766
Views
37
CrossRef citations to date
0
Altmetric
Review Articles

Critical Review on the Analytical Methods for the Determination of Sulfur and Trace Elements in Crude Oil

ORCID Icon, , &
Pages 161-178 | Published online: 19 Apr 2019

References

  • Valenti, C. Crude Oils Production, Environmental Impacts and Global Market Challenges; Nova Science Publishers: New York, 2014.
  • Speight, J. G. The Chemistry and Technology of Petroleum, 5th ed.; CRC Press: Boca Raton, 2014.
  • Aske, N.; Harald, K.; Johan, S. Water-in-Crude Oil Emulsion Stability Studied by Critical Electric Field Measurements. Correlation to Physico-Chemical Parameters and near-Infrared Spectroscopy. J. Pet. Sci. Eng. 2002, 36, 1–17. ‏DOI: 10.1016/S0920-4105(02)00247-4.
  • Sama, S. G.; Barrère-Mangote, C.; Bouyssière, B.; Giusti, P.; Lobinski, R. Recent Trends in Element Speciation Analysis of Crude Oils and Heavy Petroleum Fractions. Trac-Trend Anal. Chem. 2018, 104, 69–76. DOI: 10.1016/j.trac.2017.10.014.
  • Seeger, T. S.; Muller, E. I.; Mesko, M. F.; Duarte, F. A. Magnesium and Calcium Determination in Desalted Crude Oil by Direct Sampling Graphite Furnace Atomic Absorption Spectrometry. Fuel. 2019, 236, 1483–1488. ‏ DOI: 10.1016/j.fuel.2018.09.108.
  • Cavalcante, C.; de Oliveira, J. P.; Hamada, J.; de Siqueira, F. A.; do Nascimento, A. N. Sequential Extraction Procedure for the Separation of Ni and V Species in Crude Oil and Analysis by ETAAS, GC–MS, and IR. Fuel. 2018, 220, 631–637. ‏ DOI: 10.1016/j.fuel.2018.02.033.
  • Matar, S.; Hatch, L. F. Chemistry of Petrochemical Process, 2nd ed.; Gulf Professional Publishing: Butterworth, 2001.
  • Sugiyama, I.; Williams-Jones, A. E. An Approach to Determining Nickel, Vanadium and Other Metal Concentrations in Crude Oil. Anal. Chim. Acta. 2018, 1002, 18–25. ‏ DOI: 10.1016/j.aca.2017.11.040.
  • Shehata, A. B.; Mohamed, G. G.; Gab-Allah, M. A. Development of Crude Oil Reference Material Certified for the Concentrations of Sulfur, Iron, Nickel, Vanadium and Magnesium. MAPAN-J. Metrol. Soc. India. 2017, 32, 101–112. ‏ DOI: 10.1007/s12647-017-0205-9.
  • Speight, J. G. Handbook of Petroleum Product Analysis, 2nd ed.; John Wiley & Sons: New Jersey, 2015.
  • Pereira, J. S. F.; Mello, P. A.; Moraes, D. P.; Duarte, F. A.; Dressler, V. L.; Knapp, G.; Flores, É. M. M. Chlorine and Sulfur Determination in Extra-Heavy Crude Oil by Inductively Coupled Plasma Optical Emission Spectrometry after Microwave-Induced Combustion. Spectrochim. Acta B. 2009, 64, 554–558. ‏ DOI: 10.1016/j.sab.2009.01.011.
  • Maryutina, T. A.; Katasonova, O. N.; Savonina, E. Y.; Spivakov, B. Y. Present-Day Methods for the Determination of Trace Elements in Oil and Its Fractions. J. Anal. Chem. 2017, 72, 490–509. DOI: 10.1134/S1061934817050070.
  • Mello, P. A.; Pereira, J. S. F.; Mesko, M. F.; Barin, J. S.; Flores, E. M. M. Sample Preparation Methods for Subsequent Determination of Metals and Non-Metals in Crude Oil—A Review. Anal. Chim. Acta. 2012, 746, 15–36. ‏ DOI: 10.1016/j.aca.2012.08.009.
  • Pereira, J. S. F.; Picoloto, R. S.; Pereira, L. S. F.; Guimarães, R. C. L.; Guarnieri, R. A.; Flores, E. M. M. High-Efficiency Microwave-Assisted Digestion Combined to in Situ Ultraviolet Radiation for the Determination of Rare Earth Elements by Ultrasonic Nebulization ICPMS in Crude Oils. Anal. Chem. 2013, 85, 11034–11040. ‏ DOI: 10.1021/ac402928u.
  • Ricard, E.; Pécheyran, C.; Ortega, G. S.; Prinzhofer, A.; Donard, O. F. Direct Analysis of Trace Elements in Crude Oils by High-Repetition-Rate Femtosecond Laser Ablation Coupled to ICPMS Detection. Anal. Bioanal. Chem. 2011, 399, 2153–2165. ‏ DOI: 10.1007/s00216-010-4403-3.
  • Giles, H. N.; Mills, C. O. Crude Oils: Their Sampling, Analysis, and Evaluation; ASTM International: West Conshohocken, 2010.
  • Shehata, A. B.; Mohamed, G. G.; Gab-Allah, M. A. Simple Spectrophotometric Method for Determination of Iron in Crude Oil. Pet. Chem. 2017, 57, 1007–1011. ‏ DOI: 10.1134/S096554411712012X.
  • De Jesus, A.; Zmozinski, A. V.; Damin, I. C. F.; Silva, M. M.; Vale, M. G. R. Determination of Arsenic and Cadmium in Crude Oil by Direct Sampling Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta B. 2012, 71, 86–91. ‏ DOI: 10.1016/j.sab.2012.03.010.
  • Bettmer, J.; Heilmann, J.; Kutscher, D. J.; Sanz-Medel, A.; Heumann, K. G. Direct μFlow Injection Isotope Dilution ICP-MS for the Determination of Heavy Metals in Oil Samples. Anal. Bioanal. Chem. 2012, 402, 269–275. ‏ DOI: 10.1007/s00216-011-5420-6.
  • Dittert, I. M.; Silva, J. S. A.; Araujo, R. G. O.; Curtius, A. J.; Welz, B.; Becker-Ross, H. Direct and Simultaneous Determination of Cr and Fe in Crude Oil Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta B. 2009, 64, 537–543. ‏ DOI: 10.1016/j.sab.2009.02.006.
  • dos Santos, W. N. L.; Dias, F. D. S.; Reboucas, M. V.; Pereira, M. D. G.; Lemos, V. A.; Teixeira, L. S. G. Mercury Determination in Petroleum Products by Electrothermal Atomic Absorption Spectrometry after in Situ Preconcentration Using Multiple Injections. J. Anal. At. Spectrom. 2006, 21, 1327–1330. DOI: 10.1039/b607274g.
  • Akinlua, A.; Torto, N. Determination of Selected Metals in Niger Delta Oils by Graphite Furnace Atomic Absorption Spectrometry. Anal. Lett. 2006, 39, 1993–2005. ‏ DOI: 10.1080/00032710600723916.
