892
Views
18
CrossRef citations to date
0
Altmetric
Review Articles

A critical review of HPLC-based analytical methods for quantification of Linezolid

ORCID Icon, ORCID Icon &
Pages 196-211 | Published online: 24 Apr 2019

References

  • Butler, M. S.; Blaskovich, M. A.; Cooper, M. A. . Antibiotics in the Clinical Pipeline at the End of 2015. J. Antibiot. 2017, 70, 3–24. DOI: 10.1038/ja.2016.72.
  • Falagas, M. E.; Mavroudis, A. D.; Vardakas, K. Z. . The Antibiotic Pipeline for Multi-Drug Resistant Gram Negative Bacteria: What Can We Expect? Expert Rev Anti Infect Ther 2016, 14, 747–763. DOI: 10.1080/14787210.2016.1204911.
  • Gould, I. M.; Bal, A. M. . New Antibiotic Agents in the Pipeline and How They Can Help Overcome Microbial Resistance. Virulence 2013, 4, 185–191. DOI: 10.4161/viru.22507.
  • Mendes, R. E.; Deshpande, L. M.; Jones, R. N. . Linezolid Update: Stable in Vitro Activity following More than a Decade of Clinical Use and Summary of Associated Resistance Mechanisms. Drug Resist. Updat. 2014, 17, 1–12. DOI: 10.1016/j.drup.2014.04.002.
  • Barbachyn, M. R.; Ford, C. W. . Oxazolidinone Structure–Activity Relationships Leading to Linezolid. Angew. Chem. Int. Ed. 2003, 42, 2010–2023. DOI: 10.1002/anie.200200528.
  • French, G. . Safety and Tolerability of Linezolid. J. Antimicrob. Chemother 2003, 51, 45–53.
  • McCoy, L. S.; Xie, Y.; Tor, Y. . Antibiotics That Target Protein Synthesis. Wires. RNA 2011, 2, 209–232. DOI: 10.1002/wrna.60.
  • Livermore, D. M. . Linezolid in Vitro: Mechanism and Antibacterial Spectrum. J. Antimicrob. Chemother 2003, 51, 9–16.
  • Shaw, K.; Barbachyn, M. . The Oxazolidinones: Past, Present, and Future. Ann. N. Y. Acad. Sci 2011, 1241, 48–70. DOI: 10.1111/j.1749-6632.2011.06330.x.
  • Michalska, K.; Karpiuk, I.; Król, M.; Tyski, S. . Recent Development of Potent Analogues of Oxazolidinone Antibacterial Agents. Bioorg. Med. Chem 2013, 21, 577–591. DOI: 10.1016/j.bmc.2012.11.036.
  • Kaushik, A.; Heuer, A. M.; Bell, D. T.; Culhane, J. C.; Ebner, D. C.; Parrish, N.; Ippoliti, J. T.; Lamichhane, G. . An Evolved Oxazolidinone with Selective Potency against Mycobacterium Tuberculosis and Gram Positive Bacteria. Bioorg. Med. Chem. Lett. 2016, 26, 3572–3576. DOI: 10.1016/j.bmcl.2016.06.019.
  • Thomas, K. D.; Adhikari, A. V.; Chowdhury, I. H.; Sandeep, T.; Mahmood, R.; Bhattacharya, B.; Sumesh, E. . Design, Synthesis and Docking Studies of Quinoline-Oxazolidinone Hybrid Molecules and Their Antitubercular Properties. Eur. J. Med. Chem. 2011, 46, 4834–4845. DOI: 10.1016/j.ejmech.2011.07.049.
  • Ang, W.; Ye, W.; Sang, Z.; Liu, Y.; Yang, T.; Deng, Y.; Luo, Y.; Wei, Y. . Discovery of Novel Bis-Oxazolidinone Compounds as Potential Potent and Selective Antitubercular Agents. Bioorg. Med. Chem. Lett. 2014, 24, 1496–1501.
  • Sotgiu, G.; Centis, R.; D'Ambrosio, L.; Alffenaar, J.-W. C.; Anger, H. A.; Caminero, J. A.; Castiglia, P.; De Lorenzo, S.; Ferrara, G.; Koh, W.-J.. ; et al. Efficacy, Safety and Tolerability of Linezolid Containing Regimens in Treating MDR-TB and XDR-TB: Systematic Review and Meta-Analysis. Eur. Respir. J. 2012, 40, 1430–1442. DOI: 10.1183/09031936.00022912.
  • De Lorenzo, S.; Alffenaar, J. W.; Sotgiu, G.; Centis, R.; D'Ambrosio, L.; Tiberi, S.; Bolhuis, M. S.; van Altena, R.; Viggiani, P.; Piana, A.. ; et al. Efficacy and Safety of Meropenem-Clavulanate Added to Linezolid-Containing Regimens in the Treatment of MDR-/XDR-TB. Eur. Respir. J. 2013, 41, 1386–1392. DOI: 10.1183/09031936.00124312.
  • Lee, M.; Lee, J.; Carroll, M.; Choi, H.; Min, S.; Song, T.; Via, L.; Goldfeder, L.; Kang, E.; Jin, B.. ; et al. Linezolid for Treatment of Chronic Extensively Drug-Resistant Tuberculosis. N. Engl. J. Med EnglJMed2012, 367, 1508–1518. DOI: 10.1056/NEJMoa1201964.
  • Cox, H.; Ford, N. . Linezolid for the Treatment of Complicated Drug-Resistant Tuberculosis: A Systematic Review and Meta-Analysis. Int. J. Tuberc. Lung Dis. 2012, 16, 447–454. DOI: 10.5588/ijtld.11.0451.
  • Bassetti, M.; Righi, E.; Carnelutti, A. . Bloodstream Infections in the Intensive Care Unit. Virulence 2016, 7, 267–279. DOI: 10.1080/21505594.2015.1134072.
  • Vincent, J.-L.; Rello, J.; Marshall, J.; Silva, E.; Anzueto, A.; Martin, C. D.; Moreno, R.; Lipman, J.; Gomersall, C.; Sakr, Y.; Reinhart, K. . EPIC II Group of Investigators. International Study of the Prevalence and Outcomes of Infection in Intensive Care Units. JAMA 2009, 302, 2323–2329.
