1,020
Views
28
CrossRef citations to date
0
Altmetric
Review Articles

A Review: New Trends in Electrode Systems for Sensitive Drug and Biomolecule Analysis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 212-225 | Published online: 20 May 2019

References

  • Vajdle, O.; Zbiljić, J.; Tasić, B.; Jović, D.; Guzsvány, V.; Djordjevic, A. Voltammetric Behavior of Doxorubicin at a Renewable Silver-Amalgam Film Electrode and Its Determination in Human Urine. Electrochim. Acta. 2014, 132, 49–57. DOI: 10.1016/j.electacta.2014.03.124.
  • Vajdle, O.; Guzsvány, V.; Škorić, D.; Anojčić, J.; Jovanov, P.; Avramov-Ivić, M.; Csanádi, J.; Kónya, Z.; Petrović, S.; Bobrowski, A. Voltammetric Behavior of Erythromycin Ethylsuccinate at a Renewable Silver-Amalgam Film Electrode and Its Determination in Urine and in a Pharmaceutical Preparation. Electrochim. Acta. 2016, 191, 44–54. DOI: 10.1016/j.electacta.2015.12.207.
  • Santhiago, M.; Henry, C. S.; Kubota, L. T. Low Cost, Simple Three Dimensional Electrochemical Paper-Based Analytical Device for Determination of p-Nitrophenol. Electrochim. Acta. 2014, 130, 771–777. DOI: 10.1016/j.electacta.2014.03.109.
  • Kokkinos, C.; Economou, A.; Giokas, D. Paper-Based Device with a Sputtered Tin-Film Electrode for the Voltammetric Determination of Cd(II) and Zn(II). Sens. Actuators B Chem. 2018, 260, 223–226. DOI: 10.1016/j.snb.2017.12.182.
  • Couto, R. A. S.; Lima, J. L. F. C.; Quinaz, M. B. Recent Developments, Characteristics and Potential Applications of Screen-Printed Electrodes in Pharmaceutical and Biological Analysis. Talanta. 2016, 146, 801–814. DOI: 10.1016/j.talanta.2015.06.011.
  • Parolo, C.; Medina-Sánchez, M.; Montõn, H.; De La Escosura-Muñiz, A.; Merkoçi, A. Paper-Based Electrodes for Nanoparticles Detection. Part. Part. Syst. Charact. 2013, 30, 662–666. DOI: 10.1002/ppsc.201200124.
  • Sajid, M.; Nazal, M. K.; Mansha, M.; Alsharaa, A.; Muhammad, S.; Jillani, S.; Basheer, C. Chemically Modified Electrodes for Electrochemical Detection of Dopamine in Presence of Uric Acid and Ascorbic Acid: A Review; Elsevier B.V.: Amsterdam, 2015; Vol. 76. DOI: 10.1016/j.trac.2015.09.006.
  • Jadon, N.; Jain, R.; Sharma, S.; Singh, K. Recent Trends in Electrochemical Sensors for Multianalyte Detection—A Review. Talanta. 2016, 161, 894–916. DOI: 10.1016/j.talanta.2016.08.084.
  • Samah, N. A.; Sánchez-Martín, M. J.; Sebastián, R. M.; Valiente, M.; López-Mesas, M. Molecularly Imprinted Polymer for the Removal of Diclofenac from Water: Synthesis and Characterization. Sci. Total Environ. 2018, 631–632, 1534–1543. DOI: 10.1016/j.scitotenv.2018.03.087.
  • Si, B.; Song, E. Molecularly Imprinted Polymers for the Selective Detection of Multi-Analyte Neurotransmitters. Microelectron. Eng. 2018, 187–188, 58–65. DOI: 10.1016/j.mee.2017.11.016.
  • Shahar, T.; Tal, N.; Mandler, D. Molecularly Imprinted Polymer Particles: Formation, Characterization and Application. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 495, 11–19. DOI: 10.1016/j.colsurfa.2016.01.027.
  • Gui, R.; Jin, H.; Guo, H.; Wang, Z. Recent Advances and Future Prospects in Molecularly Imprinted Polymers-Based Electrochemical Biosensors. Biosens. Bioelectron. 2018, 100, 56–70. DOI: 10.1016/j.bios.2017.08.058.
  • Wang, S.; Sun, G.; Chen, Z.; Liang, Y.; Zhou, Q.; Pan, Y.; Zhai, H. Constructing a Novel Composite of Molecularly Imprinted Polymer-Coated AuNPs Electrochemical Sensor for the Determination of 3-Nitrotyrosine. Electrochim. Acta. 2018, 259, 893–902. DOI: 10.1016/j.electacta.2017.11.033.
  • Beitollahi, H.; Ivari, S. G.; Torkzadeh-Mahani, M. Application of Antibody–Nanogold–Ionic Liquid–Carbon Paste Electrode for Sensitive Electrochemical Immunoassay of Thyroid-Stimulating Hormone. Biosens. Bioelectron. 2018, 110, 97–102. DOI: 10.1016/j.bios.2018.03.003.
  • Farjami, F.; Fasihi, F.; Moradi, S. E.; Darvishi, T.; Shafiee, G. H. Electrochemical Oxidation of Nortriptyline and Its Voltammetric Sensing at a Carbon Ionic Liquid Electrode. J. Anal. Chem. 2018, 73, 183–189. DOI: 10.1134/S1061934818020053.
  • Sun, W.; Wang, D.; Zhang, Y. Y.; Ju, X. M.; Yang, H. X.; Chen, Y. X.; Sun, Z. F. Electrodeposited Graphene and Gold Nanoparticle Modified Carbon Ionic Liquid Electrode for Sensitive Detection of Rutin. Fenxi Huaxue/Chinese J. Anal. Chem. 2013, 41, 709–713. DOI: 10.1016/S1872-2040(13)60655-6.
  • Sun, W.; Hou, F.; Gong, S.; Han, L.; Wang, W.; Shi, F.; Xi, J.; Wang, X.; Li, G. Direct Electrochemistry and Electrocatalysis of Hemoglobin on Three-Dimensional Graphene Modified Carbon Ionic Liquid Electrode. Sen. Actuators B Chem. 2015, 219, 331–337. DOI: 10.1016/j.snb.2015.05.015.
  • Wang, X.; You, Z.; Cheng, Y.; Sha, H.; Li, G.; Zhu, H.; Sun, W. Application of Nanosized Gold and Graphene Modified Carbon Ionic Liquid Electrode for the Sensitive Electrochemical Determination of Folic Acid. J. Mol. Liq. 2015, 204, 112–117. DOI: 10.1016/j.molliq.2015.01.036.
  • Absalan, G.; Akhond, M.; Soleimani, M.; Ershadifar, H. Efficient Electrocatalytic Oxidation and Determination of Isoniazid on Carbon Ionic Liquid Electrode Modified with Electrodeposited Palladium Nanoparticles. J. Electroanal. Chem. 2016, 761, 1–7. DOI: 10.1016/j.jelechem.2015.11.041.
  • Brycht, M.; Nosal-Wiercińska, A.; Sipa, K.; Rudnicki, K.; Skrzypek, S. Electrochemical Determination of Closantel in the Commercial Formulation by Square-Wave Adsorptive Stripping Voltammetry. Monatsh. Chem. 2017, 148, 463–472. DOI: 10.1007/s00706-016-1862-z.