  • Pessoa, H. M.; Hauser-Davis, R. A.; de Campos, R. C.; de Castro, E. V. R.; Carneiro, M. T. W. D.; Brandão, G. P. Determination of Ca, Mg, Sr and Ba in Crude Oil Samples by Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2012, 27, 1568–1573. ‏ DOI: 10.1039/c2ja30125c.
  • Brandão, G. P.; de Campos, R. C.; de Castro, E. V. R.; de Jesus, H. C. Direct Determination of Nickel in Petroleum by Solid Sampling–Graphite Furnace Atomic Absorption Spectrometry. Anal. Bioanal. Chem. 2006, 386, 2249–2253. ‏ DOI: 10.1007/s00216-006-0875-6.
  • de Souza, R. M.; Meliande, A. L. S.; da Silveira, C. L. P.; Aucélio, R. Q. Determination of Mo, Zn, Cd, Ti, Ni, V, Fe, Mn, Cr and Co in Crude Oil Using Inductively Coupled Plasma Optical Emission Spectrometry and Sample Introduction as Detergentless Microemulsions. Microchem. J. 2006, 82, 137–141. ‏ DOI: 10.1016/j.microc.2006.01.005.
  • Souza, M. D. O.; Ribeiro, M. A.; Carneiro, M. T. W. D.; Athayde, G. P. B.; de Castro, E. V. R.; da Silva, F. L. F.; Matos, W. O.; Ferreira, R. D. Q. Evaluation and Determination of Chloride in Crude Oil Based on the Counterions Na, Ca, Mg, Sr and Fe, Quantified via ICP-OES in the Crude Oil Aqueous Extract. Fuel. 2015, 154, 181–187. ‏ DOI: 10.1016/j.fuel.2015.03.079.
  • Doyle, A.; Saavedra, A.; Tristão, M. L. B.; Nele, M.; Aucélio, R. Q. Direct Chlorine Determination in Crude Oils by Energy Dispersive X-Ray Fluorescence Spectrometry: An Improved Method Based on a Proper Strategy for Sample Homogenization and Calibration with Inorganic Standards. Spectrochim. Acta B. 2011, 66, 368–372. DOI: 10.1016/j.sab.2011.05.001.
  • Doyle, A.; Saavedra, A.; Tristao, M. L. B.; Aucelio, R. Q. Determination of S, Ca, Fe, Ni and V in Crude Oil by Energy Dispersive X-Ray Fluorescence Spectrometry Using Direct Sampling on Paper Substrate. Fuel. 2015, 162, 39–46. ‏ DOI: 10.1016/j.fuel.2015.08.072.
  • Gazulla, M. F.; Orduña, M.; Vicente, S.; Rodrigo, M. Development of a WD-XRF Analysis Method of Minor and Trace Elements in Liquid Petroleum Products. Fuel. 2013, 108, 247–253. ‏ DOI: 10.1016/j.fuel.2013.02.049.
  • Christopher, J.; Patel, M. B.; Ahmed, S.; Basu, B. Determination of Sulphur in Trace Levels in Petroleum Products by Wavelength-Dispersive X-Ray Fluorescence Spectroscopy. Fuel. 2001, 80, 1975–1979. ‏ DOI: 10.1016/S0016-2361(00)00213-1.
  • Cadorim, H. R.; Pereira, É. R.; Carasek, E.; Welz, B.; de Andrade, J. B. Determination of Sulfur in Crude Oil Using High-Resolution Continuum Source Molecular Absorption Spectrometry of the SnS Molecule in a Graphite Furnace. Talanta. 2016, 146, 203–208. ‏ DOI: 10.1016/j.talanta.2015.07.088.
  • Amorim, F. A. C.; Welz, B.; Costa, A. C. S.; Lepri, F. G.; Vale, M. G. R.; Ferreira, S. L. C. Determination of Vanadium in Petroleum and Petroleum Products Using Atomic Spectrometric Techniques. Talanta. 2007, 72, 349–359. ‏ DOI: 10.1016/j.talanta.2006.12.015.
  • Saint'Pierre, T. D.; Rocha, R. C. C.; Duyck, C. B. Determination of Hg in Water Associate to Crude Oil Production by Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry. Microchem. J. 2013, 109, 41–45. ‏ DOI: 10.1016/j.microc.2012.05.005.
  • ASTM D5863–00a, Standard Test Methods for Determination of Nickel, Vanadium, Iron, and Sodium in Crude Oils and Residual Fuels by Flame Atomic Absorption Spectrometry. ASTM Int. 2016. DOI: 10.1520/D5863-00AR16.
  • ASTM D6470-99, Standard Test Method for Salt in Crude Oils (Potentiometric Method). ASTM Int. 2015. DOI: 10.1520/D6470-99R15.
  • ASTM D7623-10, Standard Test Method for Total Mercury in Crude Oil Using Combustion-Gold Amalgamation and Cold Vapor Atomic Absorption Method. ASTM Int. 2015. DOI: 10.1520/D7623-10R15.
  • ASTM D3230-13, Standard Test Method for Salt in Crude Oil (Electrometric Method). ASTM Int. 2018. DOI: 10.1520/D3230-13R18.
  • ASTM D5708-15, Standard Test Methods for Determination of Nickel, Vanadium, and Iron in Crude Oils and Residual Fuels by Inductively Coupled Plasma (ICP) Atomic Emission Spectrometry. ASTM Int. 2015. DOI: 10.1520/D5708-15.
  • ASTM D2622-16, Standard Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-Ray Fluorescence Spectrometry. ASTM Int. 2016. DOI: 10.1520/D2622-16.
  • ASTM D4929-17, Standard Test Methods for Determination of Organic Chloride Content in Crude Oil. ASTM Int. 2017. DOI: 10.1520/D4929-17.
  • ASTM D7691-16, Standard Test Method for Multielement Analysis of Crude Oils Using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). ASTM Int. 2016. DOI: 10.1520/D7691-16.
  • ASTM D5762-18 a, Standard Test Method for Nitrogen in Petroleum and Petroleum Products by Boat-Inlet Chemiluminescence. ASTM Int. 2018. DOI: 10.1520/D5762-18A.
  • ASTM D7622-10, Standard Test Method for Total Mercury in Crude Oil Using Combustion and Direct Cold Vapor Atomic Absorption Method with Zeeman Background Correction. ASTM Int. 2015. DOI: 10.1520/D7622-10R15.
  • ASTM D7455-14 Standard Practice for Sample Preparation of Petroleum and Lubricant Products for Elemental Analysis. ASTM Int. 2014. DOI: 10.1520/D7455-14.
  • ASTM D4294-16e1, Standard Test Method for Sulfur in Petroleum and Petroleum Products by Energy-Dispersive X-Ray Fluorescence Spectrometry. ASTM Int. 2016. DOI: 10.1520/D4294-16E01.
  • ISO 3170:2004, Petroleum Liquids—Manual Sampling. ISO International Standard 2004.
  • Sánchez, R.; Todolí, J. L.; Lienemann, C. P.; Mermet, J. M. Determination of Trace Elements in Petroleum Products by Inductively Coupled Plasma Techniques: A Critical Review. Spectrochim. Acta B. 2013, 88, 104–126. ‏ DOI: 10.1016/j.sab.2013.06.005.