  • Gales, A. C.; Sader, H. S.; Ribeiro, J.; Zoccoli, C.; Barth, A.; Pignatari, A. C. . Antimicrobial Susceptibility of Gram-Positive Bacteria Isolated in Brazilian Hospitals Participating in the SENTRY Program (2005–2008). Braz. J. Infect. Dis. 2009, 13, 90–98. DOI: 10.1590/S1413-86702009000200004.
  • Hashemian, S.; Farhadi, T.; Ganjparvar, M. . Linezolid: A Review of Its Properties, Function, and Use in Critical Care. Drug Des. Devel Ther. 2018, 12, 1759–1767. DOI: 10.2147/DDDT.S164515.
  • Yue, J.; Dong, B. R.; Yang, M.; Chen, X.; Wu, T.; Liu, G. J. . Linezolid versus Vancomycin for Skin and Soft Tissue Infections. Cochrane Database Syst. Rev. 2013, 7, CD008056.
  • Weigelt, J.; Itani, K.; Stevens, D.; Lau, W.; Dryden, M.; Knirsch, C. Linezolid CSSTI Study Group. Linezolid versus Vancomycin in Treatment of Complicated Skin and Soft Tissue Infections. Antimicrob. Agents Chemother 2005, 49, 2260–2266. DOI: 10.1128/AAC.49.6.2260-2266.2005.
  • Niederman, M. S.; Chastre, J.; Solem, C. T.; Wan, Y.; Gao, X.; Myers, D. E.; Haider, S.; Li, J. Z.; Stephens, J. M. . Health Economic Evaluation of Patients Treated for Nosocomial Pneumonia Caused by Methicillin-Resistant Staphylococcus Aureus: Secondary Analysis of a Multicenter Randomized Clinical Trial of Vancomycin and Linezolid. Clin. Ther. 2014, 36, 1233–1243. DOI: 10.1016/j.clinthera.2014.06.029.
  • Kalil, A. C.; Murthy, M. H.; Hermsen, E. D.; Neto, F. K.; Sun, J.; Rupp, M. E. . Linezolid versus Vancomycin or Teicoplanin for Nosocomial Pneumonia: A Systematic Review and Meta-Analysis. Crit. Care Med. 2010, 38, 1802–1808. DOI: 10.1097/CCM.0b013e3181eb3b96.
  • Zhu, H.; Guo, S.-C.; Liu, Z.-Q.; Wang, B.; Fu, L.; Chu, N.-H.; Lu, Y. . Therapeutic Drug Monitoring of Cycloserine and Linezolid during anti-Tuberculosis Treatment in Beijing, China. Int. J. Tuberc. Lung Dis. 2018, 22, 931–936. DOI: 10.5588/ijtld.17.0648.
  • McKenzie, C. . Antibiotic Dosing in Critical Illness. J. Antimicrob. Chemother. 2011, 66, ii25–ii31. DOI: 10.1093/jac/dkq516.
  • Odenholt, I.; Gustafsson, I.; Löwdin, E.; Cars, O. . Suboptimal Antibiotic Dosage as a Risk Factor for Selection of Penicillin-Resistant Streptococcus Pneumoniae: In Vitro Kinetic Model. Antimicrob. Agents Chemother. 2003, 47, 518–523. DOI: 10.1128/AAC.47.2.518-523.2003.
  • Kohanski, M. A.; DePristo, M. A.; Collins, J. J. . Sublethal Antibiotic Treatment Leads to Multidrug Resistance via Radical-Induced Mutagenesis. Mol. Cell 2010, 37, 311–320. DOI: 10.1016/j.molcel.2010.01.003.
  • Roberts, J. A.; Kruger, P.; Paterson, D. L.; Lipman, J. . Antibiotic resistance-what's dosing got to do with it? Crit. Care Med. 2008, 36, 2433–2440. DOI: 10.1097/CCM.0b013e318180fe62.
  • Pea, F.; Cojutti, P. G.; Baraldo, M. . A 10-Year Experience of Therapeutic Drug Monitoring (TDM)of Linezolid in a Hospital-Wide Population of Patients ReceivingConventional Dosing: Is There Enough Evidence for SuggestingTDM in the Majority of Patients? Basic. Clin. Pharmacol. Toxicol. 2017, 121, 303–308.
  • Roberts, J. A.; Norris, R.; Paterson, D. L.; Martin, J. H. . Therapeutic Drug Monitoring of Antimicrobials. Br. J. Clin. Pharmacol. 2012, 73, 27–36. DOI: 10.1111/j.1365-2125.2011.04080.x.
  • World Health Organization. Quality Assurance of Pharmaceuticals: A Compendium of Guidelines and Related Materials; Geneva, Switzerland, 2007.
  • Vogt, F. G.; Kord, A. S. . Development of Quality-By-Design Analytical Methods. J. Pharm. Sci. 2011, 100, 797–812. DOI: 10.1002/jps.22325.
  • Wen, B.; Zhu, M. . Applications of Mass Spectrometry in Drug Metabolism: 50 Years of Progress. Drug Metab. Rev. 2015, 47, 71–87. DOI: 10.3109/03602532.2014.1001029.
  • Bleye, C.; De; Chavez, P. F.; Mantanus, J.; Marini, R.; Hubert, P.; Rozet, E.; Ziemons, E. . Critical Review of near-Infrared Spectroscopic Methods Validations in Pharmaceutical Applications. J. Pharm. Biomed. Anal 2012, 69, 125–132. DOI: 10.1016/j.jpba.2012.02.003.
  • Tzanavaras, P. D.; Themelis, D. G. . Review of Recent Applications of Flow Injection Spectrophotometry to Pharmaceutical Analysis. Anal. Chim. Acta 2007, 588, 1–9. DOI: 10.1016/j.aca.2007.01.060.
  • Tiwari, G.; Tiwari, R. . Bioanalytical Method Validation: An Updated Review. Pharm. Methods. 2010, 1, 25–38. DOI: 10.4103/2229-4708.72226.
  • Bridwell, H.; Dhingra, V.; Peckman, D.; Roark, J.; Lehman, T. . Perspectives on Method Validation: Importance of Adequate Method Validation. Qual. Assur. J. 2010, 13, 72–77. DOI: 10.1002/qaj.473.
  • Johnston, A.; Holt, D. W. . Substandard Drugs: A Potential Crisis for Public Health. Br. J. Clin. Pharmacol. 2014, 78, 218–243. DOI: 10.1111/bcp.12298.