  • Smajdor, J.; Piech, R.; Paczosa-Bator, B. Spironolactone Voltammetric Determination on Renewable Amalgam Film Electrode. Steroids. 2018, 130, 1. DOI: 10.1016/j.steroids.2017.12.007.
  • Smajdor, J.; Piech, R.; Paczosa-Bator, B. Highly Sensitive Voltammetric Determination of Dexamethasone on Amalgam Film Electrode. J. Electroanal. Chem. 2018, 809, 147–152. DOI: 10.1016/j.jelechem.2017.12.042.
  • Mohamed, H. M. Screen-Printed Disposable Electrodes: Pharmaceutical Applications and Recent Developments. TrAC - Trends Anal. Chem. 2016, 82, 1–11. DOI: 10.1016/j.trac.2016.02.010.
  • Renedo, O. D.; Alonso-Lomillo, M. A.; Martínez, M. J. A. Recent Developments in the Field of Screen-Printed Electrodes and Their Related Applications. Talanta. 2007, 73, 202–219. DOI: 10.1016/j.talanta.2007.03.050.
  • Beitollahi, H.; Dourandish, Z.; Tajik, S.; Ganjali, M. R.; Norouzi, P.; Faridbod, F. Application of Graphite Screen Printed Electrode Modified with Dysprosium Tungstate Nanoparticles in Voltammetric Determination of Epinephrine in the Presence of Acetylcholine. J. Rare Earths. 2018, 36, 750–757. DOI: 10.1016/j.jre.2018.01.010.
  • Shi, L.; Layani, M.; Cai, X.; Zhao, H.; Magdassi, S.; Lan, M. An Inkjet Printed Ag Electrode Fabricated on Plastic Substrate with a Chemical Sintering Approach for the Electrochemical Sensing of Hydrogen Peroxide. Sen. Actuators B Chem. 2018, 256, 938–945. DOI: 10.1016/j.snb.2017.10.035.
  • Moya, A.; Gabriel, G.; Villa, R.; Javier del Campo, F. Inkjet-Printed Electrochemical Sensors. Curr. Opin. Electrochem. 2017, 3, 29–39. DOI: 10.1016/j.coelec.2017.05.003.
  • Carvajal, S.; Fera, S. N.; Jones, A. L.; Baldo, T. A.; Mosa, I. M.; Rusling, J. F.; Krause, C. E. Disposable Inkjet-Printed Electrochemical Platform for Detection of Clinically Relevant HER-2 Breast Cancer Biomarker. Biosens. Bioelectron. 2018, 104, 158–162. DOI: 10.1016/j.bios.2018.01.003.
  • Shi, J.; Tang, F.; Xing, H.; Zheng, H.; Bi, L.; Wang, W. Electrochemical Detection of Pb and Cd in Paper-Based Microfluidic Devices. J. Braz. Chem. Soc. 2012, 23, 1124–1130. DOI: 10.1590/S0103-50532012000600018.
  • Musicki, B.; Liu, T.; Lagoda, G.A.; Bivalacqua, T.J.; Strong, T.D.; Burnett, A.L. Endothelial Nitric Oxide Synthase Regulation in Female Genital Tract Structures. NIH Public Access 2009, 6, 247–253. DOI: 10.1111/j.1743-6109.2008.01122.x.
  • Mettakoonpitak, J.; Boehle, K.; Nantaphol, S.; Teengam, P.; Adkins, J. A.; Srisa-Art, M.; Henry, C. S. Electrochemistry on Paper-Based Analytical Devices: A Review. Electroanalysis. 2016, 28, 1420–1436. DOI: 10.1002/elan.201501143.
  • Channon, R. B.; Yang, Y.; Feibelman, K. M.; Geiss, B. J.; Dandy, D. S.; Henry, C. S. Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles. Anal. Chem. 2018, 90, 7777–7783. DOI: 10.1021/acs.analchem.8b02042.
  • Özkan, S. A.; Uslu, B.; Aboul-Enein, H. Y. Analysis of Pharmaceuticals and Biological Fluids Using Modern Electroanalytical Techniques. Crit. Rev. Anal. Chem. 2003, 33, 155–181. DOI: 10.1080/713609162.
  • Baezzat, M. R.; Banavand, F.; Fasihi, F. Electrooxidation Study and Highly Sensitive Voltammetric Determination of Alfuzosin Employing Multi-Walled Carbon Nanotubes and the Ionic Liquid 1-Hexylpyridinium Hexafluorophosphate Nanocomposite Sensor. J. Mol. Liq. 2017, 233, 391–397. DOI: 10.1016/j.molliq.2017.02.119.
  • Roushani, M.; Jalilian, Z.; Nezhadali, A. A Novel Electrochemical Sensor Based on Electrode Modified with Gold Nanoparticles and Molecularly Imprinted Polymer for Rapid Determination of Trazosin. Colloids Surfaces B Biointerfaces. 2018, 172, 594–600. DOI: 10.1016/j.colsurfb.2018.09.015.
  • Rodríguez, J.; Castañeda, G.; Lizcano, I. Electrochemical Sensor for Leukemia Drug Imatinib Determination in Urine by Adsorptive Striping Square Wave Voltammetry Using Modified Screen-Printed Electrodes. Electrochim. Acta. 2018, 269, 668–675. DOI: 10.1016/j.electacta.2018.03.051.
  • Lee, S. H.; Lee, J. H.; Tran, V. K.; Ko, E.; Park, C. H.; Chung, W. S.; Seong, G. H. Determination of Acetaminophen Using Functional Paper-Based Electrochemical Devices. Sens. Actuators B Chem. 2016, 232, 514–522. DOI: 10.1016/j.snb.2016.03.169.
  • Pourtaheri, E.; Taher, M. A.; Beitollahi, H. CHEMISTRY Synergistic Signal Amplification Based on Ionic Liquid-BaTiO3 Nanoparticle Carbon Paste Electrode for Sensitive Voltammetric Determination of Acetaminophen. Anal. Bioanal. Chem. Res. 2018, 5, 261–271.
  • Shabani-Nooshabadi, M.; Roostaee, M.; Karimi-Maleh, H. Incorporation of Graphene Oxide–NiO Nanocomposite and N-Hexyl-3-Methylimidazolium Hexafluoro Phosphate into Carbon Paste Electrode: Application as an Electrochemical Sensor for Simultaneous Determination of Benserazide, Levodopa and Tryptophan. J. Iran. Chem. Soc. 2017, 14, 955–961. DOI: 10.1007/s13738-016-1045-1.
  • Rahmanifar, E.; Yoosefian, M.; Karimi-Maleh, H. Application of CdO/SWCNTs Nanocomposite Ionic Liquids Carbon Paste Electrode as a Voltammetric Sensor for Determination of Benserazide. Curr. Anal. Chem. 2017, 13, 46–51. DOI: 10.2174/1573411012666160601145809.
  • Absalan, G.; Akhond, M.; Karimi, R.; Ramezani, A. M. Simultaneous Determination of Captopril and Hydrochlorothiazide by Using a Carbon Ionic Liquid Electrode Modified with Copper Hydroxide Nanoparticles. Microchim. Acta. 2018, 185, 97. DOI: 10.1007/s00604-017-2630-4.