  • Matusiewicz, H. Wet Digestion Methods. In Sample Preparation for Trace Element Analysis, 1st ed.; Mester, Z.; Sturgeon, R., Eds.; Elsevier: Amsterdam, 2003; pp 193–221.
  • Vähäoja, P.; Välimäki, I.; Roppola, K.; Kuokkanen, T.; Lahdelma, S. Wear Metal Analysis of Oils. Crit. Rev. Anal. Chem. 2008, 38, 67–83. ‏ DOI: 10.1080/10408340701804434.
  • Akinlua, A.; Torto, N.; Ajayi, T. R. Determination of Rare Earth Elements in Niger Delta Crude Oils by Inductively Coupled Plasma-Mass Spectrometry. Fuel. 2008, 87, 1469–1477. ‏ DOI: 10.1016/j.fuel.2007.09.004.
  • Mastoi, G. M.; Khuhawar, M. Y.; Bozdar, R. B. Spectrophotometric Determination of Vanadium in Crude Oil. J. Quant. Spectrosc. Radiat. Transfer. 2006, 102, 236–240. ‏ DOI: 10.1016/j.jqsrt.2006.02.008.
  • Stigter, J. B.; De Haan, H. P. M.; Guicherit, R.; Dekkers, C. P. A.; Daane, M. L. Determination of Cadmium, Zinc, Copper, Chromium and Arsenic in Crude Oil Cargoes. Environ. Pollut. 2000, 107, 451–464. ‏ DOI: 10.1016/S0269-7491(99)00123-2.
  • Ajayi, T. R.; Torto, N.; Tchokossa, P.; Akinlua, A. Natural Radioactivity and Trace Metals in Crude Oils: Implication for Health. Environ. Geochem. Health. 2009, 31, 61–69. ‏ DOI: 10.1007/s10653-008-9155-z.
  • Kowalewska, Z.; Ruszczyńska, A.; Bulska, E. Cu Determination in Crude Oil Distillation Products by Atomic Absorption and Inductively Coupled Plasma Mass Spectrometry after Analyte Transfer to Aqueous Solution. Spectrochim Acta B. 2005, 60, 351–359. ‏ DOI: 10.1016/j.sab.2005.02.002.
  • Munoz, R. A. A.; Correia, P. R. M.; Nascimento, A. N.; Silva, C. S.; Oliveira, P. V.; Angnes, L. Electroanalysis of Crude Oil and Petroleum-Based Fuel for Trace Metals: Evaluation of Different Microwave-Assisted Sample Decompositions and Stripping Techniques. Energy Fuels. 2007, 21, 295–302. ‏ DOI: 10.1021/ef0603941.
  • Flores, É. M. M.; Barin, J. S.; Mesko, M. F.; Knapp, G. Sample Preparation Techniques Based on Combustion Reactions in Closed Vessels—a Brief Overview and Recent Applications. Spectrochim. Acta B. 2007, 62, 1051–1064. ‏ DOI: 10.1016/j.sab.2007.04.018.
  • Zhe-Ming, N.; Bin, H.; Heng-Bin, H. Minimization of Sulphate Interferences in Selenium Determination by Furnace Atomic Absorption Spectroscopy. Spectrochim. Acta B. 1994, 49, 947–953. DOI: 10.1016/0584-8547(94)80083-9.
  • Evans, E. H.; Giglio, J. J. Interferences in Inductively Coupled Plasma Mass Spectrometry a Review. J. Anal. At. Spectrom. 1993, 8, 1–18. DOI: 10.1039/ja9930800001.
  • Duyck, C.; Miekeley, N.; da Silveira, C. L. P.; Aucelio, R. Q.; Campos, R. C.; Grinberg, P.; Brandao, G. P. The Determination of Trace Elements in Crude Oil and Its Heavy Fractions by Atomic Spectrometry. Spectrochim. Acta B. 2007, 62, 939–951. ‏ DOI: 10.1016/j.sab.2007.04.013.
  • Takeda, K.; Arikawa, Y. Determination of Rare Earth Elements in Petroleum by ICP-MS. Bunseki Kagaku. 2005, 54, 939–943. ‏ DOI: 10.2116/bunsekikagaku.54.939.Z.
  • Zanozina, I. I.; Babintseva, M. V.; Polishchuk, N. V.; Zanozin, I. Y.; Cherentaeva, V. V.; Diskina, D. E. Determination of Chlorine in Crude Oils and Light Cuts. Chem. Tech. Fuels Oils. 2003, 39, 95–97. DOI: 10.1023/A:1024510802845.
  • Maryutina, T. A.; Soin, A. V. Novel Approach to the Elemental Analysis of Crude and Diesel Oil. Anal. Chem. 2009, 81, 5896–5901. ‏ DOI: 10.1021/ac900615t.
  • Howard, M. E.; Vocke, R. D. Jr, A Closed System Digestion and Purification Procedure for the Accurate Assay of Chlorine in Fossil Fuels. J. Anal. At. Spectrom. 2004, 19, 1423–1427. ‏ DOI: 10.1039/b409925g.
  • Qi, L.; Zhou, M. F.; Wang, C. Y.; Sun, M. Evaluation of a Technique for Determining Re and PGEs in Geological Samples by ICP-MS Coupled with a Modified Carius Tube Digestion. Geochem. J. 2007, 41, 407–414. ‏ DOI: 10.2343/geochemj.41.407.
  • Kelly, W. R.; Long, S. E.; Mann, J. L. Determination of Mercury in SRM Crude Oils and Refined Products by Isotope Dilution Cold Vapor ICP-MS Using Closed-System Combustion. Anal. Bioanal. Chem. 2003, 376, 753–758. ‏ DOI: 10.1007/s00216-003-1952-8.
  • Soin, A. V.; Maryutina, T. A.; Arbuzova, T. V.; Spivakov, B. Y. Sample Preparation in the Determination of Metals in Oil and Petroleum Products by ICP MS. J. Anal. Chem. 2010, 65, 571–576. ‏ DOI: 10.1134/S1061934810060043.
  • Nóbrega, J. A.; Donati, G. L. Microwave Assisted Sample Preparation for Spectrochemistry. In: Meyers, R. A. (ed.) and Bings, N. H. (Assoc. ed.), Encycl. Anal. Chem. Wiley, Chichester, 2011, (23p). DOI: 10.1002/9780470027318.a9185.
  • Duyck, C.; Miekeley, N.; da Silveira, C. L. P.; Szatmari, P. Trace Element Determination in Crude Oil and Its Fractions by Inductively Coupled Plasma Mass Spectrometry Using Ultrasonic Nebulization of Toluene Solutions. Spectrochim. Acta B. 2002, 57, 1979–1990. ‏ DOI: 10.1016/S0584-8547(02)00171-4.
  • Pontes, F. V. M.; Carneiro, M. C.; Vaitsman, D. S.; Monteiro, M. I. C.; Neto, A. A.; Tristão, M. L. B.; Guerrante, M. D. F. Comparative Study of Sample Decomposition Methods for the Determination of Total Hg in Crude Oil and Related Products. Fuel Process. Technol. 2013, 106, 122–126. ‏ DOI: 10.1016/j.fuproc.2012.07.011.