  • Barbachyn, M. R.; Brickner, S. J.; Hutchinson, D. K. . Substituted Oxazine and Thiazine Oxazolidinone Antimicrobials. US5688792A, 1997.
  • Brickner, S. J. . Oxazolidinone Antibacterial Agents. Curr. Pharm. Des 1996, 2, 175–194.
  • Jones, R. N.; Stilwell, M. G.; Hogan, P. A.; Sheehan, D. J. . Activity of Linezolid against 3,251 Strains of Uncommonly Isolated Gram-Positive Organisms: Report from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother 2007, 51, 1491–1493. DOI: 10.1128/AAC.01496-06.
  • Moellering, R. C. . Linezolid: The First Oxazolidinone Antimicrobial. Ann. Intern. Med. 2003, 138, 135–142.
  • Patel, R.; Rouse, M. S.; Piper, K. E.; Steckelberg, J. M. . In Vitro Activity of Linezolid against Vancomycin-Resistant Enterococci, Methicillin-Resistant Staphylococcus Aureus and Penicillin-Resistant Streptococcus Pneumoniae. Diagn. Microbiol. Infect. Dis. 1999, 34, 119–122. DOI: 10.1016/S0732-8893(99)00016-4.
  • Johnson, A.; Warner, M.; Livermore, D. . Activity of Linezolid against Multi-Resistant Gram-Positive Bacteria from Diverse Hospitals in the United Kingdom. J. Antimicrob. Chemother. 2000, 45, 225–230.
  • Gemmell, C. . Susceptibility of a Variety of Clinical Isolates to Linezolid: A European Inter-Country Comparison. J. Antimicrob. Chemother. 2001, 48, 47–52.
  • Ford, C.; Hamel, J.; Stapert, D.; Moerman, J.; Hutchinson, D.; Barbachyn, M.; Zurenko, G. . Oxazolidinones: New Antibacterial Agents. Trends Microbiol. 1997, 5, 196–200. DOI: 10.1016/S0966-842X(97)01032-9.
  • Lafontaine, D. L.; Tollervey, D. . The Function and Synthesis of Ribosomes. Nat. Rev. Mol. Cell Biol. 2001, 2, 514–520. DOI: 10.1038/35080045.
  • Melnikov, S.; Ben-Shem, A.; Garreau de Loubresse, N.; Jenner, L.; Yusupova, G.; Yusupov, M. . One Core, Two Shells: Bacterial and Eukaryotic Ribosomes. Nat. Struct. Mol. Biol. 2012, 19, 560–567. DOI: 10.1038/nsmb.2313.
  • Swaney, S.; Aoki, H.; Ganoza, M.; Shinabarger, D. . The Oxazolidinone Linezolid Inhibits Initiation of Protein Synthesis in Bacteria. Antimicrob. Agents Chemother. 1998, 42, 3251–3255. DOI: 10.1128/AAC.42.12.3251.
  • Long, K. S.; Munck, C.; Andersen, T. M. B.; Schaub, M. A.; Hobbie, S. N.; Böttger, E. C.; Vester, B. . Mutations in 23S RRNA at the Peptidyl Transferase Center and Their Relationship to Linezolid Binding and Cross-Resistance. Antimicrob. Agents Chemother. 2010, 54, 4705–4713. DOI: 10.1128/AAC.00644-10.
  • Xiong, L.; Kloss, P.; Douthwaite, S.; Andersen, N. M.; Swaney, S.; Shinabarger, D. L.; Mankin, A. S. . Oxazolidinone Resistance Mutations in 23S RRNA of Escherichia Coli Reveal the Central Region of Domain V as the Primary Site of Drug Action. J. Bacteriol 2000, 182, 5325–5331. DOI: 10.1128/JB.182.19.5325-5331.2000.
  • Dryden, M. S. . Linezolid Pharmacokinetics and Pharmacodynamics in Clinical Treatment. J. Antimicrob. Chemother. 2011, 66, iv7–iv15. DOI: 10.1093/jac/dkr072.
  • MacGowan, A. P. . Pharmacokinetic and Pharmacodynamic Profile of Linezolid in Healthy Volunteers and Patients with Gram-Positive Infections. J. Antimicrob. Chemother. 2003, 51, ii17–ii25.
  • Welshman, I.; Sisson, T.; Jungbluth, G.; Stalker, D.; Hopkins, N. . Linezolid Absolute Bioavailability and the Effect of Food on Oral Bioavailability. Biopharm. Drug Dispos. 2001, 22, 91–97. DOI: 10.1002/bdd.255.
  • Stalker, D. J.; Jungbluth, G. L. . Clinical Pharmacokinetics of Linezolid, a Novel Oxazolidinone Antibacterial. Clin. Pharmacokinet. 2003, 42, 1129–1140. DOI: 10.2165/00003088-200342130-00004.
  • Stalker, D.; Wajszczuk, C.; D, B. . Linezolid Safety, Tolerance, and Pharmacokinetics Following Oral Dosing Twice Daily for 14.5 Days. Proceedings of the Proceedings of the 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; Toronto, 1997.
  • Pawsey, S.; Daley-Yates, P.; Wajszczuk, C.; Stalker, D. . U-1007666 Safety, Toleration and Pharmacokinetics after Oral and Intravenous Administration. Proceedings of the Abstr Eur Congr Antimicrob Chemother; Federation for the Societies for European Chemotherapy and Infection: Glasgow, 1996.; p. F151.
  • Slatter, J.; Stalker, D.; Feenstra, K.; Welshman, I.; Bruss, J.; Sams, J.; Johnson, M.; Sanders, P.; Hauer, M.; Fagerness, P.. ; et al. Pharmacokinetics, Metabolism, and Excretion of Linezolid following an Oral Dose of [(14)C]Linezolid to Healthy Human Subjects. Drug. Metab. Dispos 2001, 29, 1136–1145.
  • Sisson, T.; Jungbluth, G.; Hopkins, N. . A Pharmacokinetic Evaluation of Concomitant Administration of Linezolid and Aztreonam. J. Clin. Pharmacol 1999, 39, 1277–1282. DOI: 10.1177/00912709922011962.
