1,398
Views
37
CrossRef citations to date
0
Altmetric
Review Article

Molecularly imprinted polymers as receptors for assays of antibiotics

ORCID Icon, , , ORCID Icon &
Pages 291-310 | Published online: 18 Jun 2019

References

  • Blair, J. M.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. Molecular Mechanisms of Antibiotic Resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. DOI: 10.1038/nrmicro3380.
  • Li, B.; Webster, T. J. Bacteria Antibiotic Resistance: New Challenges and Opportunities for Implant-Associated Orthopedic Infections. J. Orthop. Res. 2018, 36, 22–32.
  • http://www.who.int/mediacentre/news/releases/2015/antibiotic-resistance/en
  • http://www.euro.who.int/_data/assets/pdf_file/0005/136454/e94889
  • Miller, E. L. The Penicillins: A Review and Update. J. Midwifery Womens Health 2002, 47, 426–434.
  • Dayan, A. D. Allergy to Antimicrobial Residues in Food: assessment of the Risk to Man. Vet. Microbiol. 1993, 35, 213–226.
  • Babington, R.; Matas, S.; Marco, M. P.; Galve, R. Current Bioanalytical Methods for Detection of Penicillins. Anal. Bioanal. Chem. 2012, 403, 1549–1566. DOI: 10.1007/s00216-012-5960-4.
  • Cháfer-Pericás, C.; Maquieira, Á.; Puchades, R. Fast Screening Methods to Detect Antibiotic Residues in Food Samples. TrAC Trends Anal. Chem. 2010, 29, 1038–1049. DOI: 10.1016/j.trac.2010.06.004.
  • Beltrán, M. C.; Berruga, M. I.; Molina, A.; Althaus, R. L.; Molina, M. P. Performance of Current Microbial Tests for Screening Antibiotics in Sheep and Goat Milk. Int. Dairy J. 2015, 41, 13–15. DOI: 10.1016/j.idairyj.2014.09.007.
  • Barcelo, D.; Farré, M. Analytical methodologies for the detection of β-lactam antibiotics in milk and feed samples. Trends Anal. Chem. 2009, 28, 729–744. DOI: 10.1016/j.trac.2009.04.005.
  • Sousa, J.; Alves, G.; Abrantes, J.; Fortuna, A.; Falcao, A. Analytical Methods for Determination of New Fluoroquinolones in Biological Matrices and Pharmaceutical Formulations by Liquid Chromatography: A Review. Anal. Bioanal. Chem. 2012, 403, 93–129.
  • Guidi, L. R.; Tette, P. A.; Fernandes, C.; Silva, L. H.; Gloria, M. B. Advances on the Chromatographic Determination of Amphenicols in Food. Talanta 2017, 162, 324–338. DOI: 10.1016/j.talanta.2016.09.068.
  • Meulenberg, E. P. Immunochemical Methods for Ochratoxin a Detection: A Review. Toxins (Basel) 2012, 4, 244–266. DOI: 10.3390/toxins4040244.
  • Findlay, J. W.; Smith, W. C.; Lee, J. W.; Nordblom, G. D.; Das, I.; DeSilva, B. S.; Khan, M. N.; Bowsher, R. R. Validation of Immunoassays for Bioanalysis: A Pharmaceutical Industry Perspective. J. Pharm. Biomed. Anal. 2000, 21, 1249–1273. DOI: 10.1016/S0731-7085(99)00244-7.
  • Chuanlai, X.; Cifang, P.; Kai, H.; Zhengyu, J.; Wukang, W. Chemiluminescence Enzyme Immunoassay (CLEIA) for the Determination of Chloramphenicol Residues in Aquatic Tissues. Luminescence 2006, 21, 126–128. DOI: 10.1002/bio.892.
  • Samsonova, Z. V.; Shchelokova, O. S.; Ivanova, N. L.; Rubtsova, M.; Egorov, A. M. [Enzyme Immunoassay of Ampicillin in Milk]. Prikl. Biokhim. Mikrobiol. 2005, 41, 668–675.
  • Benito-Pena, E.; Moreno-Bondi, M. C.; Orellana, G.; Maquieira, A.; van Amerongen, A. Development of a Novel and Automated Fluorescent Immunoassay for the Analysis of β-Lactam Antibiotics. J. Agric. Food Chem. 2005, 53, 6635–6642. DOI: 10.1021/jf0511502.
  • Hackney, A. C.; Viru, A. Research Methodology: Endocrinologic Measurements in Exercise Science and Sports Medicine. J. Athl. Train 2008, 43, 631–639. DOI: 10.4085/1062-6050-43.6.631.
  • Darwish, I. A. Immunoassay Methods and Their Applications in Pharmaceutical Analysis: Basic Methodology and Recent Advances. Int. J. Biomed. Sci. 2006, 2, 217–235.
  • Alshannaq, A.; Yu, J. H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. DOI: 10.3390/ijerph14060632.
  • Koszegi, T. Immunoluminometric Detection of Human Procalcitonin. J. Biochem. Biophys. Methods 2002, 53, 157–164.
  • Fraser, A. D.; Worth, D. Monitoring Urinary Excretion of Cannabinoids by Fluorescence-Polarization Immunoassay: A Cannabinoid-to-Creatinine Ratio Study. Ther. Drug Monit. 2002, 24, 746–750. DOI: 10.1097/00007691-200212000-00011.
  • Signo, P.; Barassi, A.; Novario, R.; Melzi d'Eril, G. V. Preliminary Evaluation of the Performance of a New, Highly Sensitive Commercial Immunoassay for Serum Ferritin Determination. Clin. Chem. Lab. Med. 2005, 43, 883–885.