  • Savonina, E. Y.; Maryutina, T. A.; Katasonova, O. N. Determination of Microelements in Oil by Combined Sample Preparation Technique. Inorg. Mater. 2017, 53, 1448–1453. ‏ DOI: 10.1134/S0020168517140151.
  • Heilmann, J.; Boulyga, S. F.; Heumann, K. G. Development of an Isotope Dilution Laser Ablation ICP-MS Method for Multi-Element Determination in Crude and Fuel Oil Samples. J. Anal. At. Spectrom. 2009, 24, 385–390. ‏ DOI: 10.1039/b819879a.
  • Pereira, J. S. F.; Moraes, D. P.; Antes, F. G.; Diehl, L. O.; Santos, M. F. P.; Guimarães, R. C. L.; Fonseca, T. C. O.; Dressler, V. L.; Flores, É. M. M. Determination of Metals and Metalloids in Light and Heavy Crude Oil by ICP-MS after Digestion by Microwave-Induced Combustion. Microchem. J 2010, 96, 4–11. ‏ DOI: 10.1016/j.microc.2009.12.016.
  • Costa, L. M.; Silva, F. V.; Gouveia, S. T.; Nogueira, A. R. A.; Nóbrega, J. A. Focused Microwave-Assisted Acid Digestion of Oils: An Evaluation of the Residual Carbon Content. Spectrochim. Acta B 2001, 56, 1981–1985. ‏ DOI: 10.1016/S0584-8547(01)00308-1.
  • Pereira, J. S. F.; Pereira, L. S. F.; Mello, P. A.; Guimaraes, R. C. L.; Guarnieri, R. A.; Fonseca, T. C. O.; Flores, E. M. M. Microwave-Induced Combustion of Crude Oil for Further Rare Earth Elements Determination by USN–ICP-MS. Anal. Chim. Acta 2014, 844, 8–14. ‏ DOI: 10.1016/j.aca.2014.07.043.
  • Mello, P. D. A.; Pereira, J. S. F.; de Moraes, D. P.; Dressler, V. L.; Flores, É. M. D.; Knapp, G. Nickel, Vanadium and Sulfur Determination by Inductively Coupled Plasma Optical Emission Spectrometry in Crude Oil Distillation Residues after Microwave-Induced Combustion. J. Anal. At. Spectrom. 2009, 24, 911–916. ‏ DOI: 10.1039/b904194j.
  • de Souza, R. M.; Saraceno, A. L.; da Silveira, C. L. P.; Aucélio, R. Q. Determination of Trace Elements in Crude Oil by ICP-OES Using Ultrasound-Assisted Acid Extraction. J. Anal. Atom. Spectrom 2006, 21, 1345–1349. ‏ DOI: 10.1039/B605643C.
  • Dreyfus, S.; Pecheyran, C.; Lienemann, C. P.; Magnier, C.; Prinzhofer, A.; Donard, O. F. X. Determination of Lead Isotope Ratios in Crude Oils with Q-ICP/MS. J. Anal. Atom. Spectrom 2007, 22, 351–360. ‏ DOI: 10.1039/B610803B.
  • Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils. U.S. EPA 2007.
  • Korn, M.; Santos, D.; Welz, B.; Vale, M.; Teixeira, A.; Lima, D.; Ferreira, S. Atomic Spectrometric Methods for the Determination of Metals and Metalloids in Automotive Fuels–a Review. Talanta. 2007, 73, 1–11. ‏ DOI: 10.1016/j.talanta.2007.03.036.
  • Curiale, J. A. Distribution and Occurrence of Metals in Heavy Crude Oils and Solid Bitumens–Implications for Petroleum Exploration: Section II. Characterization, Maturation, and Degradation.‏. AAPG Stud. Geol. 1987, 25, 207–219.
  • Koh, S.; Aoki, T.; Katayama, Y.; Takada, J. Losses of Elements in Plant Samples under the Dry Ashing Process. J. Radioanal. Nucl. Chem. 1999, 239, 591–594. DOI: 10.1007/BF02349075.
  • Fecher, P.; Ruhnke, G. Cross Contamination of Lead and Cadmium during Dry Ashing of Food Samples. Anal. Bioanal. Chem. 2002, 373, 787–791. DOI: 10.1007/s00216-002-1440-6.
  • Barbooti, M. M. Evaluation of Analytical Procedures in the Determination of Trace Metals in Heavy Crude Oils by Flame Atomic Absorption Spectrophotometry. AJAC. 2015, 06, 325–333. DOI: 10.4236/ajac.2015.64031.
  • Platteau, O.; Carrillo, M. Determination of Metallic Elements in Crude Oil-Water Emulsions by Flame AAS. Fuel 1995, 74, 761–767. ‏ DOI: 10.1016/0016-2361(94)00002-9.
  • Udoh, A. P.; Thomas, S. A.; Ekanem, E. J. Application of P-Xylenesulphonic Acid as Ashing Reagent in the Determination of Trace Metals in Crude Oil. Talanta. 1992, 39, 1591–1595. ‏ DOI: 10.1016/0039-9140(92)80189-K.
  • Ekanem, E. J.; Lori, J. A.; Thomas, S. A. Ashing Procedure for the Determination of Metals in Petroleum Fuels. Bull. Chem. Soc. Ethiopia 1998, 12, 9–16. ‏ DOI: 10.4314/bcse.v12i1.21029.
  • Amoli, H. S.; Porgam, A.; Sadr, Z. B.; Mohanazadeh, F. Analysis of Metal Ions in Crude Oil by Reversed-Phase High Performance Liquid Chromatography Using Short Column. J. Chromatogr. A. 2006, 1118, 82–84. ‏ DOI: 10.1016/j.chroma.2006.04.068.
  • Attia, N. A.; Goda, E. S.; Hassan, M. A.; Sabaa, M. W.; Nour, M. A. Preparation and Certification of Novel Reference Material for Smoke Density Measurements. MAPAN 2018, 33, 297–306. DOI: 10.1007/s12647-018-0254-8.
  • Barbooti, M. M.; Zaki, N. S.; Baha-Uddin, S. S.; Hassan, E. B. Use of Silica Gel in the Preparation of Used Lubricating Oil Samples for the Determination of Wear Metals by Flame Atomic Absorption Spectrometry. Analyst. 1990, 115, 1059–1061. ‏ DOI: 10.1039/an9901501059.
  • Maryutina, T. A.; Musina, N. S. Determination of Metals in Heavy Oil Residues by Inductively Coupled Plasma Atomic Emission Spectroscopy. J. Anal. Chem. 2012, 67, 862–867. ‏ DOI: 10.1134/S106193481210005X.
  • Botto, R. I. Matrix Interferences in the Analysis of Organic Solutions by Inductively Coupled Plasma-Atomic Emission Spectrometry. Spectrochim. Acta B. 1987, 42, 181–199. ‏ DOI: 10.1016/0584-8547(87)80060-5.