  • Gee, T.; Ellis, R.; Marshall, G.; Andrews, J.; Ashby, J.; Wise, R. . Pharmacokinetics and Tissue Penetration of Linezolid following Multiple Oral Doses. Antimicrob. Agents. Chemother 2001, 45, 1843–1846. DOI: 10.1128/AAC.45.6.1843-1846.2001.
  • Brier, M. E.; Stalker, D. J.; Aronoff, G. R.; Batts, D. H.; Ryan, K. K.; O'Grady, M.; Hopkins, N. K.; Jungbluth, G. L. . Pharmacokinetics of Linezolid in Subjects with Renal Dysfunction. Antimicrob. Agents Chemother. 2003, 47, 2775–2780. DOI: 10.1128/AAC.47.9.2775-2780.2003.
  • Fiaccadori, E.; Maggiore, U.; Rotelli, C.; Giacosa, R.; Parenti, E.; Picetti, E.; Manini, P.; Andreoli, R.; Cabassi, A. . Does Haemodialysis Significantly Affect Serum Linezolid Concentrations in Critically Ill Patients with Renal Failure? A Pilot Investigation. Nephrol. Dial. Transplant 2006, 21, 1402–1406. DOI: 10.1093/ndt/gfl048.
  • National Center for Biotechnology Information. PubChem Compound Database; CID = 441401. https://pubchem.ncbi.nlm.nih.gov/compound/441401.
  • Lee, D. C.; Webb, M. L. . Pharmaceutical Analysis; Blackwell Publishing Ltd: Oxford, 2003.
  • Hanna-Brown, M. . Pharmaceutical Analysis. Anal. Methods 2012, 4, 1484–1484.
  • Siddiqui, M. R.; AlOthman, Z. A.; Rahman, N. . Analytical Techniques in Pharmaceutical Analysis: A Review. Arab. J. Chem. 2013, 10, S1409-S1421.
  • Bonfilio, R.; Araújo, M. B.; de; Salgado, H. R. N. . Recent Applications of Analytical Techniques for Quantitative Pharmaceutical Analysis: A Review. WSEAS Trans. Biol. Biomed. 2010, 7, 316–338.
  • Bonfilio, R.; Cazedey, E. C. L.; Araújo, M. B.; de; Salgado, H. R. N. . Analytical Validation of Quantitative High-Performance Liquid Chromatographic Methods in Pharmaceutical Analysis: A Practical Approach. Crit. Rev. Anal. Chem. 2012, 42, 87–100. DOI: 10.1080/10408347.2012.630926.
  • Chierentin, L.; Salgado, H. R. N. . Review of Properties and Analytical Methods for the Determination of Norfloxacin. Crit. Rev. Anal. Chem. 2016, 46, 23–39.
  • Curbete, M. M.; Salgado, H. R. N. . A Critical Review of the Properties of Fusidic Acid and Analytical Methods for Its Determination. Crit. Rev. Anal. Chem. 2016, 46, 352–360. DOI: 10.1080/10408347.2015.1084225.
  • Corrêa, J. C. R.; Salgado, H. R. N. . Review of Fluconazole Properties and Analytical Methods for Its Determination. Crit. Rev. Anal. Chem. 2011, 41, 270–279. DOI: 10.1080/10408347.2011.588924.
  • Pedroso, T. M.; Salgado, H. R. N. . A Critical Review of Analytical Methods for Determination of Ertapenem Sodium. Crit. Rev. Anal. Chem. 2016, 46, 15–21. DOI: 10.1080/10408347.2014.937850.
  • Fernandes, G.; Salgado, H.; Santos, J. . Isoniazid: A Review of Characteristics, Properties and Analytical Methods. Crit. Rev. Anal. Chem. 2017, 47, 298–308. DOI: 10.1080/10408347.2017.1281098.
  • Pironi, A. M.; Araujo, P. R.; de; Fernandes, M. A.; Salgado, H. R. N.; Chorilli, M. . Characteristics, Biological Properties and Analytical Methods of Ursolic Acid: A Review. Crit. Rev. Anal. Chem. 2018, 48, 86–93. DOI: 10.1080/10408347.2017.1390425.
  • Trindade, M. T.; da; Salgado, H. R. N. . A Critical Review of Analytical Methods for Determination of Ceftriaxone Sodium. Crit. Rev. Anal. Chem. 2018, 48, 95–101. DOI: 10.1080/10408347.2017.1398063.
  • Roškar, R.; Lušin, T. T.. ; Analytical Methods for Quantification of Drug Metabolites in Biological Samples. In: Chromatogr.: Most Versatile Method Chem. Anal.; C. L. de A. , Ed.; InTech: Rijeka, 2012; pp. 79–126.
  • Berchtold, C.; Bosilkovska, M.; Daali, Y.; Walder, B.; Zenobi, R. . Real-Time Monitoring of Exhaled Drugs by Mass Spectrometry. Mass Spectrom Rev. 2014, 33, 394–413. DOI: 10.1002/mas.21393.
  • Garg, U.; Zhang, Y. V. . Mass Spectrometry in Clinical Laboratory: Applications in Biomolecular Analysis. Methods Mol. Biol. 2016, 1378, 1–9.
  • Adaway, J. E.; Keevil, B. G.; Owen, L. J. . Liquid Chromatography Tandem Mass Spectrometry in the Clinical Laboratory. Ann. Clin. Biochem. 2015, 52, 18–38. DOI: 10.1177/0004563214557678.
  • Patel, S. A.; Patel, P. U.; Patel, N. J.; Patel, M. M.; Bangoriya, U. V. . Determination of Linezolid in Pharmaceutical Dosage Forms by Liquid Chromatography and Ultraviolet Spectroscopy. J. AOAC Int 2007, 90, 1272–1277.
  • Mohapatra, S.; Annapurna, M. M.; Kumar, B. V. V. R.; Anwar, M.; Warsi, M. H.; Akhter, S. . Validated Stability Indicating RP-HPLC Method for the Estimation of Linezolid in a Pharmaceutical Dosage Form. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 2185–2195. DOI: 10.1080/10826076.2011.585548.
  • Lopes, C. C. G. O.; Salgado, H. R. N. . Development of a Validated Stability-Indicating LC Assay and Stress Degradation Studies of Linezolid in Tablets. Chroma. 2009, 69, 129–135. DOI: 10.1365/s10337-009-0993-3.