  • Ball, L.; Jones, A.; Boogaard, P.; Will, W.; Aston, P. Development of a Competitive Immunoassay for the Determination of N-(2-Hydroxypropyl)Valine Adducts in Human Haemoglobin and Its Application in Biological Monitoring. Biomarkers 2005, 10, 127–137. DOI: 10.1080/13547500500158938.
  • Desruisseau, S.; Palmari, J.; Giusti, C.; Romain, S.; Martin, P. M.; Berthois, Y. Determination of TGFbeta1 Protein Level in Human Primary Breast Cancers and Its Relationship with Survival. Br. J. Cancer 2006, 94, 239–246. DOI: 10.1038/sj.bjc.6602920.
  • BelBruno, J. J. Molecularly Imprinted: Polymers. Chem. Rev. 2019, 119, 94–119. DOI:10.1021/acs.chemrev.8b00171.
  • Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular Imprinting: perspectives and Applications. Chem. Soc. Rev. 2016, 45, 2137–2211. DOI: 10.1039/c6cs00061d.
  • Cieplak, M.; Kutner, W. Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition? Trends Biotechnol. 2016, 34, 922–941. DOI: 10.1016/j.tibtech.2016.05.011.
  • Chen, C.; Luo, J.; Li, C.; Ma, M.; Yu, W.; Shen, J.; Wang, Z. Molecularly Imprinted Polymer as an Antibody Substitution in Pseudo-Immunoassays for Chemical Contaminants in Food and Environmental Samples. J. Agric. Food Chem. 2018, 66, 2561–2571. DOI: 10.1021/acs.jafc.7b05577.
  • Mehmet, L. Y.; Necip, A. A Review: Molecularly Imprinted Electrochemical Sensors for Determination of Biomolecules/Drug. Curr. Anal. Chem. 2017, 13, 13–17.
  • Ashley, J.; Shahbazi, M. A.; Kant, K.; Chidambara, V. A.; Wolff, A.; Bang, D. D.; Sun, Y. Molecularly Imprinted Polymers for Sample Preparation and Biosensing in Food Analysis: Progress and Perspectives. Biosens. Bioelectron. 2017, 91, 606–615. DOI: 10.1016/j.bios.2017.01.018.
  • Whitcombe, M. J.; Chianella, I.; Larcombe, L.; Piletsky, S. A.; Noble, J.; Porter, R.; Horgan, A. The Rational Development of Molecularly Imprinted Polymer-Based Sensors for Protein Detection. Chem. Soc. Rev. 2011, 40, 1547–1571. DOI: 10.1002/chin.201123280.
  • Wulff, G. Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates-A Way towards Artificial Antibodies. Angew. Chem. Int. Ed. Engl. 1995, 34, 1812–1832. DOI: 10.1002/anie.199518121.
  • Mosbach, K.; Ramström, O. The Emerging Technique of Molecular Imprinting and Its Future Impact on Biotechnology. Nat. Biotechnol. 1996, 14, 163. DOI: 10.1038/nbt0296-163.
  • Cormack, P. A.; Elorza, A. Z. Molecularly Imprinted Polymers: synthesis and Characterisation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 804, 173–182. DOI: 10.1016/j.jchromb.2004.02.013.
  • Masqué, N.; Marcé, R. M.; Borrull, F. Molecularly Imprinted Polymers: new Tailor-Made Materials for Selective Solid-Phase Extraction. Trends Anal. Chem. 2001, 20, 477–486.
  • Bruggemann, O.; Haupt, K.; Ye, L.; Yilmaz, E.; Mosbach, K. New Configurations and Applications of Molecularly Imprinted Polymers. J. Chromatogr. A 2000, 889, 15–24.
  • Kubo, T.; Otsuka, K. Recent Progress for the Selective Pharmaceutical Analyses Using Molecularly Imprinted Adsorbents and Their Related Techniques: A Review. J. Pharm. Biomed. Anal. 2016, 130, 68–80. DOI: 10.1016/j.jpba.2016.05.044.
  • Shea, K. J.; Spivak, D. A.; Sellergren, B. Polymer Complements to Nucleotide Bases. Selective Binding of Adenine Derivatives to Imprinted Polymers. J. Am. Chem. Soc. 1993, 115, 3368–3369. DOI: 10.1021/ja00061a061.
  • Tarannum, N.; Singh, M. Water-Compatible Surface Imprinting of ‘Baclofen’ on Silica Surface for Selective Recognition and Detection in Aqueous Solution. Anal. Methods 2012, 4, 3019–3026. DOI: 10.1039/c2ay25365h.
  • Garcia, R.; Cabrita, M. J.; Freitas, A. M. C. Application of Molecularly Imprinted Polymers for the Analysis of Pesticide Residues in Food-A Highly Selective and Innovative Approach. AJAC. 2011, 02, 16–25. DOI: 10.4236/ajac.2011.228119.
  • Chen, S.; Gan, N.; Zhang, H.; Hu, F.; Li, T.; Cui, H.; Cao, Y.; Jiang, Q. A Portable and antibody-free sandwich assay for determination of chloramphenicol in food based on a personal glucose meter. Anal. Bioanal. Chem. 2015, 407, 2499–2507. DOI: 10.1007/s00216-015-8478-8.
  • Andersson, L. I.; Mosbach, K. Enantiomeric Resolution on Molecularly Imprinted Polymers Prepared with Only Non-Covalent and Non-Ionic Interactions. J. Chromatogr. A 1990, 516, 313–322. DOI: 10.1016/S0021-9673(01)89273-6.
  • Sellergren, B.; Ekberg, B.; Mosbach, K. Molecular Imprinting of Amino Acid Derivatives in Macroporous Polymers: Demonstration of Substrate- and Enantio-Selectivity by Chromatographic Resolution of Racemic Mixtures of Amino Acid Derivatives. J. Chromatogr. A 1985, 347, 1–10. DOI: 10.1016/S0021-9673(01)95464-0.