  • Giusti, P.; Ordóñez, Y. N.; Lienemann, C. P.; Schaumlöffel, D.; Bouyssiere, B.; Łobiński, R. μFlow-Injection–ICP Collision Cell MS Determination of Molybdenum, Nickel and Vanadium in Petroleum Samples Using a Modified Total Consumption Micronebulizer. J. Anal. Atom. Spectrom. 2007, 22, 88–92. ‏ DOI: 10.1039/B611542J.
  • Goda, E. S.; Yoon, K. R.; El-Sayed, S. H.; Hong, S. H. Halloysite Nanotubes as Smart Flame Retardant and Economic Reinforcing Materials: A Review. Thermochim. Acta 2018, 669, 173–184. DOI: 10.1016/j.tca.2018.09.017.
  • Botto, R. I. Applications of Ultrasonic Nebulization in the Analysis of Petroleum and Petrochemicals by Inductively Coupled Plasma Atomic Emission Spectrometry. J. Anal. At. Spectrom. 1993, 8, 51–57. ‏ DOI: 10.1039/ja9930800051.
  • Lienemann, C. P.; Dreyfus, S.; Pecheyran, C.; Donard, O. F. X. Trace Metal Analysis in Petroleum Products: Sample Introduction Evaluation in ICP-OES and Comparison with an ICP-MS Approach. Oil Gas Sci. Technol. – Rev. IFP. 2007, 62, 69–77. ‏ DOI: 10.2516/ogst:2007006.
  • Olsen, S. D.; Westerlund, S.; Visser, R. G. Analysis of Metals in Condensates and Naphtha by Inductively Coupled Plasma Mass Spectrometry. Analyst.. 1997, 122, 1229–1234. ‏ DOI: 10.1039/a704017b.
  • Vorapalawut, N.; Pohl, P.; Bouyssiere, B.; Shiowatana, J.; Lobinski, R. Multielement Analysis of Petroleum Samples by Laser Ablation Double Focusing Sector Field Inductively Coupled Plasma Mass Spectrometry (LA-ICP MS). J. Anal. Atom. Spectrom. 2011, 26, 618–622. ‏ DOI: 10.1039/C0JA00118J.
  • Kahen, K.; Strubinger, A.; Chirinos, J. R.; Montaser, A. Direct Injection High Efficiency Nebulizer-Inductively Coupled Plasma Mass Spectrometry for Analysis of Petroleum Samples. Spectrochim. Acta B. 2003, 58, 397–413. ‏ DOI: 10.1016/S0584-8547(02)00261-6.
  • Björn, E.; Frech, W. Introduction of High Carbon Content Solvents into Inductively Coupled Plasma Mass Spectrometry by a Direct Injection High Efficiency Nebulizer. Anal. Bioanal. Chem. 2003, 376, 274–278. ‏ DOI: 10.1007/s00216-003-1874-5.
  • Guidroz, J. M.; Sneddon, J. Fate of Vanadium Determined by Nitrous Oxide–Acetylene Flame Atomic Absorption Spectrometry in Unburned and Burned Venezuelan Crude Oil. Microchem. J. 2002, 73, 363–366. DOI: 10.1016/S0026-265X(02)00126-1.
  • de Albuquerque, F. I.; Duyck, C. B.; Fonseca, T. C. O.; Saint'Pierre, T. D. Determination of As and Se in Crude Oil Diluted in Xylene by Inductively Coupled Plasma Mass Spectrometry Using a Dynamic Reaction Cell for Interference Correction on 80Se. Spectrochim. Acta B. 2012, 71, 112–116. ‏ DOI: 10.1016/j.sab.2012.05.008.
  • Ellis, J.; Rechsteiner, C.; Moir, M.; Wilbur, S. Determination of Volatile Nickel and Vanadium Species in Crude Oil and Crude Oil Fractions by Gas Chromatography Coupled to Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 2011, 26, 1674–1678. ‏ DOI: 10.1039/c1ja10058k.
  • Santelli, R. E.; Oliveira, E. P.; de Carvalho, M. D. F. B.; Bezerra, M. A.; Freire, A. S. Total Sulfur Determination in Gasoline, Kerosene and Diesel Fuel Using Inductively Coupled Plasma Optical Emission Spectrometry after Direct Sample Introduction as Detergent Emulsions. Spectrochim. Acta B. 2008, 63, 800–804. ‏ DOI: 10.1016/j.sab.2008.04.020.
  • Burguera, J. L.; Burguera, M. Analytical Applications of Organized Assemblies for on-Line Spectrometric Determinations: Present and Future. Talanta. 2004, 64, 1099–1108. ‏ DOI: 10.1016/j.talanta.2004.02.046.
  • Lobo, F. A.; Goveia, D.; Oliveira, A. P.; Romão, L. P. C.; Fraceto, L. F.; Dias Filho, N. L.; Rosa, A. H. Development of a Method to Determine Ni and Cd in Biodiesel by Graphite Furnace Atomic Absorption Spectrometry. Fuel. 2011, 90, 142–146. ‏ DOI: 10.1016/j.fuel.2010.09.009.
  • de Jesus, A.; Zmozinski, A. V.; Barbará, J. A.; Vale, M. G. R.;.; Silva, M. M. Determination of Calcium and Magnesium in Biodiesel by Flame Atomic Absorption Spectrometry Using Microemulsions as Sample Preparation. Energy Fuels. 2010, 24, 2109–2112. ‏ DOI: 10.1021/ef9014235.
  • de Jesus, A.; Silva, M. M.; Vale, M. G. R. The Use of Microemulsion for Determination of Sodium and Potassium in Biodiesel by Flame Atomic Absorption Spectrometry. Talanta. 2008, 74, 1378–1384. ‏ DOI: 10.1016/j.talanta.2007.09.010.
  • Molinero, A. L.; Castillo, J. R. Determination of Nickel and Vanadium in Oil by Inductively Coupled Plasma-Atomic Emission Spectrometry with Microemulsion Sample Introduction. Anal. Lett. 1998, 31, 903–911. ‏ DOI: 10.1080/00032719808002827.
  • Brandão, G. P.; de Campos, R. C.; de Castro, E. V. R.; de Jesus, H. C. Determination of Manganese in Diesel, Gasoline and Naphtha by Graphite Furnace Atomic Absorption Spectrometry Using Microemulsion Medium for Sample Stabilization. Spectrochim. Acta B. 2008, 63, 880–884.‏ DOI: 10.1016/j.sab.2008.04.019.
  • Quadros, D. P. C.; Chaves, E. S.; Lepri, F. G.; Borges, D. L. G.; Welz, B.; Becker-Ross, H.; Curtius, A. J. Evaluation of Brazilian and Venezuelan crude oil Samples by Means of the Simultaneous Determination of Ni and V as Their Total and Non-Volatile Fractions Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Energy Fuels. 2010, 24, 5907–5911. ‏ DOI: 10.1021/ef100148d.
  • Damin, I. C. F.; Vale, M. G. R.; Silva, M. M.; Welz, B.; Lepri, F. G.; dos Santos, W. N. L.; Ferreira, S. L. C. Palladium as Chemical Modifier for the Stabilization of Volatile Nickel and Vanadium Compounds in Crude Oil Using Graphite Furnace Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2005, 20, 1332–1336. ‏ DOI: 10.1039/b508099a.
