1,251
Views
27
CrossRef citations to date
0
Altmetric
Review Article

Characteristics, Biological Properties and Analytical Methods of Trans-Resveratrol: A Review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 339-358 | Published online: 29 Jul 2019

References

  • Kim, S.; Thiessen, P. A.; Bolton, E. E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B. A.; et al. PubChem Substance and Compound Databases. Nucleic Acids Res. 2016, 44, D1202–D1213.
  • Yang, T.; Wang, L.; Zhu, M.; Zhang, L.; Yan, L. Properties and Molecular Mechanisms of Resveratrol: A Review. Pharmazie 2015, 70, 501–506. DOI:10.1691/ph.2015.5571.
  • Monika, B. S. P.; Garg, R.; Sardana, S. Research Problems Associated with Resveratrol(trans-3,5,4’-trihydrixystilbene; RSV) and Various Strategies to Overcome Those Problems (Review). Curr Drug Deliv. 2017, 14, 364–376. DOI:10.2174/1567201814666161109115735.
  • Francioso, A.; Mastromarino, P.; Restignoli, R.; Boffi, A.; d’Erme, M.; Mosca, L. Improved Stability of Trans-resveratrol in Aqueous Solutions by Carboxymathylated (1,3/1,6)-ß-D-glucan. J. Agric. Food Chem. 2014, 62, 1520–1525. DOI:10.1021/jf404155e.
  • Sautter, C. K.; Storck, L.; Rizzatti, M. R.; Mallman, C. A.; Brackmann, A. Synthesis of Trans-resveratrol and Rotting Control in Apples with Use of Elicitors in Post-harvest. Pesq. Agropec. Bras. 2008, 43, 1097–1103. DOI:10.1590/S0100-204X2008000900001.
  • Baur, J. A.; Pearson, K. J.; Price, N. L.; Jamieson, H. A.; Lerin, C.; Kalra, A.; Prabhu, V. V.; Allard, J. S.; Lopez-Lluch, G.; Lewis, K.; et al. Resveratrol Improves Health and Survival of Mice on a High-calorie Diet. Nature 2006, 444, 337–342. DOI:10.1038/nature05354.
  • Jerkovic, V.; Collin, S. Ocurrence of Resveratrol and Piceid in American and European Hop Cones. J. Agric. Food Chem. 2007, 55, 8754–8758. DOI:10.1021/jf071792k.
  • Halpern, G.; Schor, E.; Kopelman, A. Nutritional Aspects Related to Endometriosis. Rev. Assoc. Med. Bras. 2015, 61, 519–523. DOI:10.1590/1806-9282.61.06.519.
  • Coutinho, D. S.; Pacheco, M. T.; Frozza, Rl.; Bernardi, A. Anti-Inflammatory Effects of Resveratrol: Mechanistic Insights. Int. J. Mol. Sci. 2018, 19, 1812–1837. DOI:10.3390/ijms19061812.
  • Pannu, N.; Bhatnagar, A. Resveratrol: From Enhanced Biosynthesis and Bioavailability to Multitargeting Chronic Diseases. Biomed. Pharmacoter 2019, 109, 2237–2251. DOI:10.1016/j.biopha.2018.11.075.
  • Hasan, M.; Bae, H. An Overview of Stress-induced Resveratrol Synthesis in Grapes: Perspectives for Resveratrol-enriched Grape Products. Molecules 2017, 22, 294–312. DOI:10.3390/molecules22020294.
  • Li, R.; Xie, X.; Ma, F.; Wang, D.; Wang, L.; Zhang, J.; Xu, Y.; Wang, X.; Zhang, C.; Wang, Y. Resveratrol Accumulation and it Involvement in Stilbene Synthetic Pathway of Chinese Wild Grapes During Berry Development Using Quantitative Proteome Analysis. Sci. Rep. 2017, 7, 9295–9306. DOI:10.1038/s41598-017-10171-x.
  • Gionazzo, G.; Ingrosso, I.; Paradiso, A.; Gara, L.; Santino, A. Resveratrol Biosynthesis: Plant Metabolic Engineering for Nutritional Improvement of Food. Plant Foods Hum. Nutr. 2012, 67, 191–199. DOI:10.1007/s11130-012-0299-8.
  • Chu, M.; Pedreño, M. A.; Alburquerque, N.; Faize, L.; Burgos, L.; Almargro, L. A New Strategy to Enhance the BIosynthesis of Trans-resveratrol by Overexpressing Stilbene Synthase Gene in Elicited Vitis vinifera Cell Cultures. Plant Physiol. Biochem. 2017, 113, 14–148. DOI:10.1016/j.plaphy.2017.02.006.