  • Nicholls, I. A.; Ramström, O.; Mosbach, K. Insights into the Role of the Hydrogen Bond and Hydrophobic Effect on Recognition in Molecularly Imprinted Polymer Synthetic Peptide Receptor Mimics. J. Chromatogr. A 1995, 691, 349–353. DOI: 10.1016/0021-9673(94)01067-O.
  • Umpleby, R. J.; Baxter, S. C.; Rampey, A. M.; Rushton, G. T.; Chen, Y.; Shimizu, K. D. Characterization of the Heterogeneous Binding Site Affinity Distributions in Molecularly Imprinted Polymers. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 804, 141–149. DOI: 10.1016/j.jchromb.2004.01.064.
  • Ramstrom, O.; Ye, L.; Mosbach, K. Artificial Antibodies to Corticosteroids Prepared by Molecular Imprinting. Chem. Biol. 1996, 3, 471–477. DOI: 10.1016/S1074-5521(96)90095-2.
  • Vlatakis, G.; Andersson, L. I.; Muller, R.; Mosbach, K. Drug Assay Using Antibody Mimics Made by Molecular Imprinting. Nature 1993, 361, 645–647. DOI: 10.1038/361645a0.
  • Wulff, G.; Biffis, A. Molecularly imprinting with covalent or stoichiometric noncovalent interactions. In Molecularly Imprinted Polymers - Man-Made Mimics of Antibodies and Their Application in Analytical Chemistry; Selleergren, B., Ed.; Elsevier: Amsterdam, 2001; pp 71–111.
  • Shea, K. J.; Sasaki, D. Y. On the Control of Microenvironment Shape of Functionalized Network Polymers Prepared by Template Polymerization. J. Am. Chem. Soc. 1989, 111, 3442–3444. DOI: 10.1021/ja00191a059.
  • Dabrowski, M.; Lach, P.; Cieplak, M.; Kutner, W. Nanostructured Molecularly Imprinted Polymers for Protein Chemosensing. Biosens. Bioelectron. 2018, 102, 17–26. DOI: 10.1016/j.bios.2017.10.045.
  • Gui, R.; Jin, H.; Guo, H.; Wang, Z. Recent Advances and Future Prospects in Molecularly Imprinted Polymers-Based Electrochemical Biosensors. Biosens. Bioelectron. 2018, 100, 56–70. DOI: 10.1016/j.bios.2017.08.058.
  • Ansari, S.; Karimi, M. Novel Developments and Trends of Analytical Methods for Drug Analysis in Biological and Environmental Samples by Molecularly Imprinted Polymers. TrAC Trends Anal. Chem. 2017, 89, 146–162. DOI: 10.1016/j.trac.2017.02.002.
  • Kempe, M.; Mosbach, K. Molecular Imprinting Used for Chiral Separations. J. Chromatogra. A 1995, 694, 3–13. DOI: 10.1016/0021-9673(94)01070-U.
  • Sellergren, B. Polymer- and Template-Related Factors Influencing the Efficiency in Molecularly Imprinted Solid-Phase Extractions. TrAC Trends Anal. Chem. 1999, 18, 164–174. DOI: 10.1016/S0165-9936(98)00117-4.
  • Funke, W. Reactive Microgels—Polymers Intermediate in Size between Single Molecules and Particles. Brit. Polym. J. 1989, 21, 107–115. DOI: 10.1002/pi.4980210204.
  • Ye, L.; Mosbach, K. Molecularly Imprinted Microspheres as Antibody Binding Mimics. React. Funct. Polym. 2001, 48, 149–157. DOI: 10.1016/S1381-5148(01)00050-5.
  • Mayes, A. G.; Mosbach, K. Molecularly Imprinted Polymer Beads: Suspension Polymerization Using a Liquid Perfluorocarbon as the Dispersing Phase. Anal. Chem. 1996, 68, 3769–3774. DOI: 10.1021/ac960363a.
  • Kwasniewska, K.; Gadzała, k. R.; Buszewski, B. Magnetic Molecular Imprinted Polymers as a Tool for Isolation and Purification of Biological Samples. Open Chem. 2015, 13, 1228–1235.
  • Wang, A.; Lu, H.; Xu, S. Preparation of Magnetic Hollow Molecularly Imprinted Polymers for Detection of Triazines in Food Samples. J. Agric. Food Chem. 2016, 64, 5110–5116. DOI: 10.1021/acs.jafc.6b01197.
  • Yilmaz, E.; Haupt, K.; Mosbach, K. The Use of Immobilized Templates-A New Approach in Molecular Imprinting. Angew. Chem. Int. Ed. Engl. 2000, 39, 2115–2118. DOI: 10.1002/1521-3773(20000616)39:12<2115::AID-ANIE2115>3.0.CO;2-V.
  • Piletsky, S. A.; Piletskaya, E. V.; Sergeyeva, T. A.; Panasyuk, T. L.; El'skaya, A. V. Molecularly Imprinted Self-Assembled Films with Specificity to Cholesterol. Sens Actuators B Chem. 1999, 60, 216–220. DOI: 10.1016/S0925-4005(99)00273-7.
  • Nicholls, I. A.; Rosengren, J. P. Molecular Imprinting of Surfaces. Bioseparation 2001, 10, 301–305.
  • Yanez, S. P.; Campuzano, S.; Pingarron, J. M. Electrochemical Sensors Based on Magnetic Molecularly Imprinted Polymers: A Review. Anal. Chim. Acta 2017, 960, 1–17. DOI: 10.1016/j.aca.2017.01.003.
  • Erturk, G.; Mattiasson, B. Molecular Imprinting Techniques Used for the Preparation of Biosensors. Sensors (Basel) 2017, 17, 288. DOI: 10.3390/s17020288.