  • Salih, F. E.; Oularbi, L.; Halim, E.; Elbasri, M.; Ouarzane, A; El Rhazi, M. Conducting Polymer/Ionic Liquid Composite Modified Carbon Paste Electrode for the Determination of Carbaryl in Real Samples. Electroanalysis. 2018, 30, 1–11. DOI: 10.1002/elan.201800152.
  • Daneshvar, L.; Rounaghi, G. H. An Electrochemical Sensing Platform for Carbamazepine Determination Based on Trimetallic Au-Ag-Pd Dendritic Nanopatricles, Supramolecular β-Cyclodextrin and [Bmim] NTF2 Ionic Liquids. J. Electrochem. Soc. 2017, 164, B177–B183. DOI: 10.1149/2.0781706jes.
  • El-Ads, E. H.; Atta, N. F.; Galal, A.; N. A. Electrochemical Sensor Based On, E. Nano-Perovskite/Ionic Liquid Crystal Modified Carbon Paste Electrode for Effective Determination of Hydroquinone and Catechol. Int. J. Electrochem. Sci. 2018, 13, 1452–1471. DOI: 10.20964/2018.02.30.
  • Beytur, M.; Kardaş, F.; Akyıldırım, O.; Özkan, A.; Bankoğlu, B.; Yüksek, H.; Yola, M. L.; Atar, N. A Highly Selective and Sensitive Voltammetric Sensor with Molecularly Imprinted Polymer Based Silver@Gold Nanoparticles/Ionic Liquid Modified Glassy Carbon Electrode for Determination of Ceftizoxime. J. Mol. Liq. 2018, 251, 212–217. DOI: 10.1016/j.molliq.2017.12.060.
  • Prasad, B. B.; Singh, R.; Kumar, A. Synthesis of Fullerene (C60-Monoadduct)-Based Water-Compatible Imprinted Micelles for Electrochemical Determination of Chlorambucil. Biosens. Bioelectron. 2017, 94, 115–123. DOI: 10.1016/j.bios.2017.02.040.
  • Mohammadi, N.; Najafi, M.; Adeh, N. B. Highly Defective Mesoporous Carbon – Ionic Liquid Paste Electrode as Sensitive Voltammetric Sensor for Determination of Chlorogenic Acid in Herbal Extracts. Sen. Actuators B Chem. 2017, 243, 838–846. DOI: 10.1016/j.snb.2016.12.070.
  • Ahmadzadeh, S.; Karimi, F.; Atar, N.; Sartori, E. R.; Faghih-Mirzaei, E.; Afsharmanesh, E. Synthesis of CdO Nanoparticles Using Direct Chemical Precipitation Method: Fabrication of Novel Voltammetric Sensor for Square Wave Voltammetry Determination of Chlorpromazine in Pharmaceutical Samples. Inorg. Nano-Metal Chem. 2017, 47, 347–353. DOI: 10.1080/15533174.2016.1186049.
  • Atta, N. F.; Ahmed, Y. M.; Galal, A. Nano-Magnetite/Ionic Liquid Crystal Modifiers of Carbon Nanotubes Composite Electrode for Ultrasensitive Determination of a New anti-Hepatitis C Drug in Human Serum. J. Electroanal. Chem. 2018, 823, 296–306. DOI: 10.1016/j.jelechem.2018.06.016.
  • Fatahi, A.; Malakooti, R.; Shahlaei, M. Electrocatalytic Oxidation and Determination of Dexamethasone at an Fe3O4/PANI-CuII Microsphere Modified Carbon Ionic Liquid Electrode. RSC Adv. 2017, 7, 11322–11330. DOI: 10.1039/C6RA26125F.
  • Negahban, S.; Fouladgar, M.; Amiri, G. Improve the Performance of Carbon Paste Electrodes for Determination of Dobutamine Using MnZnFe2O4 nanoparticles and Ionic Liquid. J. Taiwan Inst. Chem. Eng. 2017, 78, 51–55. DOI: 10.1016/j.jtice.2017.05.032.
  • Mohammadizadeh, N.; Mohammadi, S. Z.; Kaykhaii, M. Carbon Paste Electrode Modified with ZrO2 Nanoparticles and Ionic Liquid for Sensing of Dopamine in the Presence of Uric Acid. J. Anal. Chem. 2018, 73, 685–694. DOI: 10.1134/S1061934818070134.
  • Mohammadian, A.; Ebrahimi, M.; Karimi-Maleh, H. Synergic Effect of 2D Nitrogen Doped Reduced Graphene Nano-Sheet and Ionic Liquid as a New Approach for Fabrication of Anticancer Drug Sensor in Analysis of Doxorubicin and Topotecan. J. Mol. Liq. 2018, 265, 727–732. DOI: 10.1016/j.molliq.2018.07.026.
  • Alavi-Tabari, S. A. R.; Khalilzadeh, M. A.; Karimi-Maleh, H. Simultaneous Determination of Doxorubicin and Dasatinib as Two Breast Anticancer Drugs Uses an Amplified Sensor with Ionic Liquid and ZnO Nanoparticle. J. Electroanal. Chem. 2018, 811, 84–88. DOI: 10.1016/j.jelechem.2018.01.034.
  • Karimi, F.; Shojaei, A. F.; Tabatabaeian, K.; Shakeri, S. CoFe2O4 nanoparticle/Ionic Liquid Modified Carbon Paste Electrode as an Amplified Sensor for Epirubicin Analysis as an Anticancer Drug. J. Mol. Liq. 2017, 242, 685–689. DOI: 10.1016/j.molliq.2017.07.067.
  • Mohamed, M. A.; Fayed, A. S.; Hegazy, M. A.; Salama, N. N.; Abbas, E. E. Fully Optimized New Sensitive Electrochemical Sensing Platform for the Selective Determination of Antiepileptic Drug Ezogabine. Microchem. J. 2019, 144, 130–138. DOI: 10.1016/j.microc.2018.08.062.
  • Zad, Z. R.; Davarani, S. S. H.; Taheri, A.; Bide, Y. A Yolk Shell Fe3O4@PA-Ni@Pd/Chitosan Nanocomposite -Modified Carbon Ionic Liquid Electrode as a New Sensor for the Sensitive Determination of Fluconazole in Pharmaceutical Preparations and Biological Fluids. J. Mol. Liq. 2018, 253, 233–240. DOI: 10.1016/j.molliq.2018.01.019.
  • Singh, K.; Jadon, N.; Jain, R. Synergistic Effect of 1-Butyl-2,3-Dimethylimidazolium Bis (Trifluoromethanesulfonyl) Imide and Titanium Oxide on the Redox Behaviour of Flunarizine in Solubilized Media. Colloids Surf. B Biointerfaces. 2018, 166, 72–78. DOI: 10.1016/j.colsurfb.2018.02.057.
  • Akbari, S.; Tajik, S.; Beitollahi, H.; Shohreh, J.; Nadiki, H. H.; Biprava, P.; Hosseinzadeh, R. Synergic Effect of Cu/TiO2 Nanocomposite, 2-(Ferrocenylethynyl)Fluoren-9-One and Room Temperature Ionic Liquid for the Fabrication of Highly Sensitive Voltammetric Sensor for Levodopa Determination in the Presence of Tyrosine. Anal. Bioanal. Electrochem. 2018, 10, 873–889.
