abu-Yousif, A. O.; Moor, A. C. E.; Zheng, X.; Savellano, M. D.; Yu, W.; Selbo, P. K.; Hasan, T. Epidermal Growth Factor Receptor-Targeted Photosensitizer Selectively Inhibits EGFR Signaling and Induces Targeted Phototoxicity in Ovarian Cancer Cells. Cancer Lett. 2012, 321, 120–127. DOI: 10.1016/j.canlet.2012.01.014.
  • Hansel, T. T.; Kropshofer, H.; Singer, T.; Mitchell, J. A.; George, A. J. T. The Safety and Side Effects of Monoclonal Antibodies. Nat. Rev. Drug Discov. 2010, 9, 325–338. DOI: 10.1038/nrd3003.
  • Imai, K.; Takaoka, A. Comparing Antibody and Small-Molecule Therapies for Cancer. Nat. Rev. Cancer 2006, 6, 714–727. DOI: 10.1038/nrc1913.
  • Janin-Bussat, M. C.; Tonini, L.; Huillet, C.; Colas, O.; Klinguer-Hamour, C.; Corvaïa, N.; Beck, A. Cetuximab Fab and Fc N-Glycan Fast Characterization Using IdeS Digestion and Liquid Chromatography Coupled to Electrospray Ionization Mass Spectrometry. In Glycosylation Engineering of Biopharmaceuticals: Methods and Protocols, Methods in Molecular Biology, Beck, A., Ed., Humana Press; Totowa, 2013; Vol. 988, pp. 93–113. DOI: 10.1007/978-1-62703-327-5_7.
  • Robison, J. Monoclonal Antibodies: Applications in Clinical Oncology. In Biosimilars of Monoclonal Antibodies: A Practical Guide to Manufacturing, Preclinical, and Clinical Development; Liu, C., Morrow, K. J., Jr, Eds.; Wiley: Hoboken, 2016; pp 217–267. DOI: 10.1002/9781118940648.ch7.
  • Vincenzi, B.; Schiavon, G.; Silletta, M.; Santini, D.; Tonini, G. The Biological Properties of Cetuximab. Crit. Rev. Oncol. Hematol. 2008, 68, 93–106. DOI: 10.1016/j.critrevonc.2008.07.006.
  • Li, W.; Prabakaran, P.; Chen, W.; Zhu, Z.; Feng, Y.; Dimitrov, D. Antibody Aggregation: Insights from Sequence and Structure. Antibodies 2016, 5, 1–23. DOI: 10.3390/antib5030019.
  • Reusch, D.; Tejada, M. L. Fc Glycans of Therapeutic Antibodies as Critical Quality Attributes. Glycobiology 2015, 25, 1325–1334. DOI: 10.1093/glycob/cwv065.
  • Salomon, D. S.; Brandt, R.; Ciardiello, F.; Normanno, N. Epidermal Growth Factor-Related Peptides and Their Receptors in Human Malignancies. Crit. Rev. Oncol. Hematol. 1995, 19, 183–232. DOI: 10.1016/1040-8428(94)00144-I.
  • Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; et al. Cetuximab Monotherapy and Cetuximab Plus Irinotecan in Irinotecan-Refractory Metastatic Colorectal Cancer. N Engl. J. Med. 2004, 351, 337–345. DOI: 10.1056/NEJMoa033025.
  • Petrilli, R.; Eloy, J. O.; Lopez, R. F. V.; Lee, R. J. Cetuximab Immunoliposomes Enhance Delivery of 5-FU to Skin Squamous Carcinoma Cells. Anticancer Agents Med. Chem. 2017, 17, 301–308. DOI: 10.1097/OGX.0000000000000256.Prenatal.
  • Specenier, P.; Vermorken, J. B. Cetuximab in the Treatment of Squamous Cell Carcinoma of the Head and Neck. Expert Rev. Anticancer Ther. 2011, 11, 511–524. DOI: 10.1586/era.11.20.