  • Enholdt, M.; Siemann, M.; Mosbach, K.; Andersson, L. I. Determination of Cyclosporin a and Metabolites Total Concentration Using a Molecularly Imprinted Polymer Based Radioligand Binding Assay. Anal. Lett. 1997, 30, 1809–1821. DOI: 10.1080/00032719708001699.
  • Zhu, Q. Z.; Haupt, K.; Knopp, D.; Niessner, R. Molecularly Imprinted Polymer for Metsulfuron-Methyl and Its Binding Characteristics for Sulfonylurea Herbicides. Anal. Chim. Acta 2002, 468, 217–227. DOI: 10.1016/S0003-2670(01)01437-4.
  • Xu, Z. X.; Gao, H. J.; Zhang, L. M.; Chen, X. Q.; Qiao, X. G. The Biomimetic Immunoassay Based on Molecularly Imprinted Polymer: A Comprehensive Review of Recent Progress and Future Prospects. J. Food Sci. 2011, 76, 69–75.
  • Kupai, J.; Razali, M.; Buyuktiryaki, S.; Kecili, R.; Szekely, G. Long-Term Stability and Reusability of Molecularly Imprinted Polymers. Polym. Chem. 2017, 8, 666–673. DOI: 10.1039/c6py01853j.
  • Baggiani, C.; Anfossi, L.; Giovannoli, C. MIP-Based Immunoassays: State of the Art. Limit. Perspect. Mol. Imprint. 2013, 1, 41–54.
  • Andersson, L. I.; Müller, R.; Vlatakis, G.; Mosbach, K. Mimics of the Binding Sites of Opioid Receptors Obtained by Molecular Imprinting of Enkephalin and Morphine. Proc. Natl. Acad. Sci. USA 1995, 92, 4788–4792. DOI: 10.1073/pnas.92.11.4788.
  • Takeuchi, T.; Dobashi, A.; Kimura, K. Molecular Imprinting of Biotin Derivatives and Its Application to Competitive Binding Assay Using Nonisotopic Labelled Ligands. Anal. Chem. 2000, 72, 2418–2422. DOI: 10.1021/ac991357s.
  • Surugiu, I.; Ye, L.; Yilmaz, E.; Dzgoev, A.; Danielsson, B.; Mosbach, K.; Haupt, K. An Enzyme-Linked Molecularly Imprinted Sorbent Assay. Analyst 2000, 125, 13–16. DOI: 10.1039/a908871g.
  • Piletsky, S. A.; Piletska, E. V.; Chen, B.; Karim, K.; Weston, D.; Barrett, G.; Lowe, P.; Turner, A. P. F. Chemical Grafting of Molecularly Imprinted Homopolymers to the Surface of Microplates. Application of Artificial Adrenergic Receptor in Enzyme-Linked Assay for Beta-Agonists Determination. Anal. Chem. 2000, 72, 4381–4385. DOI: 10.1021/ac0002184.
  • Piletsky, S. A.; Piletska, E. V.; Bossi, A.; Karim, K.; Lowe, P.; Turner, A. P. Substitution of Antibodies and Receptors with Molecularly Imprinted Polymers in Enzyme-Linked and Fluorescent Assays. Biosens. Bioelectron. 2001, 16, 701–707. DOI: 10.1016/S0956-5663(01)00234-2.
  • Suarez-Rodriguez, J. L.; Diaz-Garcia, M. E. Fluorescent Competitive Flow-through Assay for Chloramphenicol Using Molecularly Imprinted Polymers. Biosens. Bioelectron. 2001, 16, 955–961.
  • Kroger, S.; Turner, A. P. F.; Mosbach, K.; Haupt, K. Imprinted Polymer-Based Sensor System for Herbicides Using Differential-Pulse Voltammetry on Screen-Printed Electrodes. Anal. Chem. 1999, 71, 3698–3702. DOI: 10.1021/ac9811827.
  • Haupt, K.; Mayes, A. G.; Mosbach, K. Herbicide Assay Using an Imprinted Polymer-Based System Analogous to Competitive Fluoroimmunoassays. Anal. Chem. 1998, 70, 3936–3939. DOI: 10.1021/ac980175f.
  • Schöllhorn, B.; Maurice, C.; Flohic, G.; Limoges, B. Competitive Assay of 2,4-Dichlorophenoxyacetic Acid Using a Polymer Imprinted with an Electrochemically Active Tracer Closely Related to the Analyte. Analyst 2000, 125, 665–667. DOI: 10.1039/b000292p.
  • Fuwei, W.; Jinghua, Y.; Ping, D.; Shenguang, P. Molecular Imprinting Chemiluminescence Sensor for the Determination of Amoxicillin. Anal. Lett. 2010, 43, 1033–1045. DOI: 10.1080/00032710903491104.
  • Thongchai, W.; Liawruangath, B.; Liawruangrath, S.; Greenway, G. M. A microflow chemiluminescence System for Determination of Chloramphenicol in Honey with Preconcentration Using a Molecularly Imprinted Polymer. Talanta 2010, 82, 560–566. DOI: 10.1016/j.talanta.2010.05.007.
  • Jiang, Z. Q.; Zhang, H. C.; Zhang, X. Y.; Wang, J. P. Determination of Tetracyclines in Milk with a Molecularly Imprinted Polymer-Based Microtiterchemiluminescence Sensor. Anal. Lett. 2019, 52, 1315–1327. DOI: 10.1080/00032719.2018.1537282.
  • Jie, B. J.; Huang, J.; Liu, J. X.; Wang, J. P. Detection of Chloramphenicol in Chicken, Pork and Fish with a molecularly imprinted polymer-based microtiter chemiluminescence method . Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 74–83. DOI: 10.1080/19440049.2018.1562238.
  • Geng, Y.; Guo, M.; Tan, J.; Huang, S.; Tang, Y.; Tan, L.; Liang, Y. A Fluorescent Molecularly Imprinted Polymer Using Aptamer as a Functional Monomer for Sensing of Kanamycin. Sens. Actuators B Chem. 2018, 268, 47–54. DOI: 10.1016/j.snb.2018.04.065.