  • Sanati, A. L.; Faridbod, F.; Ganjali, M. R. Synergic Effect of Graphene Quantum Dots and Room Temperature Ionic Liquid for the Fabrication of Highly Sensitive Voltammetric Sensor for Levodopa Determination in the Presence of Serotonin. J. Mol. Liq. 2017, 241, 316–320. DOI: 10.1016/j.molliq.2017.04.123.
  • Li, X.; Zou, R.; Niu, Y.; Sun, W.; Shao, T.; Chen, X. Gold Nanocage-Based Electrochemical Sensing Platform for Sensitive Detection of Luteolin. Sensors. 2018, 18, 2309. DOI: 10.3390/s18072309.
  • Molaakbari, E.; Mostafavi, A.; Tohidiyan, Z.; Beitollahi, H. Synthesis and Application of Conductive Polymeric Ionic Liquid/Ni Nanocomposite to Construct a Nanostructure Based Electrochemical Sensor for Determination of Risperidone and Methylphenidate. J. Electroanal. Chem. 2017, 801, 198–205. DOI: 10.1016/j.jelechem.2017.07.001.
  • Ensafi, A. A.; Rezaloo, F.; Rezaei, B. CoFe2O4/Reduced Graphene Oxide/Ionic Liquid Modified Glassy Carbon Electrode, a Selective and Sensitive Electrochemical Sensor for Determination of Methotrexate. J. Taiwan Inst. Chem. Eng. 2017, 78, 45–50. DOI: 10.1016/j.jtice.2017.05.031.
  • Saghravanian, M.; Ebrahimi, M.; Es’haghi, Z.; Beyramabadi, S. A. Experimental Sensing and Density Functional Theory Study of an Ionic Liquid Mediated Carbon Nanotube Modified Carbon-Paste Electrode for Electrochemical Detection of Metronidazole. South African J. Chem. 2017, 70, 29–37. DOI: 10.17159/0379-4350/2017/v70a5.
  • Bin, Z.; Yanhong, C.; Jiaojiao, X.; Jing, Y. Acetylcholinesterase Biosensor Based on Functionalized Surface of Carbon Nanotubes for Monocrotophos Detection. Anal. Biochem. 2018, 560, 12–18. DOI: 10.1016/j.ab.2018.08.024.
  • Sasikumar, R.; Govindasamy, M.; Chen, S. M.; Chieh-Liu, Y.; Ranganathan, P.; Rwei, S. P. Electrochemical Determination of Morin in Kiwi and Strawberry Fruit Samples Using Vanadium Pentoxide Nano-Flakes. J. Colloid Interface Sci. 2017, 504, 626–632. DOI: 10.1016/j.jcis.2017.03.039.
  • Ashjari, M.; Karimi-Maleh, H.; Ahmadpour, F.; Shabani-Nooshabadi, M.; Sadrnia, A.; Khalilzadeh, M. A. Voltammetric Analysis of Mycophenolate Mofetil in Pharmaceutical Samples via Electrochemical Nanostructure Based Sensor Modified with Ionic Liquid and MgO/SWCNTs. J. Taiwan Inst. Chem. Eng. 2017, 80, 989–996. DOI: 10.1016/j.jtice.2017.08.046.
  • Niu, X.; Li, X.; Chen, W.; Li, X.; Weng, W.; Yin, C.; Dong, R.; Sun, W.; Li, G. Three-Dimensional Reduced Graphene Oxide Aerogel Modified Electrode for the Sensitive Quercetin Sensing and Its Application. Mater. Sci. Eng. C. 2018, 89, 230–236. DOI: 10.1016/j.msec.2018.04.015.
  • Atta, N. F.; El-Ads, E. H.; Hassan, S. H.; Galal, A. Surface Modification of Carbon Paste Electrode with Nano-Structured Modifiers: Application for Sub-Nano-Sensing of Paracetamol. J. Electrochem. Soc. 2017, 164, B519–B527. DOI: 10.1149/2.08017112jes.
  • Santos, A. M.; Wong, A.; Fatibello-Filho, O. Simultaneous Determination of Salbutamol and Propranolol in Biological Fluid Samples Using an Electrochemical Sensor Based on Functionalized-Graphene, Ionic Liquid and Silver Nanoparticles. J. Electroanal. Chem. 2018, 824, 1–8. DOI: 10.1016/j.jelechem.2018.07.018.
  • Tkach, V. V.; Kukovska, I. L.; Lukanova, S. M.; Boychuk, O. M.; Yurchuk, L. P.; Stefanchuk, V.I, S.; Khashchuk, V. S.; Oliveira, S. C.; Ojani, R.; Yagodynets, P. I. The Mathematical Description for Sucralose Electrochemical Detection on the Overoxidized Polypyrrole. Anal & Bioanal Chem. 2018, 10, 587–593.
  • Urzúa, L. Electrocatalytic Oxidation and Voltammetric Determination of Sulfamethazine Using a Modified Carbon Electrode with Ionic Liquid. J. Chil. Chem. Soc. 2018, 1, 3914–3917. DOI: 10.4067/s0717-97072018000103914.
  • Beitollahi, H.; Yoonesfar, R. Sensitive Detection of Sulfasalazine at a Carbon Paste Electrode Modified with NiO/CNT Nanocomposite and Ionic Liquid in Pharmaceutical and Biological Samples. Inorg. Nano-Metal Chem. 2017, 47, 1441–1448. DOI: 10.1080/24701556.2017.1357577.
  • Atta, N.; BinSabt, M.; Hassan, S.; Galal, A. Ionic Liquid Crystals Modifier for Selective Determination of Terazosin Antihypertensive Drug in Presence of Common Interference Compounds. Crystals. 2017, 7, 27. DOI: 10.3390/cryst7010027.
  • Molaakbari, E.; Mostafavi, A.; Beitollahi, H.; Tohidiyan, Z. Synthesis of Conductive Polymeric Ionic Liquid/Ni Nanocomposite and Its Application to Construct a Nanostructure Based Electrochemical Sensor for Determination of Warfarin in the Presence of Tramadol. Talanta. 2017, 171, 25–31. DOI: 10.1016/j.talanta.2017.04.041.
  • Vajdle, O.; Guzsvány, V.; Škorić, D.; Csanádi, J.; Petković, M.; Avramov-Ivić, M.; Kónya, Z.; Petrović, S.; Bobrowski, A. Voltammetric Behavior and Determination of the Macrolide Antibiotics Azithromycin, Clarithromycin and Roxithromycin at a Renewable Silver – Amalgam Film Electrode. Electrochim. Acta. 2017, 229, 334–344. DOI: 10.1016/j.electacta.2017.01.146.
  • Smarzewska, S.; Festinger, N.; Skowron, M.; Guziejewski, D.; Metelka, R.; Brycht, M.; Ciesielski, W. Voltammetric Analysis of Disulfiram in Pharmaceuticals with a Cyclic Renewable Silver Amalgam Film Electrode. Turk. J. Chem. 2017, 41, 116–124. DOI: 10.3906/kim-1603-70.