  • Cohen, M. H.; Chen, H.; Shord, S.; Fuchs, C.; He, K.; Zhao, H.; Sickafuse, S.; Keegan, P.; Pazdur, R. Approval Summary: Cetuximab in Combination with Cisplatin or Carboplatin and 5-Fluorouracil for the First-Line Treatment of Patients with Recurrent Locoregional or Metastatic Squamous Cell Head and Neck Cancer. Oncologist 2013, 18, 460–466. DOI: 10.1634/theoncologist.2012-0458.
  • Bonner, J. A.; Harari, P. M.; Giralt, J.; Azarnia, N.; Shin, D. M.; Cohen, R. B.; Jones, C. U.; Sur, R.; Raben, D.; Jassem, J.; et al. Radiotherapy Plus Cetuximab for Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2006, 354, 567–578. DOI: 10.1056/NEJMoa053422.
  • Ebisumoto, K.; Okami, K.; Hamada, M.; Maki, D.; Sakai, A.; Saito, K.; Shimizu, F.; Kaneda, S.; Iida, M. Cetuximab with Radiotherapy as an Alternative Treatment for Advanced Squamous Cell Carcinoma of the Temporal Bone. Auris Nasus Larynx 2018, 45, 637–639. DOI: 10.1016/j.anl.2017.08.005.
  • Kalapurakal, S. J.; Malone, J.; Robbins, K. T.; Buescher, L.; Godwin, J.; Rao, K. Cetuximab in Refractory Skin Cancer Treatment. J. Cancer 2012, 3, 257–261. DOI: 10.7150/jca.3491.
  • Bonomo, P.; Loi, M.; Desideri, I.; Olmetto, E.; Delli Paoli, C.; Terziani, F.; Greto, D.; Mangoni, M.; Scoccianti, S.; Simontacchi, G.; et al. Incidence of Skin Toxicity in Squamous Cell Carcinoma of the Head and Neck Treated with Radiotherapy and Cetuximab: A Systematic Review. Crit. Rev. Oncol. Hematol. 2017, 120, 98–110. DOI: 10.1016/j.critrevonc.2017.10.011.
  • Abdel-Rahman, O.; Fouad, M. Correlation of Cetuximab-Induced Skin Rash and Outcomes of Solid Tumor Patients Treated with Cetuximab: A Systematic Review and Meta-Analysis. Crit. Rev. Oncol. Hematol. 2015, 93, 127–135. DOI: 10.1016/j.critrevonc.2014.07.005.
  • Sanna, V.; Sechi, M. Nanoparticle Therapeutics for Prostate Cancer Treatment. Maturitas 2012, 73, 27–32. DOI: 10.1016/j.maturitas.2012.01.016.
  • Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in Cancer Therapy: Challenges, Opportunities, and Clinical Applications. J. Control. Release 2015, 200, 138–157. DOI: 10.1016/j.jconrel.2014.12.030.
  • Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review. J. Control. Release 2000, 65, 271–284. DOI: 10.1016/S0168-3659(99)00248-5.
  • Petrilli, R.; Eloy, J.; Marchetti, J.; Lopez, R.; Lee, R. Targeted Lipid Nanoparticles for Antisense Oligonucleotide Delivery. Curr. Pharm. Biotechnol. 2014, 15, 847–855. DOI: 10.2174/1389201015666141020155834.
  • Allen, T. M.; Cullis, P. R. Liposomal Drug Delivery Systems: From Concept to Clinical Applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. DOI: 10.1016/j.addr.2012.09.037.
  • Eloy, J. O.; Claro de Souza, M.; Petrilli, R.; Barcellos, J. P. A.; Lee, R. J.; Marchetti, J. M. Liposomes as Carriers of Hydrophilic Small Molecule Drugs: Strategies to Enhance Encapsulation and Delivery. Colloids Surf. B Biointerfaces 2014, 123, 345–363. DOI: 10.1016/j.colsurfb.2014.09.029.