  • Tang, Y.; Li, M.; Gao, X.; Liu, X.; Gao, J.; Ma, T.; Li, J. A NIR-Responsive up-Conversion Nanoparticle Probe of the NaYF4:Er,Yb Type and Coated with a Molecularly Imprinted Polymer for Fluorometric Determination of Enrofloxacin. Microchim. Acta 2017, 184, 3469–3475. DOI: 10.1007/s00604-017-2387-9.
  • Tang, Y.; Liu, H.; Gao, J.; Liu, X.; Gao, X.; Lu, X.; Fang, G.; Wang, J.; Li, J. Upconversion Particle@Fe3O4@Molecularly Imprinted Polymer with Controllable Shell Thickness as High-Performance Fluorescent Probe for Sensing Quinolones. Talanta 2018, 181, 95–103. DOI: 10.1016/j.talanta.2018.01.006.
  • Chullasat, K.; Nurerk, P.; Kanatharana, P.; Davis, F.; Bunkoed, O. A Facile Optosensing Protocol Based on Molecularly Imprinted Polymer Coated on CdTe Quantum Dots for Highly Sensitive and Selective Amoxicillin Detection. Sens. Actuators B Chem. 2018, 254, 255–263. DOI: 10.1016/j.snb.2017.07.062.
  • Zhang, Y.; Zhou, Z.; Zheng, J.; Li, H.; Cui, J.; Liu, S.; Yan, Y.; Li, C. SiO2-MIP Core-Shell Nanoparticles Containing Gold Nanoclusters for Sensitive Fluorescence Detection of the Antibiotic Erythromycin. Microchim. Acta 2017, 184, 2241–2248. DOI: 10.1007/s00604-017-2216-1.
  • Zhang, L.; Chen, L. Fluorescence Probe Based on Hybrid Mesoporous Silica/Quantum Dot/Molecularly Imprinted Polymer for Detection of Tetracycline. ACS Appl. Mater. Interfaces 2016, 8, 16248–16256. DOI: 10.1021/acsami.6b04381.
  • Descalzo, A. B.; Somoza, C.; Moreno-Bondi, M. C.; Orellana, G. Luminescent Core-Shell Imprinted Nanoparticles Engineered for Targeted Forster Resonance Energy Transfer-Based Sensing. Anal. Chem. 2013, 85, 5316–5320. DOI: 10.1021/ac400520s.
  • Niu, H.; Yang, Y.; Zhang, H. Efficient One-Pot Synthesis of Hydrophilic and Fluorescent Molecularly Imprinted Polymer Nanoparticles for Direct Drug Quantification in Real Biological Samples. Biosens. Bioelectron. 2015, 74, 440–446. DOI: 10.1016/j.bios.2015.06.071.
  • Ton, X. A.; Acha, V.; Haupt, K.; Tse, S. B. B. Direct Fluorimetric Sensing of UV-Excited Analytes in Biological and Environmental Samples Using Molecularly Imprinted Polymer Nanoparticles and Fluorescence Polarization. Biosens. Bioelectron. 2012, 36, 22–28. DOI: 10.1016/j.bios.2012.03.033.
  • Mehrzad, S. M.; Faridbod, F.; Dezfuli, A. S.; Ganjali, M. R. A Novel Metronidazole Fluorescent Nanosensor Based on Graphene Quantum Dots Embedded Silica Molecularly Imprinted Polymer. Biosens. Bioelectron. 2017, 92, 618–623. DOI: 10.1016/j.bios.2016.10.047.
  • Zhang, J.; Wang, H.; Liu, W.; Bai, L.; Ma, N.; Lu, J. Synthesis of Molecularly Imprinted Polymer for Sensitive Penicillin Determination in Milk. Anal. Lett. 2008, 41, 3411–3419. DOI: 10.1080/00032710802568671.
  • Tijssen, P. Practice and Theory of Enzyme Immunoassay. Elsevier Science: Amsterdam, The Netherlands, 1985.
  • Surugiu, I.; Danielsson, B.; Ye, L.; Mosbach, K.; Haupt, K. Chemiluminescence Imaging ELISA Using an Imprinted Polymer as the Recognition Element instead of an Antibody. Anal. Chem. 2001, 73, 487–491. DOI: 10.1021/ac0011540.
  • Bossi, A.; Piletsky, S. A.; Piletska, E. V.; Righetti, P. G.; Turner, A. P. Surface-Grafted Molecularly Imprinted Polymers for Protein Recognition. Anal. Chem. 2001, 73, 5281–5286. DOI: 10.1021/ac0006526.
  • Chianella, I.; Guerreiro, A.; Moczko, E.; Caygill, J. S.; Piletska, E. V.; De Vargas Sansalvador, I. M.; Whitcombe, M. J.; Piletsky, S. A. Direct Replacement of Antibodies with Molecularly Imprinted Polymer Nanoparticles in ELISA–Development of a Novel Assay for Vancomycin. Anal. Chem. 2013, 85, 8462–8468. DOI: 10.1021/ac402102j.
  • Canfarotta, F.; Smolinska-Kempisty, K.; Piletsky, S. Replacement of Antibodies in Pseudo-ELISAs: Molecularly Imprinted Nanoparticles for Vancomycin Detection. Methods Mol. Biol. 2017, 1575, 389–398.
  • Li, Z.; Li, Z.; Li, D.; Gao, H.; Chen, X.; Cao, L.; Hou, Y.; Li, S. Molecularly Imprinted Polymer-Based Chemiluminescence Imaging Assay for the Determination of Ethopabate Residues in Chicken Muscle. Anal. Methods 2015, 7, 9295–9303. DOI: 10.1039/C5AY01874A.