  • Joye, I. J.; Davidov-Pardo, G.; McClements, D. J. Encapsulation of Resveratrol in Biopolymer Particles Produced Using Liquid Antisolvent Preciptation. Part 2: Stability and Functionality. Food Hydrocolloids 2015, 49, 127–134. DOI:10.1016/j.foodhyd.2015.02.038.
  • Spogli, R.; Bastianini, M.; Ragonese, F.; Iannitti, R. G.; Monarca, L.; Bastioli, F.; Nakashidze, I.; Brecchia, G.; Menchetti, L.; Codini, M.; et al. Solid Dispersion of Resveratrol Supported on Magnesium DiHidroxyde (RESV@MDH) Microparticles Improves Oral Bioavailability. Nutrients 2018, 10, 1925. DOI:10.3390/nu10121925.
  • Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K. M.; Gomez-Cabrera, M. C.; Vina, J.; Borras, C. Properties of Resveratrol: In vivo and in vitro Studies About Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid. Med. Cell. Longev. 2015, 2015, 1–13. DOI:10.1155/2015/837042.
  • Yin, X.; Singer, S. D.; Qiao, H.; Liu, Y.; Jiao, C.; Wang, H.; Li, Z.; Fei, Z.; Wang, Y.; Fan, C.; Wang, X. Insights into the Mechanicals Underlying Ultraviolet-C Induced Resveratrol Metabolism in Grapevine (V. amurensis Rupr.) cv. “Tonghua-3. Front. Plant Sci. 2016, 7, 1–23. DOI:10.3389/fpls.2016.00503.
  • Tosato, M. G.; Vicendo, P.; Thomas, A. H.; Lorente, C. Clearing up The Photochemistry of Resveratrol: Effect of The Solvent. J. Photochem. Photobiol. A Chem. 2018, 367, 327–331. DOI:10.1016/j.jphotochem.2018.08.050.
  • Wang, S.; Wang, Z.; Yang, S.; Yin, T.; Zang, Y.; Qin, Y.; Weinreb, R. N.; Sun, X. Tissue Distribution of Trans-resveratrol and its Metabolites After Oral Administration in Human Eyes. J. Ophtalmol. 2017, 2017, 1–12. DOI:10.1155/2017/4052094.
  • Wang, F.; Chatterjee, S. Dominant Carbons in Trans and Cis-resveratrol Isomerization. J. Phys. Chem. B 2017, 121, 4745–4755. DOI:10.1021/acs.jpcb.7b02115.
  • Zunino, S. J.; Storms, D. H. Resveratrol-3-O-Glucuronide and Resveratrol-4’-O-glucuronide Reduce DNA Strand Breakage but not Apoptosis in Jukart T Cells Treated with Camptothechin. Oncol. Lett. 2017, 14, 2517–2522. DOI:10.3892/ol.2017.6392.
  • Ruivo, J.; Francisco, C.; Oliveira, R.; Figueiras, A. The Main Potentialities of Resveratrol for Drug Delivery Systems. Braz. J. Pharm. Sci. 2015, 51, 499–514. DOI:10.1590/S1984-82502015000300002.
  • Flieger, J.; Tatarczak-Michalewska, M.; Blicharska, E. Characterization of The Cis/Trans Isomerization of Resveratrol by High-performance Liquid Chromatography. Liq. Chromotogr. 2017, 50, 1–21. DOI:10.1080/00032719.2016.1178756.
  • Zupancic, S.; Lavric, Z.; Kristl, J. Stability and Solubility of Trans-resveratrol are Strongly Influenced by pH and Temperature. Eur. J. Pharm. Biopharm. 2015, 93, 196–204. DOI:10.1016/j.ejpb.2015.04.002.
  • Heo, K. T.; Kang, S.; Jang, J.; Hong, Y. Sam5, a Coumarate 3-hydroxylase from Saccharothrix espanaensis: New Insight into The Piceatanol Production as a Resveratrol 3’-hydroxylase. Chem. Select Commun. 2017, 2, 8785–8789. DOI:10.1002/slct.201701969.
  • Gerszon, J.; Serafin, E.; Buczkowski, A.; Michelwska, S.; Bielnicki, J. A.; Rodacka, A. Functional Consequences of Piaceatannol Binding to Glyceraldehyde-3-phosphate Dehydrogenase. PLoS One 2018, 1, 1–18. DOI:10.1371/journal.pone.0190656.
  • Kershaw, J.; Kim, K. H. The Therapeutic Potential of Piaceatannol, a Natural Stilbene, in Matabolic Diseases: A Review. J. Med. Food 2017, 20, 427–438. DOI:10.1089/jmf.2017.3916.
  • Lu, Y.; Wang, A. H.; Shi, P.; Zhang, H. A Theoretical Study on the Antioxidant Activity of Piaceatannol and Isorhapontigenin Scavenging Nitric Oxide and Nitrogen Dioxide Radicals. PLoS One 2017, 12, e0169773. DOI:10.1371/journal.pone.0169773.