  • Zalba, S.; Contreras, A. M.; Haeri, A.; Ten Hagen, T. L. M.; Navarro, I.; Koning, G.; Garrido, M. J. Cetuximab-Oxaliplatin-Liposomes for Epidermal Growth Factor Receptor Targeted Chemotherapy of Colorectal Cancer. J. Control. Release 2015, 210, 26–38. DOI: 10.1016/j.jconrel.2015.05.271.
  • Petrilli, R.; Eloy, J. O.; Saggioro, F. P.; Chesca, D. L.; de Souza, M. C.; Dias, M. V. S.; da Silva, L. L. P.; Lee, R. J.; Lopez, R. F. V. Skin Cancer Treatment Effectiveness Is Improved by Iontophoresis of EGFR-Targeted Liposomes Containing 5-FU Compared with Subcutaneous Injection. J. Control. Release 2018, 283, 151–162. DOI: 10.1016/j.jconrel.2018.05.038.
  • Kutty, R. V.; Feng, S. S. Cetuximab Conjugated Vitamin E TPGS Micelles for Targeted Delivery Ofdocetaxel for Treatment of Triple Negative Breast Cancers. Biomaterials 2013, 34, 10160–10171. DOI: 10.1016/j.biomaterials.2013.09.043.
  • Maya, S.; Kumar, L. G.; Sarmento, B.; Sanoj Rejinold, N.; Menon, D.; Nair, S. V.; Jayakumar, R. Cetuximab Conjugated O-Carboxymethyl Chitosan Nanoparticles for Targeting EGFR Overexpressing Cancer Cells. Carbohydr. Polym. 2013, 93, 661–669. DOI: 10.1016/j.carbpol.2012.12.032.
  • Fekete, S.; Guillarme, D.; Sandra, P.; Sandra, K. Chromatographic, Electrophoretic, and Mass Spectrometric Methods for the Analytical Characterization of Protein Biopharmaceuticals. Anal. Chem. 2016, 88, 480–507. DOI: 10.1021/acs.analchem.5b04561.
  • Fornelli, L.; Ayoub, D.; Aizikov, K.; Beck, A.; Tsybin, Y. O. Middle-Down Analysis of Monoclonal Antibodies with Electron Transfer Dissociation Orbitrap Fourier Transform Mass Spectrometry. Anal. Chem. 2014, 86, 3005–3012. DOI: 10.1021/ac4036857.
  • Bobaly, B.; D’Atri, V.; Goyon, A.; Colas, O.; Beck, A.; Fekete, S.; Guillarme, D. Protocols for the Analytical Characterization of Therapeutic Monoclonal Antibodies. II – Enzymatic and Chemical Sample Preparation. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1060, 325–335. DOI: 10.1016/j.jchromb.2017.06.036.
  • Wang, J. K.; Zhou, Y. Y.; Guo, S. J.; Wang, Y. Y.; Nie, C. J.; Wang, H. L.; Wang, J. L.; Zhao, Y.; Li, X. Y.; Chen, X. J. Cetuximab Conjugated and Doxorubicin Loaded Silica Nanoparticles for Tumor-Targeting and Tumor Microenvironment Responsive Binary Drug Delivery of Liver Cancer Therapy. Mater. Sci. Eng. C 2017, 76, 944–950. DOI: 10.1016/j.msec.2017.03.131.
  • Rice University. Quantifying protein using absorbance at 280 nm: 2015. http://www.ruf.rice.edu/∼bioslabs/methods/protein/abs280.html (accessed Mar 21, 2018).
  • Rice University. Bradford protein assay: 2015. http://www.ruf.rice.edu/∼bioslabs/methods/protein/bradford.html (accessed Mar 21, 2018).