  • Guziejewski, D.; Morawska, K.; Popławski, T.; Metelka, R.; Ciesielski, W.; Smarzewska, S. Lactofen – Electrochemical Sensing and Interaction with DsDNA. Electroanalysis. 2018, 30, 94–100. DOI: 10.1002/elan.201700472.
  • Rudnicki, K.; Landová, P.; Wrońska, M.; Domagała, S.; Čáslavský, J.; Vávrová, M.; Skrzypek, S. Quantitative Determination of the Veterinary Drug Monensin in Horse Feed Samples by Square Wave Voltammetry (SWV) and Direct Infusion Electrospray Ionization Tandem Mass Spectrometry (DI–ESI–MS/MS). Microchem. J. 2018, 141, 220–228. DOI: 10.1016/j.microc.2018.05.032.
  • Hrichi, H.; Monser, L.; Adhoum, N. A Novel Electrochemical Sensor Based on Electropolymerized Molecularly Imprinted Poly(Aniline- Co -Anthranilic Acid) for Sensitive Detection of Amlodipine. J. Electroanal. Chem. 2017, 805, 133–145. DOI: 10.1016/j.jelechem.2017.10.019.
  • Mostafavi, M.; Yaftian, M. R.; Piri, F.; Shayani-Jam, H. A New Diclofenac Molecularly Imprinted Electrochemical Sensor Based upon a Polyaniline/Reduced Graphene Oxide Nano-Composite. Biosens. Bioelectron. 2018, 122, 160–167. DOI: 10.1016/j.bios.2018.09.047.
  • Jin, H.; Guo, H.; Gao, X.; Gui, R. Selective and Sensitive Electrochemical Sensing of Gastrodin Based on Nickel Foam Modified with Reduced Graphene Oxide/Silver Nanoparticles Complex-Encapsulated Molecularly Imprinted Polymers. Sens. Actuators B Chem. 2018, 277, 14–21. DOI: 10.1016/j.snb.2018.08.156.
  • Ermiş, N.; Uzun, L.; Denizli, A. Preparation of Molecularly Imprinted Electrochemical Sensor for L-Phenylalanine Detection and Its Application. J. Electroanal. Chem. 2017, 807, 244–252. DOI: 10.1016/j.jelechem.2017.11.025.
  • Panahi, Y.; Motaharian, A.; Hosseini, M. R. M.; Mehrpour, O. High Sensitive and Selective Nano-Molecularly Imprinted Polymer Based Electrochemical Sensor for Midazolam Drug Detection in Pharmaceutical Formulation and Human Urine Samples. Sens. Actuators B Chem. 2018, 273, 1579–1586. DOI: 10.1016/j.snb.2018.07.069.
  • Momeneh, H.; Gholivand, M. B. Mycophenolate Mofetil Sensor Based on Molecularly Imprinted Polymer/Multi-Walled Carbon Nanotubes Modified Carbon Paste Electrode. Anal. Biochem. 2018, 557, 97–103. DOI: 10.1016/j.ab.2018.07.014.
  • Akhoundian, M.; Alizadeh, T.; Ganjali, M. R.; Rafiei, F. A New Carbon Paste Electrode Modified with MWCNTs and Nano-Structured Molecularly Imprinted Polymer for Ultratrace Determination of Trimipramine: The Crucial Effect of Electrode Components Mixing on Its Performance. Biosens. Bioelectron. 2018, 111, 27–33. DOI: 10.1016/j.bios.2018.03.061.
  • Khairy, M.; Khorshed, A. A.; Rashwan, F. A.; Salah, G. A.; Abdel-Wadood, H. M.; Banks, C. E. Simultaneous Voltammetric Determination of Antihypertensive Drugs Nifedipine and Atenolol Utilizing MgO Nanoplatelet Modified Screen-Printed Electrodes in Pharmaceuticals and Human Fluids. Sens. Actuators B Chem. 2017, 252, 1045–1054. DOI: 10.1016/j.snb.2017.06.105.
  • Khorshed, A. A.; Khairy, M.; Banks, C. E. Voltammetric Determination of Meclizine Antihistamine Drug Utilizing Graphite Screen-Printed Electrodes in Physiological Medium. J. Electroanal. Chem. 2018, 824, 39–44. DOI: 10.1016/j.jelechem.2018.07.029.
  • Rawlinson, S.; McLister, A.; Kanyong, P.; Davis, J. Rapid Determination of Salicylic Acid at Screen Printed Electrodes. Microchem. J. 2018, 137, 71–77. DOI: 10.1016/j.microc.2017.09.019.
  • Pacheco, J. G.; Silva, M. S. V.; Freitas, M.; Nouws, H. P. A.; Delerue-Matos, C. Molecularly Imprinted Electrochemical Sensor for the Point-of-Care Detection of a Breast Cancer Biomarker (CA 15-3). Sens. Actuators B Chem. 2018, 256, 905–912. DOI: 10.1016/j.snb.2017.10.027.
  • Khetani, S. Ozhukil Kollath, V.; Kundra, V.; Nguyen, M.; Debert, C.; Sen, A.; Karan, K.; Sanati-Nezhad, A. Polyethylenimine Modified Graphene-Oxide Electrochemical Immunosensor for the Detection of Glial Fibrillary Acidic Protein in Central Nervous System Injury. ACS Sens. 2018, 3, 844–851. DOI: 10.1021/acssensors.8b00076.
  • Thangamuthu, M. Electrochemical Sensor for Bilirubin Detection Using Screen Printed Electrodes Functionalized with Carbon Nanotubes and Graphene. Sensors. 2018, 18, 800. DOI: 10.3390/s18030800.
  • Zhu, X.; Niu, X.; Zhao, H.; Lan, M. Doping Ionic Liquid into Prussian Blue-Multiwalled Carbon Nanotubes Modified Screen-Printed Electrode to Enhance the Nonenzymatic H2O2sensing Performance. Sen. Actuators B Chem. 2014, 195, 274–280. DOI: 10.1016/j.snb.2014.01.052.
  • Yang, J.; Yang, T.; Feng, S. A Sensor Based on Polyaniline Nanofibers/Ionic Liquid ‑ Functionalized Carbon Nanotubes Composite for Electrocatalytic Oxidation of Guanine. J. Iran. Chem. Soc. 2016, 13, 1611–1615. DOI: 10.1007/s13738-016-0877-z.
  • Beitollahi, H.; Nekooei, S.; Torkzadeh-Mahani, M. Amperometric Immunosensor for Prolactin Hormone Measurement Using Antibodies Loaded on a Nano-Au Monolayer Modified Ionic Liquid Carbon Paste Electrode. Talanta. 2018, 188, 701–707. DOI: 10.1016/j.talanta.2018.06.044.
  • Li, Y.; Zeng, X.; Liu, X.; Liu, X.; Wei, W.; Luo, S. Direct Electrochemistry and Electrocatalytic Properties of Hemoglobin Immobilized on a Carbon Ionic Liquid Electrode Modified with Mesoporous Molecular Sieve MCM-41. Colloids Surf. B Biointerfaces. 2010, 79, 241–245. DOI: 10.1016/j.colsurfb.2010.04.001.