  • Kawy, M. A.; A.Weshahy, S.; Shokry, D. S. . Validated Stability Indicating Assay of Linezolid by Spectrophotometric and High Performance Liquid Chromatographic Methods. Aust. J. Basic Appl. Sci. 2012, 6, 767–778.
  • Peng, G. W.; Stryd, R. P.; Murata, S.; Igarashi, M.; Chiba, K.; Aoyama, H.; Aoyama, M.; Zenki, T.; Ozawa, N. . Determination of Linezolid in Plasma by Reversed-Phase High-Performance Liquid Chromatography. J. Pharm. Biomed. Anal. 1999, 20, 65–73. DOI: 10.1016/S0731-7085(98)00310-0.
  • Tobin, C. M.; Sunderland, J.; White, L. O.; MacGowan, A. P. . A Simple, Isocratic High-Performance Liquid Chromatography Assay for Linezolid in Human Serum. J. Antimicrob. Chemother. 2001, 48, 605–608. DOI: 10.1093/jac/48.5.605.
  • Ehrlich, M.; Trittler, R.; Daschner, F. D.; Kummerer, K. . A New and Rapid Method for Monitoring the New Oxazolidinone Antibiotic Linezolid in Serum and Urine by High Performance Liquid Chromatography-Integrated Sample Preparation. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2001, 755, 373–377. DOI: 10.1016/S0378-4347(01)00115-3.
  • Borner, K.; Borner, E.; Lode, H. . Determination of Linezolid in Human Serum and Urine by High-Performance Liquid Chromatography. Int. J. Antimicrob. Agents. 2001, 18, 253–258.
  • Krishna Reddy, K. V. S. R.; Mahender Rao, S.; Om Reddy, G.; Suresh, T.; Moses Babu, J.; Dubey, P. K.; Vyas, K. . Isolation and Characterization of Process-Related Impurities in Linezolid. J. Pharm. Biomed. Anal. 2002, 30, 635–642. DOI: 10.1016/S0731-7085(02)00353-9.
  • Narayana, L. C.; Suresh, T.; Mahender Rao, S.; Dubey, P. K.; Moses Babu, J. . A Validated Chiral HPLC Method for the Enantiomeric Separation of Linezolid on Amylose Based Stationary Phase. J. Pharm. Biomed. Anal. 2003, 32, 21–28. DOI: 10.1016/S0731-7085(03)00031-1.
  • Buerger, C.; Joukhadar, C.; Muller, M.; Kloft, C. . Development of a Liquid Chromatography Method for the Determination of Linezolid and Its Application to in Vitro and Human Microdialysis Samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 796, 155–164. DOI: 10.1016/j.jchromb.2003.08.019.
  • Toutain, J.; Boselli, E.; Djabarouti, S.; Allaouchiche, B.; Xuereb, F.; Bernadou, J. M.; Ba, B.; Saux, M. C.; Breilh, D. . Determination of Linezolid in Plasma and Bronchoalveolar Lavage by High-Performance Liquid Chromatography with Ultraviolet Detection Using a Fully Automated Extraction Method. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 813, 145–150. DOI: 10.1016/j.jchromb.2004.09.030.
  • Li, J.; Rayner, C. R.; Dixson, S.; Nation, R. L. . Simple Method for the Assay of Linezolid in Brain Heart Infusion Broth by High-Performance Liquid Chromatography. Biomed. Chromatogr. 2004, 18, 1–5. DOI: 10.1002/bmc.283.
  • Beringer, P.; Nguyen, M.; Hoem, N.; Louie, S.; Gill, M.; Gurevitch, M.; Wong-Beringer, A. . Absolute Bioavailability and Pharmacokinetics of Linezolid in Hospitalized Patients Given Enteral Feedings. Antimicrob. Agents Chemother. 2005, 49, 3676–3681. DOI: 10.1128/AAC.49.9.3676-3681.2005.
  • Boak, L. M.; Li, J.; Nation, R. L.; Rayner, C. R. . High-Performance Liquid Chromatographic Method for Simple and Rapid Determination of Linezolid in Human Plasma. Biomed. Chromatogr. 2006, 20, 782–786. DOI: 10.1002/bmc.597.
  • Swoboda, S.; Ober, M.; Anagnostakos, K.; Geiss, H. K.; Weigand, M. A.; Hoppe-Tichy, T. . A Simple Isocratic HPLC Assay to Determine Linezolid Concentrations in Different Biomatrices for in Vivo and in Vitro Studies. Clin. Chem. Lab. Med 2007, 45, 1019–1022.
  • Ba, B. B.; Nso, B. B. B.; Quentin, C.; Saux, M. C. . Determination of Linezolid in Growth Media by High-Performance Liquid Chromatography with on-Line Extraction. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 854, 104–108. DOI: 10.1016/j.jchromb.2007.04.011.
  • Nirogi, R.; Kota, S.; Katta, R.; Vennila, S.; Kandikere, V.; Mudigonda, K.; Vurimindi, H. . Enantiomeric Separation of Linezolid by Chiral Reversed-Phase Liquid Chromatography. J. Chromatogr. Sci. 2008, 46, 764–766. DOI: 10.1093/chromsci/46.9.764.
  • Baietto, L.; Dʼavolio, A.; De Rosa, F. G.; Garazzino, S.; Patanella, S.; Siccardi, M.; Sciandra, M.; Perri, G. D. . Simultaneous Quantification of Linezolid, Rifampicin, Levofloxacin, and Moxifloxacin in Human Plasma Using High-Performance Liquid Chromatography with UV. Ther. Drug Monit. 2009, 31, 104–109. DOI: 10.1097/FTD.0b013e31819476fa.
  • Davis, L. T.; Kumar, N.; Nijm, L. M.; Ulanski, L. J.; Tu, E. Y.; Fiscella, R. G.; Peterson, R. J.; Glickman, R. D. . An Adaptable HPLC Method for the Analysis of Frequently Used Antibiotics in Ocular Samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 2421–2426. DOI: 10.1016/j.jchromb.2010.08.001.
  • Guerrero, L.; Martínez-Olondris, P.; Rigol, M.; Esperatti, M.; Esquinas, C.; Luque, N.; Piñer, R.; Torres, A. . Soy, D. Development and Validation of a High Performance Liquid Chromatography Method to Determine Linezolid Concentrations in Pig Pulmonary Tissue. Clin. Chem. Lab. Med. 2010, 48, 391–398.