  • Peng, D.; Li, Z.; Wang, Y.; Liu, Z.; Sheng, F.; Yuan, Z. Enzyme-Linked Immunoassay Based on Imprinted Microspheres for the Detection of Sulfamethazine Residue. J. Chromatogr. A 2017, 1506, 9–17. DOI: 10.1016/j.chroma.2017.05.016.
  • Zhao, D.; Qiao, X.; Xu, Z.; Xu, R.; Yan, Z. Development of a Biomimetic Enzyme-Linked Immunosorbent Assay Method Based on a Hydrophilic Molecularly Imprinted Polymer Film for Determination of Olaquindox in Chick Feed Samples. J. Immunoassay Immunochem. 2013, 34, 16–29. DOI: 10.1080/15321819.2012.668149.
  • Wang, J.; Sang, Y.; Liu, W.; Liang, N.; Wang, X. The Development of a Biomimetic Enzyme-Linked Immunosorbent Assay Based on the Molecular Imprinting Technique for the Detection of Enrofloxacin in Animal-Based Food. Anal. Methods 2017, 9, 6682–6688. DOI: 10.1039/C7AY02321A.
  • Rincon, J.; Santallio, D. F.; Infante, P. M. P.; Watts, D. M.; Boland, T. Molecular Imprinted Silica with West Nile Antibody Templates show Specific and Selective Binding in Immunoassays. J. Biotechnol. Biomater. 2017, 7, 260.
  • Eggins, B. R. Chemical Sensors and Biosensors. John Wiley & Sons: UK, 2002. DOI: 10.1002/9780470511305.ch5.
  • Latif, U.; Ping, L.; Dickert, F. L. Conductometric Sensor for PAH Detection with Molecularly Imprinted Polymer as Recognition Layer. Sensors (Basel, Switzerland) 2018, 18, 767. DOI: 10.3390/s18030767.
  • Zhao, H.; Wang, H.; Quan, X.; Tan, F. Amperometric Sensor for Tetracycline Determination Based on Molecularly Imprinted Technique. Proc. Environ. Sci. 2013, 18, 249–257. DOI: 10.1016/j.proenv.2013.04.032.
  • Alina, A.; Mihaela, T.; Andreea, C.; Robert, S.; Cecilia, C. Electrochemical Methods Based on Molecularly Imprinted Polymers for Drug Detection. Rev. Int. J. Electrochem. Sci. 2018, 13, 2556–2576.
  • Widayani, Y.; Wungu, T. D. K. Suprijadi, Preliminary Study of Molecularly Imprinted Polymer-Based Potentiometric Sensor for Glucose. Proc. Eng. 2017, 170, 84–87.
  • Ertürk, G.; Mattiasson, B. Capacitive Biosensors and Molecularly Imprinted Electrodes. Sensors (Basel, Switzerland) 2017, 17, 390. DOI: 10.3390/s17020390.
  • Kimmel, D. W.; Le, B.; Gabriel, M.; Mika, E.; Cliffel, D. E. Electrochemical Sensors and Biosensors. Anal. Chem. 2012, 84, 685–707. DOI: 10.1021/ac202878q.
  • Stradiotto, N. R. Y.; Hideko, Z.; Maria, V. B. Electrochemical Sensors: A Powerful Tool in Analytical Chemistry. J. Braz. Chem. Soc. 2003, 14, 159–173. DOI: 10.1590/S0103-50532003000200003.
  • Hu, L.; Zhou, T.; Feng, J.; Jin, H.; Tao, Y.; Luo, D.; Mei, S.; Lee, Y. A Rapid and Sensitive Molecularly Imprinted Electrochemiluminescence Sensor for Azithromycin Determination in Biological Samples. Electroanal. Chem. 2018, 813, 1–8. DOI: 10.1016/j.jelechem.2018.02.010.
  • Turco, A.; Corvaglia, S.; Mazzotta, E.; Pompa, P. P.; Malitesta, C. Preparation and Characterization of Molecularly Imprinted Mussel Inspired Film as Antifouling and Selective Layer for Electrochemical Detection of Sulfamethoxazole. Sens. Actuators B Chem. 2018, 255, 3374–3383. DOI: 10.1016/j.snb.2017.09.164.
  • Mazzotta, E.; Turco, A.; Chianella, I.; Guerreiro, A.; Piletsky, S. A.; Malitesta, C. Solid-Phase Synthesis of Electroactive Nanoparticles of Molecularly Imprinted Polymers. A Novel Platform for Indirect Electrochemical Sensing Applications. Sens. Actuators B Chem. 2016, 229, 174–180. DOI: 10.1016/j.snb.2016.01.126.
  • Lian, W.; Liu, S.; Wang, L.; Liu, H. A Novel Strategy to Improve the Sensitivity of Antibiotics Determination Based on Bioelectrocatalysis at Molecularly Imprinted Polymer Film Electrodes. Biosens. Bioelectron. 2015, 73, 214–220. DOI: 10.1016/j.bios.2015.06.006.
  • Sun, J.; Ji, J.; Wang, Y.; Zhao, Y.; Zhang, Y.; Sun, X. Electrochemical Sensor for Determination of Tulathromycin Built with Molecularly Imprinted Polymer Film. Anal. Bioanal. Chem. 2015, 407, 1951–1959. DOI: 10.1007/s00216-014-8440-1.
  • Dechtrirat, D.; Yingyuad, P.; Prajongtat, P.; Chuenchom, L.; Sriprachuabwong, C.; Tuantranont, A.; Tang, I. M. A Screen-Printed Carbon Electrode Modified with Gold Nanoparticles, Poly(3,4-Ethylenedioxythiophene), Poly(Styrene Sulfonate) and a Molecular Imprint for Voltammetric Determination of Nitrofurantoin. Microchim. Acta 2018, 185, 261.