  • Haji-Hashemi, H.; Norouzi, P.; Safarnejad, M. R.; Larijani, B.; Habibi, M. M.; Raeisi, H.; Ganjali, M. R. Sensitive Electrochemical Immunosensor for Citrus Bacterial Canker Disease Detection Using Fast Fourier Transformation Square-Wave Voltammetry Method. J. Electroanal. Chem. 2018, 820, 111–117. DOI: 10.1016/j.jelechem.2018.04.062.
  • Mazloum-Ardakani, M.; Hosseinzadeh, L.; Khoshroo, A. Label-Free Electrochemical Immunosensor for Detection of Tumor Necrosis Factor α Based on Fullerene-Functionalized Carbon Nanotubes/Ionic Liquid. J. Electroanal. Chem. 2015, 757, 58–64. DOI: 10.1016/j.jelechem.2015.09.006.
  • Wang, Z.; Liu, N.; Ma, Z. Platinum Porous Nanoparticles Hybrid with Metal Ions as Probes for Simultaneous Detection of Multiplex Cancer Biomarkers. Biosens. Bioelectron. 2014, 53, 324–329. DOI: 10.1016/j.bios.2013.10.009.
  • Zapp, E.; Westphal, E.; Gallardo, H.; de Souza, B.; Cruz Vieira, I. Liquid Crystal and Gold Nanoparticles Applied to Electrochemical Immunosensor for Cardiac Biomarker. Biosens. Bioelectron. 2014, 59, 127–133. DOI: 10.1016/j.bios.2014.03.026.
  • Salimi, A.; Kavosi, B.; Fathi, F.; Hallaj, R. Biosensors and Bioelectronics Highly Sensitive Immunosensing of Prostate-Specific Antigen Based on Ionic Liquid – Carbon Nanotubes Modified Electrode : Application as Cancer Biomarker for Prostate Biopsies. Biosens. Bioelectron. 2013, 42, 439–446. DOI: 10.1016/j.bios.2012.10.053.
  • Wei, W.; Dong, S.; Huang, G.; Xie, Q.; Huang, T. MOF-Derived Fe2O3nanoparticle Embedded in Porous Carbon as Electrode Materials for Two Enzyme-Based Biosensors. Sen. Actuators B Chem. 2018, 260, 189–197. DOI: 10.1016/j.snb.2017.12.207.
  • Zheng, Y.; Liu, Z.; Zhan, H.; Li, J.; Zhang, C. Studies on Electrochemical Organophosphate Pesticide (OP) Biosensor Design Based on Ionic Liquid Functionalized Graphene and a Co3O4 Nanoparticle Modified Electrode. Anal. Methods. 2016, 8, 5288–5295. DOI: 10.1039/C6AY01346E.
  • Rao, H.; Zhang, Z.; Ge, H.; Liu, X.; Zou, P.; Wang, X.; Wang, Y. Enhanced Amperometric Sensing Using a NiCo2O4/Nitrogen-Doped Reduced Graphene Oxide/Ionic Liquid Ternary Composite for Enzyme-Free Detection of Glucose. New J. Chem. 2017, 41, 3667–3676. DOI: 10.1039/C7NJ00077D.
  • Niu, X.; Wen, Z.; Li, X.; Yan, L.; Zhang, W.; Gong, S.; Shi, Z.; Sun, W. Direct Electrochemistry of Myoglobin on Three-Dimensional Graphene- Nickel Oxide Modified Electrode and Electrocatalytic Detection of Trichloroacetic Acid. Curr. Anal. Chem. 2017, 13, 410–416. DOI: 10.2174/1573411013666161128125208.
  • Zheng, W.; Zhao, W.; Chen, W.; Weng, W.; Liao, Z.; Dong, R.; Li, G.; Sun, W. Effect of Carboxyl Graphene on Direct Electrochemistry of Myoglobin and Electrocatalytic Investigation. Int. J. Electrochem. Sci. 2017, 12, 4341–4350. DOI: 10.20964/2017.05.02.
  • Ma, H.; Wang, L.; Liu, Z.; Guo, Y. Ionic Liquid–Graphene Hybrid Nanosheets-Based Electrochemical Sensor for Sensitive Detection of Methyl Parathion. Int. J. Environ. Anal. Chem. 2016, 96, 161–172. DOI: 10.1080/03067319.2015.1114111.
  • Zheng, Y.; Liu, Z.; Jing, Y.; Li, J.; Zhan, H. An Acetylcholinesterase Biosensor Based on Ionic Liquid Functionalized Graphene-Gelatin-Modified Electrode for Sensitive Detection of Pesticides. Sen. Actuators B Chem. 2015, 210, 389–397. DOI: 10.1016/j.snb.2015.01.003.
  • Aini, B. N.; Siddiquee, S.; Ampon, K.; Rodrigues, K. F.; Suryani, S. Development of Glucose Biosensor Based on ZnO Nanoparticles Film and Glucose Oxidase-Immobilized Eggshell Membrane. Sens. Bio-Sen. Res. 2015, 4, 46–56. DOI: 10.1016/j.sbsr.2015.03.004.
  • Salimi, A.; Khezrian, S.; Hallaj, R.; Vaziry, A. Highly Sensitive Electrochemical Aptasensor for Immunoglobulin e Detection Based on Sandwich Assay Using Enzyme-Linked Aptamer. Anal. Biochem. 2014, 466, 89–97. DOI: 10.1016/j.ab.2014.08.019.
  • Dong, M.; Nan, Z.; Liu, P.; Zhang, Y.; Xue, Z.; Lu, X.; Liu, X. Two-Phase Synthesis of Hydrophobic Ionic Liquid-Capped Gold Nanoparticles and Their Application for Sensing Cholesterol. Electrochim. Acta. 2014, 132, 465–471. DOI: 10.1016/j.electacta.2014.03.142.
  • Haghighi, B.; Khosravi, M.; Barati, A. Fabrication of Gallium Hexacyanoferrate Modified Carbon Ionic Liquid Paste Electrode for Sensitive Determination of Hydrogen Peroxide and Glucose. Mater. Sci. Eng. C. 2014, 40, 204–211. DOI: 10.1016/j.msec.2014.03.058.
  • Gholivand, M. B.; Khodadadian, M. Amperometric Cholesterol Biosensor Based on the Direct Electrochemistry of Cholesterol Oxidase and Catalase on a Graphene/Ionic Liquid-Modified Glassy Carbon Electrode. Biosens. Bioelectron. 2014, 53, 472–478. DOI: 10.1016/j.bios.2013.09.074.
  • Wang, L.; Wen, W.; Xiong, H.; Zhang, X.; Gu, H.; Wang, S. A Novel Amperometric Biosensor for Superoxide Anion Based on Superoxide Dismutase Immobilized on Gold Nanoparticle-Chitosan-Ionic Liquid Biocomposite Film. Anal. Chim. Acta. 2013, 758, 66–71. DOI: 10.1016/j.aca.2012.10.050.
  • Liu, X.; Bu, C.; Nan, Z.; Zheng, L.; Qiu, Y.; Lu, X. Enzymes Immobilized on Amine-Terminated Ionic Liquid-Functionalized Carbon Nanotube for Hydrogen Peroxide Determination. Talanta. 2013, 105, 63–68. DOI: 10.1016/j.talanta.2012.11.059.