  • Gahoual, R.; Biacchi, M.; Chicher, J.; Kuhn, L.; Hammann, P.; Beck, A.; Leize-Wagner, E.; François, Y. N. Monoclonal Antibodies Biosimilarity Assessment Using Transient Isotachophoresis Capillary Zone Electrophoresis-Tandem Mass Spectrometry. MAbs 2014, 6, 1464–1473. DOI: 10.4161/mabs.36305.
  • Cézé, N.; Ternant, D.; Piller, F.; Degenne, D.; Azzopardi, N.; Dorval, E.; Watier, H.; Lecomte, T.; Paintaud, G. An Enzyme-Linked Immunosorbent Assay for Therapeutic Drug Monitoring of Cetuximab. Ther. Drug Monit. 2009, 31, 597–601. DOI: 10.1097/FTD.0b013e3181b33da3.
  • Olaru, A.; Bala, C.; Jaffrezic-Renault, N.; Aboul-Enein, H. Y. Surface Plasmon Resonance (SPR) Biosensors in Pharmaceutical Analysis. Crit. Rev. Anal. Chem. 2015, 45, 97–105. DOI: 10.1080/10408347.2014.881250.
  • Rice University. Bicinchoninic Acid (BCA) Protein Assay (Smith): 2015. http://www.ruf.rice.edu/∼bioslabs/methods/protein/bca.html (accessed Mar 21, 2018).
  • Hong, K. W.; Kim, C. G.; Lee, S. H.; Chang, K. H.; Shin, Y. W.; Ryoo, K. H.; Kim, S. H.; Kim, Y. S. A Novel Anti-EGFR Monoclonal Antibody Inhibiting Tumor Cell Growth by Recognizing Different Epitopes from Cetuximab. J. Biotechnol. 2010, 145, 84–91. DOI: 10.1016/j.jbiotec.2009.09.023.
  • Che, J.; Wang, H.; Chen, Z.; Li, X.; Hou, Y.; Shan, C.; Cheng, Y. A New Approach for Pharmacokinetics of Single-Dose Cetuximab in Rhesus Monkeys by Surface Plasmon Resonance Biosensor. J. Pharm. Biomed. Anal. 2009, 50, 183–188. DOI: 10.1016/j.jpba.2009.04.009.
  • Suárez, I.; Salmerón-García, A.; Cabeza, J.; Capitán-Vallvey, L. F.; Navas, N. Development and Use of Specific ELISA Methods for Quantifying the Biological Activity of Bevacizumab, Cetuximab and Trastuzumab in Stability Studies. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1032, 155–164. DOI: 10.1016/j.jchromb.2016.05.045.
  • Rice University. Hartree-Lowry and Modified Lowry Protein Assays: 2015. http://www.ruf.rice.edu/∼bioslabs/methods/protein/lowry.html (accessed Mar 21, 2018).
  • Deepagan, V. G.; Sarmento, B.; Menon, D.; Nascimento, A.; Jayasree, A.; Sreeranganathan, M.; Koyakutty, M.; Nair, S. V.; Rangasamy, J. In Vitro Targeted Imaging and Delivery of Camptothecin Using Cetuximab-Conjugated Multifunctional PLGA-ZnS Nanoparticles. Nanomedicine 2012, 7, 507–519. DOI: 10.2217/nnm.11.139.
  • Becher, F.; Ciccolini, J.; Imbs, D. C.; Marin, C.; Fournel, C.; Dupuis, C.; Fakhry, N.; Pourroy, B.; Ghettas, A.; Pruvost, A.; et al. A Simple and Rapid LC-MS/MS Method for Therapeutic Drug Monitoring of Cetuximab: A GPCO-UNICANCER Proof of Concept Study in Head-And-Neck Cancer Patients. Sci. Rep. 2017, 7, 1–11. DOI: 10.1038/s41598-017-02821-x.
  • Hantash, J.; Smidt, M.; Bowsher, R. R. The Development, Optimization and Validation of an ELISA Bioanalytical Method for the Determination of Cetuximab in Human Serum. Anal. Methods 2009, 1, 144–148. DOI: 10.1039/b9ay00027e.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.