  • Gurler, B.; Ozkorucuklu, S. P.; Kir, E. Voltammetric Behavior and Determination of Doxycycline in Pharmaceuticals at Molecularly Imprinted and Non-Imprinted Overoxidized Polypyrrole Electrodes. J. Pharm. Biomed. Anal. 2013, 84, 263–268.
  • Giouroudi, I.; Kokkinis, G. Recent Advances in Magnetic Microfluidic Biosensors. Nanomaterials 2017, 7, 171. DOI: 10.3390/nano7070171.
  • Koh, I.; Josephson, L. Magnetic Nanoparticle Sensors. Sensors (Basel) 2009, 9, 8130–8145. DOI: 10.3390/s91008130.
  • Ashley, J.; Feng, X.; Sun, Y. A Multifunctional Molecularly Imprinted Polymer-Based Biosensor for Direct Detection of Doxycycline in Food Samples. Talanta 2018, 182, 49–54. DOI: 10.1016/j.talanta.2018.01.056.
  • Emir, D. S.; Keçili, R.; Ersoz, A.; Say, R. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM)Sensors. Sensors 2017, 17, 454. DOI: 10.3390/s17030454.
  • Vashist, S. K.; Vashist, P. Recent Advances in Quartz Crystal Microbalance-Based Sensors. J. Sens. 2011, 2011, 1. DOI: 10.1155/2011/571405.
  • Matsuguchi, M.; Kadowaki, Y.; Noda, K.; Naganawa, R. HCl Gas Monitoring Based on a QCM Using Morpholine-Functional Styrene-co-Chloromethylstyrene Copolymer Coatings. Sens. Actuators B Chem. 2007, 120, 462–466. DOI: 10.1016/j.snb.2006.02.039.
  • Matsuguchi, M.; Kadowaki, Y. Poly(Acrylamide) Derivatives for QCM-Based HCl Gas Sensor Applications. Sens. Actuators B Chem. 2008, 130, 842–847. DOI: 10.1016/j.snb.2007.10.049.
  • Sun, P.; Jiang, Y.; Xie, G.; Du, X.; Hu, J. A Room Temperature Supramolecular-Based Quartz Crystal Microbalance (QCM) Methane Gas Sensor. Sens. Actuators B Chem. 2009, 141, 104–108. DOI: 10.1016/j.snb.2009.06.012.
  • Xie, G.; Sun, P.; Yan, X.; Du, X.; Jiang, Y. Fabrication of Methane Gas Sensor by Layer-by-Layer Self-Assembly of Polyaniline/PdO Ultra Thin Films on Quartz Crystal Microbalance. Sens. Actuators B Chem. 2010, 145, 373–377. DOI: 10.1016/j.snb.2009.12.035.
  • Palaniappan, A.; Moochhala, S.; Tay, F. E. H.; Su, X.; Phua, N. C. L. Phthalocyanine/Silica Hybrid Films on QCM for Enhanced Nitric Oxide Sensing. Sens. Actuators B Chem. 2008, 129, 184–187. DOI: 10.1016/j.snb.2007.07.132.
  • Ayankojo, A. G.; Reut, J.; Boroznjak, R.; Opik, A.; Syritski, V. Molecularly Imprinted Poly(Meta-Phenylenediamine) Based QCM Sensor for Detecting Amoxicillin. Sens. Actuators B Chem. 2018, 258, 766–774. DOI: 10.1016/j.snb.2017.11.194.
  • Pan, M.; Gu, Y.; Zhang, M.; Wang, J.; Yun, Y.; Wang, S. Reproducible Molecularly Imprinted QCM Sensor for Accurate, Stable, and Sensitive Detection of Enrofloxacin Residue in Animal-Derived Foods. Food Anal. Methods 2018, 11, 495–503. DOI: 10.1007/s12161-017-1020-1.
  • Ebarvia, B. S.; Ubando, I. E.; Sevilla, F. B., III. Biomimetic Piezoelectric Quartz Crystal Sensor with Chloramphenicol-Imprinted Polymer Sensing Layer. Talanta 2015, 144, 1260–1265. DOI: 10.1016/j.talanta.2015.08.001.
  • Nguyen, H. H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors (Basel) 2015, 15, 10481–10510. DOI: 10.3390/s150510481.
  • Zhang, P.; Chen, Y. P.; Wang, W.; Shen, Y.; Guo, J. S. Surface Plasmon Resonance for Water Pollutant Detection and Water Process Analysis. Trends Anal. Chem. 2016, 85, 153–165. DOI: 10.1016/j.trac.2016.09.003.
  • Ayankojo, A. G.; Reut, J.; Opik, A.; Furchner, A.; Syritski, V. Hybrid Molecularly Imprinted Polymer for Amoxicillin Detection. Biosens. Bioelectron. 2018, 118, 102–107. DOI: 10.1016/j.bios.2018.07.042.
  • Luo, Q.; Yu, N.; Shi, C.; Wang, X.; Wu, J. Surface Plasmon Resonance Sensor for Antibiotics Detection Based on Photo-Initiated Polymerization Molecularly Imprinted Array. Talanta 2016, 161, 797–803. DOI: 10.1016/j.talanta.2016.09.049.
  • Lange, K.; Rapp, B. E.; Rapp, M. Surface Acoustic Wave Biosensors: A Review. Anal. Bioanal. Chem. 2008, 391, 1509–1519. DOI: 10.1007/s00216-008-1911-5.
  • Bracke, N.; Barhdadi, S.; Wynendaele, E.; Gevaert, B.; D’Hondt, M.; De Spiegeleer, B. Surface Acoustic Wave Biosensor as a Functional Quality Method in Pharmaceutics. Sens. Actuators B Chem. 2015, 210, 103–112. DOI: 10.1016/j.snb.2014.12.092.