  • Damin, I. C. F.; Dessuy, M. B.; Castilhos, T. S.; Silva, M. M.; Vale, M. G. R.; Welz, B.; Katskov, D. A. Comparison of Direct Sampling and Emulsion Analysis Using a Filter Furnace for the Determination of Lead in Crude Oil by Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta B. 2009, 64, 530–536.‏ DOI: 10.1016/j.sab.2009.03.002.
  • Luz, M. S.; Nascimento, A. N.; Oliveira, P. V. Fast Emulsion-Based Method for Simultaneous Determination of Co, Cu, Pb and Se in Crude Oil, Gasoline and Diesel by Graphite Furnace Atomic Absorption Spectrometry. Talanta. 2013, 115, 409–413. ‏ DOI: 10.1016/j.talanta.2013.05.034.
  • Lord, C. J. Determination of Trace Metals in Crude Oil by Inductively Coupled Plasma Mass Spectrometry with Microemulsion Sample Introduction. Anal. Chem. 1991, 63, 1594–1599. DOI: 10.1021/ac00015a018.
  • Burguera, J. L.; Avila-Gómez, R. M.; Burguera, M.; de Salager, R. A.; Salager, J. L.; Bracho, C. L.; Burguera-Pascu, M.; Burguera-Pascu, C.; Brunetto, R.; Gallignani, M. Optimum Phase-Behavior Formulation of Surfactant/Oil/Water Systems for the Determination of Chromium in Heavy Crude Oil and in Bitumen-in-Water Emulsion. Talanta. 2003, 61, 353–361. ‏ DOI: 10.1016/S0039-9140(03)00275-3.
  • Lepri, F. G.; Welz, B.; Borges, D. L. G.; Silva, A. F.; Vale, M. G. R.; Heitmann, U. Speciation Analysis of Volatile and Non-Volatile Vanadium Compounds in Brazilian Crude Oils Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Anal. Chim. Acta. 2006, 558, 195–200. ‏‏ DOI: 10.1016/j.aca.2005.10.083.
  • Murillo, M.; Chirinos, J. Use of Emulsion Systems for the Determination of Sulfur, Nickel and Vanadium in Heavy Crude Oil Samples by Inductively Coupled Plasma Atomic Emission Spectrometry. J. Anal. At. Spectrom. 1994, 9, 237–240. ‏ DOI: 10.1039/ja9940900237.
  • Soin, A.; Maryutina, T.; Musina, N.; Soin, A. New Possibility for REE Determination in Oil. Int. J. Spectrosc. 2012, 2012, 1. ‏ DOI: 10.1155/2012/174697.
  • Júnior, D. S.; Krug, F. J.; Pereira, M. D. G.; Korn, M. Currents on Ultrasound‐Assisted Extraction for Sample Preparation and Spectroscopic Analytes Determination. Appl. Spectrosc. Rev. 2006, 41, 305–321. ‏ DOI: 10.1080/05704920600620436.
  • Cassella, R. J.; Brum, D. M.; de Paula, C. E. R.; Lima, C. F. Extraction Induced by Emulsion Breaking: A Novel Strategy for the Trace Metals Determination in Diesel Oil Samples by Electrothermal Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2010, 25, 1704–1711.‏ DOI: 10.1039/c0ja00035c.
  • Cassella, R. J.; Brum, D. M.; Lima, C. F.; Caldas, L. F. S.; De Paula, C. E. R. Multivariate Optimization of the Determination of Zinc in DIesel Oil Employing a Novel Extraction Strategy Based on Emulsion Breaking. Anal. Chim. Acta. 2011, 690, 79–85. ‏ DOI: 10.1016/j.aca.2011.01.059.
  • He, Y. M.; Zhao, F. F.; Zhou, Y.; Ahmad, F.; Ling, Z. X. Extraction Induced by Emulsion Breaking as a Tool for Simultaneous Multi-Element Determination in Used Lubricating Oils by ICP-MS. Anal. Methods. 2015, 7, 4493–4501. ‏ DOI: 10.1039/C4AY03024A.
  • Cassella, R. J.; Brum, D. M.; Robaina, N. F.; Lima, C. F. Extraction Induced by Emulsion Breaking: A Model Study on Metal Extraction from Mineral Oil. Fuel. 2018, 215, 592–600. ‏ DOI: 10.1016/j.fuel.2017.11.102.
  • He, Y. M.; Ling, Z. X.; Zhou, Y.; Ahmad, F.; Zhao, F. F. Application of Extraction Induced by Emulsion Breaking for Trace Multi-Element Determination in Jet Fuel by Inductively Coupled Plasma-Mass Spectrometry. Spectrosc. Lett. 2016, 49, 37–43. ‏ DOI: 10.1080/00387010.2015.1061556.
  • Corazza, M. Z.; Tarley, C. R. T. Development and Feasibility of Emulsion Breaking Method for the Extraction of Cadmium from Omega-3 Dietary Supplements and Determination by Flow Injection TS-FF-AAS. Microchem. J. 2016, 127, 145–151. ‏ DOI: 10.1016/j.microc.2016.02.021.
  • He, Y. M.; Chen, J. J.; Zhou, Y.; Wang, X. J.; Liu, X. Y. Extraction Induced by Emulsion Breaking for Trace Multi-Element Determination in Edible Vegetable Oils by ICP-MS. Anal. Methods. 2014, 6, 5105–5111. ‏ DOI: 10.1039/C4AY00218K.
  • Leite, C. C.; de Jesus, A.; Kolling, L.; Ferrão, M. F.; Samios, D.; Silva, M. M. Extraction Method Based on Emulsion Breaking for the Determination of Cu, Fe and Pb in Brazilian Automotive Gasoline Samples by High-Resolution Continuum Source Flame Atomic Absorption Spectrometry. Spectrochim. Acta B. 2018, 142, 62–67. ‏ DOI: 10.1016/j.sab.2018.01.018.
  • Pereira, F. M.; Brum, D. M.; Lepri, F. G.; Cassella, R. J. Extraction Induced by Emulsion Breaking as a Tool for Ca and Mg Determination in Biodiesel by Fast Sequential Flame Atomic Absorption Spectrometry (FS-FAAS) Using Co as Internal Standard. Microchem. J. 2014, 117, 172–177. DOI: 10.1016/j.microc.2014.06.026.
  • Trevelin, A. M.; Marotto, R. E. S.; de Castro, E. V. R.; Brandão, G. P.; Cassella, R. J.; Carneiro, M. T. W. D. Extraction Induced by Emulsion Breaking for Determination of Ba, Ca, Mg and Na in Crude Oil by Inductively Coupled Plasma Optical Emission Spectrometry. Microchem. J. 2016, 124, 338–343. ‏ DOI: 10.1016/j.microc.2015.09.014.
  • Wuyke, H.; Oropeza, T.; Feo, L. Extraction Induced by Emulsion Breaking for the Determination of as, Co, Cr, Mn, Mo and Pb in Heavy and Extra-Heavy Crude Oil Samples by ICP-MS. Anal. Methods. 2017, 9, 1152–1160. ‏ DOI: 10.1039/C6AY03130G.