  • Canbay, E.; Türkmen, H.; Akyilmaz, E. Ionic Liquid Modified Carbon Paste Electrode and Investigation of Its Electrocatalytic Activity to Hydrogen Peroxide. Bull. Mater. Sci. 2014, 37, 617–622. DOI: 10.1007/s12034-014-0681-2.
  • Shen, G.; Zhang, X.; Zhang, S. A Label-Free Electrochemical Aptamer Sensor Based on Dialdehyde Cellulose/Carbon Nanotube/Ionic Liquid Nanocomposite. J. Electrochem. Soc. 2014, 161, B256–B260. DOI: 10.1149/2.0581412jes.
  • Moreno-Guzmán, M.; Agüí, L.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J. M. Gold Nanoparticles/Carbon Nanotubes/Ionic Liquid Microsized Paste Electrode for the Determination of Cortisol and Androsterone Hormones. J. Solid State Electrochem. 2013, 17, 1591–1599. DOI: 10.1007/s10008-012-1868-3.
  • Kazerooni, H.; Nasernejad, B. A Novel Electrochemical DNA-Sensing Nanoplatform Based on Supramolecular Ionic Liquids Grafted on Nitrogen-Doped Graphene Aerogels. J. Appl. Electrochem. 2015, 45, 1289–1298. DOI: 10.1007/s10800-015-0891-3.
  • Sun, W.; Wang, X.; Wang, W.; Lu, Y.; Xi, J.; Zheng, W.; Wu, F.; Ao, H.; Li, G. Electrochemical DNA Sensor for Staphylococcus aureus Nuc Gene Sequence with Zirconia and Graphene Modified Electrode. J. Solid State Electrochem. 2015, 2431–2438. DOI: 10.1007/s10008-015-2893-9.
  • Huang, J. Y.; Zhao, L.; Lei, W.; Wen, W.; Wang, Y. J.; Bao, T.; Xiong, H. Y.; Zhang, X. H.; Wang, S. F. A High-Sensitivity Electrochemical Aptasensor of Carcinoembryonic Antigen Based on Graphene Quantum Dots-Ionic Liquid-Nafion Nanomatrix and DNAzyme-Assisted Signal Amplification Strategy. Biosens. Bioelectron. 2018, 99, 28–33. DOI: 10.1016/j.bios.2017.07.036.
  • Niu, X.; Zheng, W.; Yin, C.; Weng, W.; Li, G.; Sun, W.; Men, Y. Electrochemical DNA Biosensor Based on Gold Nanoparticles and Partially Reduced Graphene Oxide Modified Electrode for the Detection of Listeria Monocytogenes Hly Gene Sequence. J. Electroanal. Chem. 2017, 806, 116–122. DOI: 10.1016/j.jelechem.2017.10.049.
  • Pacheco, J. G.; Rebelo, P.; Freitas, M.; Nouws, H. P. A.; Delerue-Matos, C. Breast Cancer Biomarker (HER2-ECD) Detection Using a Molecularly Imprinted Electrochemical Sensor. Sensors Actuators, B Chem. 2018, 273, 1008–1014. DOI: 10.1016/j.snb.2018.06.113.
  • Ribeiro, J. A.; Pereira, C. M.; Silva, A. F.; Sales, M. G. F. Disposable Electrochemical Detection of Breast Cancer Tumour Marker CA 15-3 Using Poly(Toluidine Blue) as Imprinted Polymer Receptor. Biosens. Bioelectron. 2018, 109, 246–254. DOI: 10.1016/j.bios.2018.03.011.
  • Johari-Ahar, M.; Karami, P.; Ghanei, M.; Afkhami, A.; Bagheri, H. Development of a Molecularly Imprinted Polymer Tailored on Disposable Screen-Printed Electrodes for Dual Detection of EGFR and VEGF Using Nano-Liposomal Amplification Strategy. Biosens. Bioelectron. 2018, 107, 26–33. DOI: 10.1016/j.bios.2018.02.005.
  • Santos, A. R. T.; Moreira, F. T. C.; Helguero, L. A.; Sales, M. G. F. Antibody Biomimetic Material Made of Pyrrole for CA 15-3 and Its Application as Sensing Material in Ion-Selective Electrodes for Potentiometric Detection. Biosensors. 2018, 8, 8. DOI: 10.3390/bios8010008.
  • Kamakoti, V.; Selvam, A. P.; Shanmugam, N. R.; Muthukumar, S.; Prasad, S. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors. Biosensors. 2016, 6, 1–14. DOI: 10.3390/bios6030036.
  • Nguy, T. P.; Van Phi, T.; Tram, D. T. N.; Eersels, K.; Wagner, P.; Lien, T. T. N. Development of an Impedimetric Sensor for the Label-Free Detection of the Amino Acid Sarcosine with Molecularly Imprinted Polymer Receptors. Sensors Actuators, B Chem. 2017, 246, 461–470. DOI: 10.1016/j.snb.2017.02.101.
  • Martins, G. V.; Marques, A. C.; Fortunato, E.; Sales, M. G. F. 8-Hydroxy-2′-Deoxyguanosine (8-OHdG) Biomarker Detection down to PicoMolar Level on a Plastic Antibody Film. Biosens. Bioelectron. 2016, 86, 225–234. DOI: 10.1016/j.bios.2016.06.052.
  • Ribeiro, J. A.; Pereira, C. M.; Silva, A. F.; Sales, M. G. F. Electrochemical Detection of Cardiac Biomarker Myoglobin Using Polyphenol as Imprinted Polymer Receptor. Anal. Chim. Acta. 2017, 981, 41–52. DOI: 10.1016/j.aca.2017.05.017.
  • Martins, G. V.; Marques, A. C.; Fortunato, E.; Sales, M. G. F. Wax-Printed Paper-Based Device for Direct Electrochemical Detection of 3-Nitrotyrosine. Electrochim. Acta. 2018, 284, 60–68. DOI: 10.1016/j.electacta.2018.07.150.
  • Govindasamy, M.; Manavalan, S.; Chen, S. M.; Umamaheswari, R.; Chen, T. W. Determination of Oxidative Stress Biomarker 3-Nitro-L-Tyrosine Using CdWO4nanodots Decorated Reduced Graphene Oxide. Sen. Actuators B Chem. 2018, 272, 274–281. DOI: 10.1016/j.snb.2018.05.138.
  • Chocholova, E.; Bertok, T.; Lorencova, L.; Holazova, A.; Farkas, P.; Vikartovska, A.; Bella, V.; Velicova, D.; Kasak, P.; Eckstein, A. A. Advanced Antifouling Zwitterionic Layer Based Impedimetric HER2 Biosensing in Human Serum: Glycoprofiling as a Novel Approach for Breast Cancer Diagnostics. Sen. Actuators B Chem. 2018, 272, 626–633. DOI: 10.1016/j.snb.2018.07.029.
  • Sánchez-Tirado, E.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J. M. Magnetic Multiwalled Carbon Nanotubes as Nanocarrier Tags for Sensitive Determination of Fetuin in Saliva. Biosens. Bioelectron. 2018, 113, 88–94. DOI: 10.1016/j.bios.2018.04.056.