  • Lange, K.; Gruhl, F. J.; Rapp, M. Surface Acoustic Wave (SAW) Biosensors: Coupling of Sensing Layers and Measurement. Methods Mol. Biol. 2013, 949, 491–505.
  • Ktari, N.; Fourati, N.; Zerrouki, C.; Ruan, M.; Nassoko, D.; Seydou, M.; Yaakoubi, N.; Chehimi, M. M.; Kalfat, R. Surface Acoustic Wave Sensor for Selective Detection of Flumequine. Proc. Eng. 2015, 120, 998–1002. DOI: 10.1016/j.proeng.2015.08.644.
  • Fourati, N.; Zerrouki, C.; Ruan, M.; Seydou, M.; Barbaut, F.; Nal, F.; Yaakoubi, N.; Chehimi, M. M.; Kalfat, R. Design of a Polypyrrole MIP-SAW Sensor for Selective Detection of Flumequine in Aqueous Media. Correlation between Experimental Results and DFT Calculations. RSC Adv. 2015, 5, 88666–88674. DOI: 10.1039/C5RA16237H.
  • Jiang, Y.; Sun, D. W.; Pu, H.; Wei, Q. Surface Enhanced Raman Spectroscopy (SERS): A Novel Reliable Technique for Rapid Detection of Common Harmful Chemical Residues. Trends Food Sci. Technol. 2018, 75, 10–22. DOI: 10.1016/j.tifs.2018.02.020.
  • Radhakrishnan, M. L.; Tidor, B. Specificity in Molecular Design: A Physical Framework for Probing the Determinants of Binding Specificity and Promiscuity in a Biological Environment. J. Phys. Chem. B 2007, 111, 13419–13435. DOI: 10.1021/jp074285e.
  • Xu, M. L.; Gao, Y.; Han, X. X.; Zhao, B. Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review. J. Agric. Food Chem. 2017, 65, 6719–6726. DOI: 10.1021/acs.jafc.7b02504.
  • Carrasco, S.; Benito, P. E.; Navarro, V. F.; Langer, J.; Sanz, O. M. N.; Reguera, J.; Liz, M. L. M.; Moreno, B. M. C. Multibranched Gold–Mesoporous Silica Nanoparticles Coated with a Molecularly Imprinted Polymer for Label-Free Antibiotic Surface-Enhanced Raman Scattering Analysis. Chem. Mater. 2016, 28, 7947–7954. DOI: 10.1021/acs.chemmater.6b03613.
  • Chaudhary, M.; Gupta, A. Microcantilever-Based Sensors. Def. Sci. J. 2009, 59, 634–641. DOI: 10.14429/dsj.59.1569.
  • Finot, E.; Passian, A.; Thundat, T. Measurement of Mechanical Properties of Cantilever Shaped Materials. Sensors 2008, 8, 3497. DOI: 10.3390/s8053497.
  • Okan, M.; Duman, M. Functional Polymeric Nanoparticle Decorated Microcantilever Sensor for Specific Detection of Erythromycin. Sens. Actuators B Chem. 2018, 256, 325–333. DOI: 10.1016/j.snb.2017.10.098.
  • Okan, M.; Sari, E.; Duman, M. Molecularly Imprinted Polymer Based Micromechanical Cantilever Sensor System for the Selective Determination of Ciprofloxacin. Biosens. Bioelectron. 2017, 88, 258–264. DOI: 10.1016/j.bios.2016.08.047.
  • Henry, O.; Piletsky, S. A.; Cullen, D. Fabrication of Molecularly Imprinted Polymer Microarray of a Chip by Mid-Infrared Laser Pulse Initiated Polymerization. Biosens. Bioelectron. 2008, 23, 1769–1775. DOI: 10.1016/j.bios.2008.02.010.
  • Hook, A. L.; Chang, C. Y.; Yang, J.; Scurr, D. J.; Langer, R.; Anderson, D. G.; Atkinson, S.; Williams, P.; Davies, M. C.; Alexander, M. R. Polymer Microarrays for High Throughput Discovery of Biomaterials. J. Vis. Exp. 2012, 59, 1–9. DOI: 10.3791/3636.
  • Le, N. D.; Yazdani, M.; Rotello, V. M. Array-Based Sensing Using Nanoparticles: An Alternative Approach for Cancer Diagnostics. Nanomedicine (London) 2014, 9, 1487–1498. DOI: 10.2217/nnm.14.65.
  • Ma, H.; Horiuchi, K. Y. Chemical Microarray: A New Tool for Drug Screening and Discovery. Drug Discov. Today 2006, 11, 661–668. DOI: 10.1016/j.drudis.2006.05.002.
  • Carrasco, S.; Benito-Pena, E.; Walt, D. R.; Moreno, B. M. C. Fiber-Optic Array Using Molecularly Imprinted Microspheres for Antibiotic Analysis. Chem. Sci. 2015, 6, 3139–3147. DOI: 10.1039/C5SC00115C.
  • Guardia, L.; Badia, R.; Diaz-Garcia, M. E. Molecularly Imprinted Sol-Gels for Nafcillin Determination in Milk Based Products. J. Agric. Food Chem. 2007, 55, 566–570. DOI: 10.1021/jf062058o.
  • Zhang, D.; Lv, Y. K.; Chen, R.; Shi, C. C. Preparation and Evaluation of a Molecularly Imprinted Sol-Gel Hybrid Material for Selective Solid-Phase Extraction of Sarafloxacin in Milk. Asian J. Chem. 2013, 25, 3922–3926. DOI: 10.14233/ajchem.2013.13845.
  • Li, J. J.; Yang, M.; Huo, D. Q.; Hou, C. J.; Li, X. L.; Wang, G. M.; Feng, D. Molecularly Imprinted Polymers on the Surface of Silica Microspheres via Sol-Gel Method for the Selective Extraction of Streptomycin in Aqueous Samples. J. Sep. Sci. 2013, 36, 1142–1148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.