  • Robaina, N. F.; Feiteira, F. N.; Cassella, A. R.; Cassella, R. J. Determination of Chloride in Brazilian Crude Oils by Ion Chromatography After Extraction Induced by Emulsion Breaking. J. Chromatogr. A. 2016, 1458, 112–117. DOI: 10.1016/j.chroma.2016.06.066.
  • Vicentino, P. D. O.; Brum, D. M.; Cassella, R. J. Development of a Method for Total Hg Determination in Oil Samples by Cold Vapor Atomic Absorption Spectrometry After Its Extraction Induced by Emulsion Breaking. Talanta. 2015, 132, 733–738. DOI: 10.1016/j.talanta.2014.10.019.
  • Ferreira, S. L. C.; Bezerra, M. A.; Santos, A. S.; dos Santos, W. N. L.; Novaes, C. G.; de Oliveira, O. M. C.; Oliveira, M. L.; Garcia, R. L. Atomic Absorption Spectrometry–a Multi Element Technique. Trac-Trend Anal. Chem. 2018, 100, 1–6. ‏ DOI: 10.1016/j.trac.2017.12.012.
  • Singh, P.; Singh, M. K.; Beg, Y. R.; Nishad, G. R. A. Review on Spectroscopic Methods for Determination of Nitrite and Nitrate in Environmental Samples. Talanta. 2019, 19, 364–381. DOI: 10.1016/j.talanta.2018.08.028.
  • Galvão, E. S.; Santos, J. M.; Lima, A. T.; Reis, N. C. R.; Orlando, M. T. D. A.; Stuetz, R. M. Trends in Analytical Techniques Applied to Particulate Matter Characterization: A Critical Review of Fundaments and Application. Chemosphere. 2018, 199, 546–568. DOI: 10.1016/j.chemosphere.2018.02.034.
  • Adolfo, F. R.; do Nascimento, P. C.; Leal, G. C.; Bohrer, D.; Viana, C.; de Carvalho, L. M.; Colim, A. N. Simultaneous Determination of Iron and Nickel as Contaminants in Multimineral and Multivitamin Supplements by Solid Sampling HR-CS GF AAS. Talanta. 2019, 195, 745–751. DOI: 10.1016/j.talanta.2018.12.010.
  • Dittert, I. M.; Silva, J. S.; Araujo, R. G.; Curtius, A. J.; Welz, B.; Becker-Ross, H. Simultaneous Determination of Cobalt and Vanadium in Undiluted Crude Oil Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2010, 25, 590–595. ‏ DOI: 10.1039/b915194j.
  • Seeger, T. S.; Machado, E. Q.; Flores, E. M. M.; Mello, P. A.; Duarte, F. A. Direct Sampling Graphite Furnace Atomic Absorption Spectrometry-Feasibility of Na and K Determination in Desalted Crude Oil. Spectrochim. Acta B. 2018, 141, 28–33. ‏ DOI: 10.1016/j.sab.2018.01.002.
  • Nakamoto, Y.; Ishimaru, T.; Endo, N.; Matsusaki, K. Determination of Vanadium in Heavy Oils by Atomic Absorption Spectrometry Using a Graphite Furnace Coated with Tungsten. Anal. Sci. 2004, 20, 739–741. ‏ DOI: 10.2116/analsci.20.739.
  • Vale, M. G. R.; Damin, I. C. F.; Klassen, A.; Silva, M. M.; Welz, B.; Silva, A. F.; Lepri, F. G.; Borges, D. L. G.; Heitmann, U. Method Development for the Determination of Nickel in Petroleum Using Line-Source and High-Resolution Continuum-Source Graphite Furnace Atomic Absorption Spectrometry. Microchem. J. 2004, 77, 131–140. ‏ DOI: 10.1016/j.microc.2004.02.007.
  • Brandão, G. P.; de Campos, R. C.; de Castro, E. V. R.; de Jesus, H. C. Determination of Copper, Iron and Vanadium in Petroleum by Direct Sampling Electrothermal Atomic Absorption Spectrometry. Spectrochim. Acta B. 2007, 62, 962–969. ‏ DOI: 10.1016/j.sab.2007.05.001.
  • Silva, M. M.; Damin, I. C. F.; Vale, M. G. R.; Welz, B. Feasibility of Using Solid Sampling Graphite Furnace Atomic Absorption Spectrometry for Speciation Analysis of Volatile and Non-Volatile Compounds of Nickel and Vanadium in Crude Oil. Talanta. 2007, 71, 1877–1885. ‏ DOI: 10.1016/j.talanta.2006.08.024.
  • Vieira, L. V.; Rainha, K. P.; de Castro, E. V. R.; Filgueiras, P. R.; Carneiro, M. T. W. D.; Brandão, G. P. Exploratory Data Analysis Using API Gravity and V and Ni Contents to Determine the Origins of Crude Oil Samples from Petroleum Fields in the Espírito Santo Basin (Brazil). Microchem. J. 2016, 124, 26–30. ‏ DOI: 10.1016/j.microc.2015.07.011.
  • Hou, X.; Jones, B. T. Inductively Coupled Plasma/Optical Emission Spectrometry. Encycl. Anal. Chem. 2000, 11, 9468–9485. ‏
  • Nelms, S. Inductively Coupled Plasma Mass Spectrometry Handbook; Blackwell Publishing Ltd: Oxford, 2005.‏
  • Yang, W.; Casey, J. F.; Gao, Y. A New Sample Preparation Method for Crude or Fuel Oils by Mineralization Utilizing Single Reaction Chamber Microwave for Broader Multi-Element Analysis by ICP Techniques. Fuel. 2017, 206, 64–79. DOI: 10.1016/j.fuel.2017.05.084.
  • Walkner, C.; Gratzer, R.; Meisel, T.; Bokhari, S. N. H. Multi-Element Analysis of Crude Oils Using ICP-QQQ-MS. Org. Geochem. 2017, 103, 22–30. DOI: 10.1016/j.orggeochem.2016.10.009.
  • dos Anjos, S. L.; Alves, J. C.; Soares, S. A. R.; Araujo, R. G. O.; de Oliveira, O. M. C.; Queiroz, A. F. S.; Ferreira, S. L. C. Multivariate Optimization of a Procedure Employing Microwave-Assisted Digestion for the Determination of Nickel and Vanadium in Crude Oil by ICP OES. Talanta. 2018, 178, 842–846. ‏ DOI: 10.1016/j.talanta.2017.10.010.
  • Akinlua, A.; Sigedle, A.; Buthelezi, T.; Fadipe, O. A. Trace Element Geochemistry of Crude Oils and Condensates from South African Basins. Mar. Pet. Geol. 2015, 59, 286–293. ‏ DOI: 10.1016/j.marpetgeo.2014.07.023.
  • Sneddon, J.; Hardaway, C.; Bobbadi, K. K.; Beck, J. N. A Study of a Crude Oil Spill Site for Selected Metal Concentrations Remediated by a Controlled Burning in Southwest Louisiana. Microchem. J. 2006, 82, 8–16. ‏ DOI: 10.1016/j.microc.2005.06.006.