  • Tsona, A.; Metallidis, S.; Foroglou, N.; Selviaridis, P.; Chrysanthidis, T.; Lazaraki, G.; Papaioannou, M.; Nikolaidis, J.; Nikolaidis, P. . Linezolid Penetration into Cerebrospinal Fluid and Brain Tissue. J. Chemother. 2010, 22, 17–19. DOI: 10.1179/joc.2010.22.1.17.
  • Traunmüller, F.; Mauric, O.; Popovic, M.; Joukhadar, C. . Rapid and Sensitive Determination of the Antibiotic Linezolid in Low Plasma Volumes by High-Performance Liquid Chromatography. J. Chromatogr. Sci. 2010, 48, 325–327. DOI: 10.1093/chromsci/48.5.325.
  • Saleh, M.; Jehl, F.; Dory, A.; Lefevre, S.; Prevost, G.; Gaucher, D.; Sauer, A.; Speeg-Schatz, C.; Bourcier, T. . Ocular Penetration of Topically Applied Linezolid in a Rabbit Model. J. Cataract. Refract. Surg. 2010, 36, 488–492. DOI: 10.1016/j.jcrs.2009.09.036.
  • Olszowy, P.; Szultka, M.; Fuchs, P.; Kegler, R.; Mundkowski, R.; Miekisch, W.; Schubert, J.; Buszewski, B. . New Coated SPME Fibers for Extraction and Fast HPLC Determination of Selected Drugs in Human Blood. J. Pharm. Biomed. Anal. 2010, 53, 1022–1027. DOI: 10.1016/j.jpba.2010.07.002.
  • Cattaneo, D.; Baldelli, S.; Conti, F.; Cozzi, V.; Clementi, E. . Determination of Linezolid in Human Plasma by High-Performance Liquid Chromatography with Ultraviolet Detection. Ther. Drug Monit 2010, 32, 520–524. DOI: 10.1097/FTD.0b013e3181d5eeee.
  • Olszowy, P.; Szultka, M.; Nowaczyk, J.; Buszewski, B. . A New Way of Solid-Phase Microextraction Fibers Preparation for Selected Antibiotic Drug Determination by HPLC-MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 2542–2548. DOI: 10.1016/j.jchromb.2011.07.007.
  • Helmy, S. A. . Simultaneous Quantification of Linezolid, Tinidazole, Norfloxacin, Moxifloxacin, Levofloxacin, and Gatifloxacin in Human Plasma for Therapeutic Drug Monitoring and Pharmacokinetic Studies in Human Volunteers. Ther. Drug Monit. 2013, 35, 770–777. DOI: 10.1097/FTD.0b013e318297b6b0.
  • Fortuna, S.; De Pascale, G.; Ragazzoni, E.; Antonelli, M.; Navarra, P. . Validation of a New HPLC-UV Method for Determination of the Antibiotic Linezolid in Human Plasma and in Bronchoalveolar Lavage. Biomed. Chromatogr. 2013, 27, 1489–1496. DOI: 10.1002/bmc.2947.
  • Cios, A.; Kuś, K.; Szymura-Oleksiak, J. . Determination of Linezolid in Human Serum by Reversed-Phase High-Performance Liquid Chromatography with Ultraviolet and Diode Array Detection. Acta Pol. Pharm. 2013, 70, 631–641.
  • Baietto, L.; D’Avolio, A.; Ariaudo, A.; Corcione, S.; Simiele, M.; Cusato, J.; Urbino, R.; Di Perri, G.; Ranieri, V. M.; De Rosa, F. G. . Development and Validation of a New UPLC-PDA Method to Quantify Linezolid in Plasma and in Dried Plasma Spots. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 936, 42–47. DOI: 10.1016/j.jchromb.2013.08.003.
  • Patel, N. S.; Tandel, F. B.; Patel, Y. D.; Thakkar, K. B. . Development and Validation of Stability-Indicating HPLC Method for Simultaneous Estimation of Cefixime and Linezolid. Indian J. Pharm. Sci. 2014, 76, 535–540.
  • Hara, S.; Uchiyama, M.; Yoshinari, M.; Matsumoto, T.; Jimi, S.; Togawa, A.; Takata, T.; Takamatsu, Y. . A Simple High-Performance Liquid Chromatography for the Determination of Linezolid in Human Plasma and Saliva. Biomed. Chromatogr. 2015, 29, 1428–1431. DOI: 10.1002/bmc.3441.
  • Wicha, S. G.; Kloft, C. . Simultaneous Determination and Stability Studies of Linezolid, Meropenem and Vancomycin in Bacterial Growth Medium by High-Performance Liquid Chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1028, 242–248. DOI: 10.1016/j.jchromb.2016.06.033.
  • Ferrone, V.; Carlucci, M.; Cotellese, R.; Raimondi, P.; Cichella, A.; Di Marco, L.; Genovese, S.; Carlucci, G. . Development of a Dried Blood Spot HPLC-PDA Method for the Analysis of Linezolid and Ciprofloxacin in Hospital-Acquired Pneumonia Patients. Drug Test. Anal. 2017, 9, 1611–1619. DOI: 10.1002/dta.2195.
  • Sagirli, O.; Nal, A.; Toker, S.; Ztun, A. . Determination of Linezolid in Human Breast Milk by High-Performance Liquid Chromatography with Ultraviolet Detection. J. AOAC Int. 2009, 92, 1658–1662.
  • Polillo, M.; Tascini, C.; Lastella, M.; Malacarne, P.; Ciofi, L.; Viaggi, B.; Bocci, G.; Menichetti, F.; Danesi, R.; Tacca, M.; Del.; et al. A Rapid High-Performance Liquid Chromatography Method to Measure Linezolid and Daptomycin Concentrations in Human Plasma. Ther. Drug Monit 2010, 32, 200–205. DOI: 10.1097/FTD.0b013e3181d3f5cb.
  • Wu, X.; Tang, Y.; Zhang, X.; Wu, C.; Kong, L. . Pharmacokinetics and Pharmacodynamics of Linezolid in Plasma/Cerebrospinal Fluid in Patients with Cerebral Hemorrhage after Lateral Ventricular Drainage by Monte Carlo Simulation. Drug Des. Devel. Ther. 2018, 12, 1679–1684. DOI: 10.2147/DDDT.S168757.