  • Valverde, A.; Povedano, E.; Montiel, V. R. V.; Yáñez-Sedeño, P.; Garranzo-Asensio, M.; Barderas, R.; Campuzano, S.; Pingarrón, J. M. Electrochemical Immunosensor for IL-13 Receptor Α2 Determination and Discrimination of Metastatic Colon Cancer Cells. Biosens. Bioelectron. 2018, 117, 766–772. DOI: 10.1016/j.bios.2018.07.017.
  • Singal, S.; Srivastava, A. K.; Kotnala, R. K. Rajesh, Single-Frequency Impedance Analysis of Biofunctionalized Dendrimer-Encapsulated Pt Nanoparticles-Modified Screen-Printed Electrode for Biomolecular Detection. J. Solid State Electrochem. 2018, 22, 2649–2657. DOI: 10.1007/s10008-018-3977-0.
  • Zhao, H.; Dong, Y.; Jiang, P.; Miao, H.; Wang, G.; Zhang, J. 3 N 4 Nanosheets for Enhanced Photocatalytic H2 Production from Water. J. Mater. Chem. A. 2015, 3, 7375–7381. DOI: 10.1039/C5TA00402K.
  • Iordănescu, A.; Tertis, M.; Cernat, A.; Suciu, M.; Săndulescu, R.; Cristea, C. Poly-(Pyrrole-3-Carboxylic Acid) Based Nanostructured Platform for the Detection of Carcinoembryonic Antigen. Electroanalysis. 2018, 30, 1100–1106. DOI: 10.1002/elan.201700803.
  • Zheng, Y. Paper-Based Microfluidic Immunoassay for Electrochemical Detection of B-Type Natriuretic Peptide. Int. J. Electrochem. Sci. 2018, 13, 7246–7254. DOI: 10.20964/2018.03.78.
  • Mollarasouli, F.; Serafín, V.; Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J. M.; Asadpour-Zeynali, K. Ultrasensitive Determination of Receptor Tyrosine Kinase with a Label-Free Electrochemical Immunosensor Using Graphene Quantum Dots-Modified Screen-Printed Electrodes. Anal. Chim. Acta. 2018, 1011, 28–34. DOI: 10.1016/j.aca.2018.01.039.
  • Martínez-García, G.; Sánchez-Tirado, E.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J. M. Amperometric Immunoassay for the Obesity Biomarker Amylin Using a Screen Printed Carbon Electrode Functionalized with an Electropolymerized Carboxylated Polypyrrole. Microchim. Acta. 2018, 185, 323. DOI: 10.1007/s00604-018-2863-x.
  • Cadkova, M.; Kovarova, A.; Dvorakova, V.; Metelka, R.; Bilkova, Z.; Korecka, L. Electrochemical Quantum Dots-Based Magneto-Immunoassay for Detection of HE4 Protein on Metal Film-Modified Screen-Printed Carbon Electrodes. Talanta. 2018, 182, 111–115, DOI: 10.1016/j.talanta.2018.01.054.
  • Carneiro, M. C. C. G.; Moreira, F. T. C.; Dutra, R. A. F.; Fernandes, R.; Sales, M. G. F. Homemade 3-Carbon Electrode System for Electrochemical Sensing: Application to MicroRNA Detection. Microchem. J. 2018, 138, 35–44. DOI: 10.1016/j.microc.2017.12.026.
  • Suresh, L.; Brahman, P. K.; Reddy, K. R.; Bondili, J. S. Development of an Electrochemical Immunosensor Based on Gold Nanoparticles Incorporated Chitosan Biopolymer Nanocomposite Film for the Detection of Prostate Cancer Using PSA as Biomarker. Enzyme Microb. Technol. 2018, 112, 43–51. DOI: 10.1016/j.enzmictec.2017.10.009.
  • Desai, D.; Kumar, A.; Bose, D.; Datta, M. Ultrasensitive Sensor for Detection of Early Stage Chronic Kidney Disease in Human. Biosens. Bioelectron. 2018, 105, 90–94. DOI: 10.1016/j.bios.2018.01.031.
  • Amani, J.; Maleki, M.; Khoshroo, A.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M. An Electrochemical Immunosensor Based on Poly P-Phenylenediamine and Graphene Nanocomposite for Detection of Neuron-Specific Enolase via Electrochemically Amplified Detection. Anal. Biochem. 2018, 548, 53–59. DOI: 10.1016/j.ab.2018.02.024.
  • Sierra, T.; González, M. C.; Moreno, B.; Crevillen, A. G.; Escarpa, A. Total Α1-Acid Glycoprotein Determination in Serum Samples Using Disposable Screen-Printed Electrodes and Osmium (VI) as Electrochemical Tag. Talanta. 2018, 180, 206–210. DOI: 10.1016/j.talanta.2017.12.018.
  • Garcia, P. T.; Guimarães, L. N.; Dias, A. A.; Ulhoa, C. J.; Coltro, W. K. T. Amperometric Detection of Salivary Α-Amylase on Screen-Printed Carbon Electrodes as a Simple and Inexpensive Alternative for Point-of-Care Testing. Sen. Actuators B Chem. 2018, 258, 342–348. DOI: 10.1016/j.snb.2017.11.068.
  • Rauf, S.; Mishra, G. K.; Azhar, J.; Mishra, R. K.; Goud, K. Y.; Nawaz, M. A. H.; Marty, J. L.; Hayat, A. Carboxylic Group Riched Graphene Oxide Based Disposable Electrochemical Immunosensor for Cancer Biomarker Detection. Anal. Biochem. 2018, 545, 13–19. DOI: 10.1016/j.ab.2018.01.007.
  • Lee, C. Y.; Wu, L. P.; Chou, T. T.; Hsieh, Y. Z. Functional Magnetic Nanoparticles–Assisted Electrochemical Biosensor for Eosinophil Cationic Protein in Cell Culture. Sens. Actuators B Chem. 2018, 257, 672–677. DOI: 10.1016/j.snb.2017.11.033.
  • Marques, R. C. B.; Costa-Rama, E.; Viswanathan, S.; Nouws, H. P. A.; Costa-García, A.; Delerue-Matos, C.; González-García, M. B. Voltammetric Immunosensor for the Simultaneous Analysis of the Breast Cancer Biomarkers CA 15-3 and HER2-ECD. Sen. Actuators B Chem. 2018, 255, 918–925. DOI: 10.1016/j.snb.2017.08.107.
  • Nik Mansor, N. N.; Leong, T. T.; Safitri, E.; Futra, D.; Ahmad, N. S.; Nasuruddin, D. N.; Itnin, A.; Zaini, I. Z.; Arifin, K. T.; Heng, L. Y. An Amperometric Biosensor for the Determination of Bacterial Sepsis Biomarker, Secretory Phospholipase Group 2-IIA Using a Tri-Enzyme System. Sensors (Basel). 2018, 18, 1–15. DOI: 10.3390/s18030686.
  • Khan, R.; Pal, M.; Kuzikov, A. V.; Bulko, T.; Suprun, E. V.; Shumyantseva, V. V. Impedimetric Immunosensor for Detection of Cardiovascular Disorder Risk Biomarker. Mater. Sci. Eng. C. 2016, 68, 52–58. DOI: 10.1016/j.msec.2016.05.107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.