  • Ortega, G. S.; Pécheyran, C.; Hudin, G.; Marosits, E.; Donard, O. F. X. Different Approaches of Crude Oil Mineralisation for Trace Metal Analysis by ICPMS. Microchem. J. 2013, 106, 250–254. ‏ DOI: 10.1016/j.microc.2012.07.012.
  • Poirier, L.; Nelson, J.; Leong, D.; Berhane, L.; Hajdu, P.; Lopez-Linares, F. Application of ICP-MS and ICP-OES on the Determination of Nickel, Vanadium, Iron, and Calcium in Petroleum Crude Oils via Direct Dilution. Energy Fuels. 2016, 30, 3783–3790. DOI: 10.1021/acs.energyfuels.5b02997.
  • Beckhoff, B.; Kanngießer, B.; Langhoff, N.; Wedell, R.; Wolff, H. Handbook of Practical X-Ray Fluorescence Analysis; Springer-Verlag: Berlin, 2006.‏ DOI: 10.1007/978-3-540-36722-2.
  • Ojeda, N.; Greaves, E. D.; Alvarado, J.; Sajo-Bohus, L. Determination of V, Fe, Ni and S in Petroleum Crude Oil by Total-Reflection X-Ray Fluorescence. Spectrochim. Acta B. 1993, 48, 247–253. ‏ DOI: 10.1016/0584-8547(93)80030-X.
  • Christensen, L. H.; Agerbo, A. Determination of Sulfur and Heavy Metals in Crude Oil and Petroleum Products by Energy-Dispersive X-Ray Fluorescence Spectrometry and Fundamental Parameter Approach. Anal. Chem. 1981, 53, 1788–1792. ‏ DOI: 10.1021/ac00235a016.
  • L'Annunziata, M. F. Radioactivity: Introduction and History, from the Quantum to Quarks, 2nd ed.; Elsevier: Amsterdam, 2016.
  • Shah, K. R.; Filby, R. H.; Haller, W. A. Determination of Trace Elements in Petroleum by Neutron Activation Analysis. J. Radioanal. Chem. 1970, 6, 413–422. ‏ DOI: 10.1007/BF02513968.
  • Colombo, U. P.; Sironi, G.; Fasolo, G. B.; Malvano, R. Systematic Neutron Activation Technique for the Determination of Trace Metals in Petroleum. Anal. Chem. 1964, 36, 802–807. ‏ DOI: 10.1021/ac60210a031.
  • Csikai, J.; Al-Jobori, S.; Buczkó, C.; Szegedi, S. Determination of Major and Trace Elements in Crude Oils by Neutron Activation and Reflection Methods. J. Radioanal. Chem. 1982, 71, 215–223. ‏ DOI: 10.1007/BF02516151.
  • Oluwole, A.; Asubiojo, O.; Nwachukwu, J.; Ojo, J.; Ogunsola, O.; Adejumo, J.; Filby, R. H.; Fitzgerald, S.; Grimm, C. Neutron Activation Analysis of Nigerian Crude Oils. J. Radioanalyt. Nucl Chem. 1993, 168, 145–152. ‏ DOI: 10.1007/BF02040887.
  • Filby, R. H.; Olsen, S. D. A Comparison of Instrumental Neutron Activation Analysis and Inductively Coupled Plasma-Mass Spectrometry for Trace Element Determination in Petroleum Geochemistry. J. Radioanal. Nucl. Chem. 1994, 180, 285–294. ‏ DOI: 10.1007/BF02035917.
  • Musa, M.; Markus, W.; Elghondi, A.; Etwir, R.; Hannan, A.; Arafa, E. Neutron Activation Analysis of Major and Trace Elements in Crude Petroleum. J. Radioanalyt. Nucl. Chem. 1995, 198, 17–22. ‏ DOI: 10.1007/BF02038241.
  • Olsen, S. D.; Filby, R. H.; Brekke, T.; Isaksen, G. H. Determination of Trace Elements in Petroleum Exploration Samples by Inductively Coupled Plasma Mass Spectrometry and Instrumental Neutron Activation Analysis. Analyst. 1995, 120, 1379–1390. ‏ DOI: 10.1039/an9952001379.
  • Adeyemo, D. J.; Umar, I. M.; Jonah, S. A.; Thomas, S. A.; Agbaji, E. B.; Akaho, E. H. K. Trace Elemental Analysis of Nigerian Crude Oils by INAA Using Miniature Neutron Source Reactor. J. Radioanal. Nucl. Chem. 2004, 261, 229–231. ‏ DOI: 10.1023/B:JRNC.0000030963.08444.fd.
  • Caumette, G.; Lienemann, C. P.; Merdrignac, I.; Bouyssiere, B.; Lobinski, R. Fractionation and Speciation of Nickel and Vanadium in Crude Oils by Size Exclusion Chromatography-ICP MS and Normal Phase HPLC-ICP MS. J. Anal. At. Spectrom. 2010, 25, 1123–1129. ‏ DOI: 10.1039/c003455j.
  • Akinlua, A.; Ajayi, T. R.; Adeleke, B. B. Organic and Inorganic Geochemistry of Northwestern Niger Delta Oils. Geochem. J. 2007, 41, 271–281. ‏ DOI: 10.2343/geochemj.41.271.
  • Khuhawar, M. Y.; Arain, G. M. Liquid Chromatographic Determination of Vanadium in Petroleum Oils and Mineral Ore Samples Using 2-Acetylpyridne-4-Phenyl-3-Thiosemicarbazone as Derivatizing Reagent. Talanta. 2006, 68, 535–541. ‏ DOI: 10.1016/j.talanta.2005.04.065.
  • Khuhawar, M. Y.; Lanjwani, S. N. Simultaneous High Performance Liquid Chromatographic Determination of Vanadium, Nickel, Iron and Copper in Crude Petroleum Oils Using Bis (Acetylpivalylmethane) Ethylenediimine as a Complexing Reagent. Talanta. 1996, 43, 767–770. ‏ DOI: 10.1016/0039-9140(95)01829-8.
  • Khuhawar, M. Y.; Lanjwani, S. N.; Khaskhely, G. Q. High-Performance Liquid Chromatographic Determination of Vanadium in Crude Petroleum Oils Using Bis (Salicylaldehyde) Tetramethylethylenediimine. J. Chromatogr. A. 1995, 689, 39–43. ‏ DOI: 10.1016/0021-9673(94)00613-E.
  • Lanjwani, S. N.; Mahar, K. P.; Channer, A. H. Simultaneous Determination of Cobalt, Copper, Iron and Vanadium in Crude Petroleum Oils by HPLC. Chromatographia. 1996, 43, 431–432. ‏ DOI: 10.1007/BF02271024.
  • Martínez, M.; Lobinski, R.; Bouyssiere, B.; Piscitelli, V.; Chirinos, J.; Caetano, M. Determination of Ni and V in Crude Oil Samples Encapsulated in Zr Xerogels by Laser-Induced Breakdown Spectroscopy. Energy Fuels. 2015, 29, 5573–5577. ‏ DOI: 10.1021/acs.energyfuels.5b00960.
  • El-Hussein, A.; Marzouk, A.; Harith, M. A. Discriminating Crude Oil Grades Using Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta B. 2015, 113, 93–99. ‏ DOI: 10.1016/j.sab.2015.09.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.