  • Taylor, R.; Sunderland, B.; Luna, G.; Czarniak, P. . Evaluation of the Stability of Linezolid in Aqueous Solution and Commonly Used Intravenous Fluids. Drug Des Devel Ther 2017, 11, 2087–2097. DOI: 10.2147/DDDT.S136335.
  • Ferrone, V.; Cotellese, R.; Di Marco, L.; Bacchi, S.; Carlucci, M.; Cichella, A.; Raimondi, P.; Carlucci, G. . Meropenem, Levofloxacin and Linezolid in Human Plasma of Critical Care Patients: A Fast Semi-Automated Micro-Extraction by Packed Sorbent UHPLC-PDA Method for Their Simultaneous Determination. J. Pharm. Biomed. Anal. 2017, 140, 266–273. DOI: 10.1016/j.jpba.2017.03.035.
  • Tiwari, R. N.; Bonde, C. G. L. C. . LC–MS/TOF, and MSn Studies for the Separation, Identification, and Characterization of Degradation Products of Linezolid. J. Liq. Chromatogr. Relat. Technol 2012, 35, 188–203.
  • La Marca, G.; Villanelli, F.; Malvagia, S.; Ombrone, D.; Funghini, S.; De Gaudio, M.; Fallani, S.; Cassetta, M. I.; Novelli, A.; Chiappini, E.. ; et al. Rapid and Sensitive LC-MS/MS Method for the Analysis of Antibiotic Linezolid on Dried Blood Spot. J. Pharm. Biomed. Anal. 2012, 67–68, 86–91. DOI: 10.1016/j.jpba.2012.04.007.
  • Han, M.; Jun, S. H.; Lee, J. H.; Park, K. U.; Song, J.; Song, S. H. . Method for Simultaneous Analysis of Nine Second-Line anti-Tuberculosis Drugs Using UPLC-MS/MS. J. Antimicrob. Chemother. 2013, 68, 2066–2073. DOI: 10.1093/jac/dkt154.
  • Cazorla-Reyes, R.; Romero-González, R.; Frenich, A. G.; Rodríguez Maresca, M. A.; Martínez Vidal, J. L. . Simultaneous Analysis of Antibiotics in Biological Samples by Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2014, 89, 203–212. DOI: 10.1016/j.jpba.2013.11.004.
  • Zander, J.; Maier, B.; Suhr, A.; Zoller, M.; Frey, L.; Teupser, D.; Vogeser, M. . Quantification of Piperacillin, Tazobactam, Cefepime, Meropenem, Ciprofloxacin and Linezolid in Serum Using an Isotope Dilution UHPLC-MS/MS Method with Semi-Automated Sample Preparation. Clin. Chem. Lab. Med. 2015, 53, 781–791.
  • Lee, K.; Jun, S. H.; Han, M.; Song, S. H.; Park, J. S.; Lee, J. H.; Park, K. U.; Song, J. . Multiplex Assay of Second-Line Anti-Tuberculosis Drugs in Dried Blood Spots Using Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Ann. Lab. Med. 2016, 36, 489–493.
  • Yu, H.; Pan, C.; Xie, Q.; Zheng, Y.; Hu, Y.; Lin, Y. . Simultaneous Determination of Tedizolid and Linezolid in Rat Plasma by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry and Its Application to a Pharmacokinetic Study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci 2016, 1011, 94–98.
  • Grégoire, M.; Leroy, A. G.; Bouquié, R.; Malandain, D.; Dailly, E.; Boutoille, D.; Renaud, C.; Jolliet, P.; Caillon, J.; Deslandes, G. . Simultaneous Determination of Ceftaroline, Daptomycin, Linezolid and Rifampicin Concentrations in Human Plasma by on-Line Solid Phase Extraction Coupled to High-Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2016, 118, 17–26. DOI: 10.1016/j.jpba.2015.10.008.
  • Hedaya, M. A.; Thomas, V.; Abdel-Hamid, M. E.; Kehinde, E. O.; Phillips, O. A. . A Validated UPLC–MS/MS Method for the Analysis of Linezolid and a Novel Oxazolidinone Derivative (PH027) in Plasma and Its Application to Tissue Distribution Study in Rabbits. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1040, 89–96. DOI: 10.1016/j.jchromb.2016.11.034.
  • Barros, A. L. C.; de; Schmidt, F. F.; Aquino, S. F.; de; Afonso, R. J. de C.F. , Determination of Nine Pharmaceutical Active Compounds in Surface Waters from Paraopeba River Basin in Brazil by LTPE-HPLC-ESI-MS/MS. Environ. Sci. Pollut. Res. Int. 2018, 25, 19962–19974.
  • Paal, M.; Zoller, M.; Schuster, C.; Vogeser, M.; Schütze, G. . Simultaneous Quantification of Cefepime, Meropenem, Ciprofloxacin, Moxifloxacin, Linezolid and Piperacillin in Human Serum Using an Isotope-Dilution HPLC–MS/MS Method. J. Pharm. Biomed. Anal. 2018, 152, 102–110. DOI: 10.1016/j.jpba.2018.01.031.
  • El-Najjar, N.; Hösl, J.; Holzmann, T.; Jantsch, J.; Gessner, A. . UPLC-MS/MS Method for Therapeutic Drug Monitoring of 10 Antibiotics Used in Intensive Care Units. Drug Test Anal. 2018, 10, 584–591. DOI: 10.1002/dta.2253.
  • Pea, F.; Viale, P.; Furlanut, M. . Antimicrobial Therapy in Critically Ill Patients: A Review of Pathophysiological Conditions Responsible for Altered Disposition and Pharmacokinetic Variability. Clin. Pharmacokinet. 2005, 44, 1009–1034. DOI: 10.2165/00003088-200544100-00002.
  • Pea, F. . Plasma Pharmacokinetics of Antimicrobial Agents in Critically Ill Patients. Curr. Clin. Pharmacol. 2013, 8, 5–12.
  • Jager, N.; van Hest, R.; Lipman, J.; Taccone, F.; Roberts, J. . Therapeutic Drug Monitoring of anti-Infective Agents in Critically Ill Patients. Expert Rev. Clin. Pharmacol. 2016, 9, 961–979. DOI: 10.1586/17512433.2016.1172209.
  • Suneetha, A.; Raja, R. K. . Comparison of LC-UV and LC–MS Methods for Simultaneous Determination of Teriflunomide, Dimethyl Fumarate and Fampridine in Human Plasma: Application to Rat Pharmacokinetic Study. Biomed. Chromatogr. 2016, 30, 1371–1377. DOI: 10.1002/bmc.3694.
  • Baldrey, S. F.; Brodie, R. R.; Morris, G. R.; Jenkins, E. H.; Brookes, S. T. . Comparison of LC-UV and LC-MS-MS for the Determination of Taxol. Chromatographia 2002, 55, S187–S192. DOI: 10.1007/BF02493378.
  • Moussa, B. A.; Mahrouse, M. A.; Hassan, M. A.; Fawzy, M. G. . Spectrofluorimetric Determination of Gemifloxacin Mesylate and Linezolid in Pharmaceutical Formulations: Application of Quinone-Based Fluorophores and Enhanced Native Fluorescence. Acta Pharm. 2014, 64, 15–28. DOI: 10.2478/acph-2014-0005.
  • Belal, F.; El-Din, M. K.; Eid, M. I.; El-Gamal, R. M. . Spectrofluorimetric Determination of Terbinafine Hydrochloride and Linezolid in Their Dosage Forms and Human Plasma. J. Fluoresc. 2013, 23, 1077–1087. DOI: 10.1007/s10895-013-1237-3.
  • El-MonemHegazy, M. A.; Eissa, M. S.; El-Sattar, O. I. A.; El-Kawy, M. A. . Two and Three Way Spectrophotometric-Assisted Multivariate Determination of Linezolid in the Presence of Its Alkaline and Oxidative Degradation Products and Application to Pharmaceutical Formulation. Spectrochim. Acta A Mol. Biomol. Spectrosc 2014, 128, 231–242. DOI: 10.1016/j.saa.2014.02.140.
  • Saviano, A. M.; Lourenço, F. R. . Uncertainty Evaluation for Determining Linezolid in Injectable Solution by UV Spectrophotometry. Measurement 2013, 46, 3924–3928. DOI: 10.1016/j.measurement.2013.08.005.
  • Satyanarayana, K. V. V.; Rao, P. N. . Spectrophotometric Determination of Linezolid in Pharmaceuticals on the Basis of Coupled Redox-Complexation Reactions. J. Anal. Chem. 2013, 68, 33–38. DOI: 10.1134/S1061934813010127.
  • Hegazy, M. A. E.-M.; Eissa, M. S.; El-Sattar, O. I. A.; El-Kawy, M. M. A. . Smart Methods for Linezolid Determination in the Presence of Alkaline and Oxidative Degradation Products Utilizing Their Overlapped Spectral Bands. J. Appl. Spectrosc. 2014, 81, 702–710.
  • Bathini.Srinivas; Yadagiriswamy, P.; G.Venkateswarlu. Spectrophotometric Determination of Drugs in Bulk and Pharmaceutical Dosage Forms by Using Tetracyanoethylene. Int. J. Pharm. Sci. Res. 2015, 6, 1002–1010.
  • Zheng, S.; Han, Y.; Zhang, J.; Li, W. . Determination and Correlation of Solubility of Linezolid Form II in Different Pure and Binary Solvents. Fluid Phase Equilib. 2017, 432, 18–27.
  • Michalska, K.; Pajchel, G.; Tyski, S. . Determination of Linezolid and Its Achiral Impurities Using Sweeping Preconcentration by Micellar Capillary Electrophoresis. J. Pharm. Biomed. Anal. 2008, 48, 321–330. DOI: 10.1016/j.jpba.2008.01.025.
  • Michalska, K.; Pajchel, G.; Tyski, S. . Determination of Enantiomeric Impurity of Linezolid by Capillary Electrophoresis Using Heptakis-(2,3-Diacetyl-6-Sulfato)-Beta-Cyclodextrin. J. Chromatogr. A 2008, 1180, 179–186. DOI: 10.1016/j.chroma.2007.11.110.
  • Ibebawy, L. . Stability-Indicating Methods for the Determination of Linezolid in the Presence of Its Alkaline-Induced Degradation Products. Talanta 2003, 60, 945–953. DOI: 10.1016/S0039-9140(03)00175-9.
  • Mohamed, M. A.; Abdelwahab, N. S.; Banks, C. E. . Electroanalytical Sensing of the Antimicrobial Drug Linezolid Utilising an Electrochemical Sensing Platform Based upon a Multiwalled Carbon Nanotubes/Bromocresol Green Modified Carbon Paste Electrode. Anal. Methods 2016, 8, 4245–4353.
  • Saviano, A. M.; Francisco, F. L.; Lourenço, F. R. . Rational Development and Validation of a New Microbiological Assay for Linezolid and Its Measurement Uncertainty. Talanta 2014, 127, 225–229. DOI: 10.1016/j.talanta.2014.04.019.
  • Lopes, C. C. G. O.; Salgado, H. R. N. . Development and Validation of a Stability-Indicative Agar Diffusion Assay to Determine the Potency of Linezolid in Tablets in the Presence of Photodegradation Products. Talanta 2010, 82, 918–922. DOI: 10.1016/j.talanta.2010.05.056.
  • Kimura, E. T.; Ebert, D. M.; Dodge, P. W. . Acute Toxicity and Limits of Solvent Residue for Sixteen Organic Solvents. Toxicol. Appl. Pharmacol. 1971, 19, 699–704. DOI: 10.1016/0041-008X(71)90301-2.
  • De Marco, B. A.; Natori, J. S. H.; Fanelli, S.; Tótoli, E. G.; Salgado, H. R. N. . Characteristics, Properties and Analytical Methods of Amoxicillin: A Review with Green Approach. Crit. Rev. Anal. Chem. 2017, 47, 267–277. DOI: 10.1080/10408347.2017.1281097.
  • Alexander, Z.; Gandolpho, T. E.; Alencar, F. F. H.; Nunes, S. H. R. . An Eco-Friendly and Low-Cost Method for the Quantification of Cefazolin Sodium in Powder for Injectable Solution Using Thin-Layer Chromatography Assisted by Digital Images. J. Planar Chromatogr. Mod. TLC 2017, 30, 285–290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.