  • Koyani, R. D.; Vazquez-Duhalt, R. Enzymatic Activation of The Emerging Drug Resveratrol. Appl. Biochem. Biotechnol. 2018, 185, 248–256. DOI:10.1007/s12010-017-2645-7.
  • Neoczym, D.; Socala, K.; Gawel, K.; Esquerra, C. V.; Wyska, E.; Wlaz, P. Anticonvulsant Activity of Pterostilbene in Zebrafish and Mouse Acute Seizure Tests. Neurochem. Res. 2019, 44, 1043–1055. DOI:10.1007/s11064-019-02735-2.
  • Martínez-Márquez, A.; Morante-Carriel, J. A.; Ramírez-Estrada, K.; Cusidó, R. M.; Palazon, J.; Bru-Martínez, R. Production of Highly Bioactive Resveratrol Analogues Pterostilbene and Piceatannol in Metabolically Engineered Grapevine Cell Cultures. Plant Biotech. J. 2016, 14, 1813–1825. DOI:10.1111/pbi.12539.
  • Li, Y. R.; Li, S.; Lin, C. C. Effect of Resveratrol and Pterostilbene on Aging and Longevity. Biofactors 2018, 44, 69–82. DOI:10.1002/biof.1400.
  • Matencio, A.; Hernández-Gracía, S.; García-Carmona, F.; López-Nicoláz, J. M. An Integral Study of Cyclodextrins as Solubility Enhancers of α-methylstilbene, A Resveratrol Analogue. Food Funct. 2016, 8, 270–277. DOI:10.1039/C6FO01677D.
  • Simão, A. A.; Marques, T. R.; Marcussi, S.; Corrêa, A. D. Aqueous Extract of Psidium guajava Leaves: Phenolic Compounds and Inhibitory Potential on Digestive Enzymes. An. Acad. Bras. Ciênc. 2017, 89, 2155–2165. DOI:10.1590/0001-3765201720160067.
  • Tarola, A. M.; Milano, F.; Giannetti, V. Simultaneous Determination of Phenolic Compounds in Red Wines by HPLC-UV. Anal. Lett. 2007, 40, 2433–2445. DOI:10.1080/00032710701577666.
  • Wegiel, L. A.; Mosquera-Giraldo, L. I.; Mauer, L. J.; Edgar, K. J.; Taylor, L. S. Phase Behavior of Resveratrol Solid Dispersions Upon Addition to Aqueous Media. Pharm. Res. 2015, 32, 3324–3337. DOI:10.1007/s11095-015-1709-z.
  • Li, J.; Miao, X.; Chen, T.; Ouyang, D.; Zheng, Y. Preparation and Characterization of Pelletized Solid Dispersion of Resveratrol with Mesoporous Silica Microparticles to Improved Dissolution by Fluid-bed Coting Techniques. Asian J. Pharm. Sci. 2016, 11, 528–535. DOI:10.1016/j.ajps.2015.10.030.
  • Shivatare, R. S.; Nagore, D. H.; Nipanikar, S. U. HPTLC’ an Important Tool in Standardization of Herbal Medicinal Product: A Review. J Sci. Innov. Res. 2013, 2, 1086–1096. ISSN 2320-4818.
  • Rosouva, J.; Kusler, K.; Liyanage, D.; Leadbetter, M.; Dongari, N.; Hang, K. K.; Novikov, A.; Sauter, E. R.; Kubátová, A. Determination of Trans-resveratrol and its Metabolites in Rat Serum Using Liquid Chromatography with High-resolution Time of Flight Mass Spectrometry. J. Chromatogr. B 2016, 1039, 35–43. DOI:0.1016/j.jchromb.2016.10.028. DOI:10.1016/j.jchromb.2016.10.028.
  • Awad, H.; Khamis, M. M.; El-Aneed, A. Mass Spectrometry, Review of the Basics: Ionization. Appl. Spectrosc. Rev. 2015, 50, 158–175. DOI:10.1080/05704928.2014.954046.
  • Rigon, B. R.; Fachinetti, N.; Severino, P.; Santana, M. H. A.; Chorilli, M. Skin Delivery and in Vitro Biological Evaluation of Trans-resveratrol-loaded Solid Lipid Nanoparticles for Skin Disorder Therapies. Molecules 2016, 21, 116. DOI:10.3390/molecules21010116.
  • Joraholmen, M. W.; Basnet, P.; Tostrup, M. J.; Mouefaqq, S.; Skalko-Basnet, N. Localized Therapy of Vaginal Infections and Inflammation: Lipossomes-in-hydrogel Delivery System for Polyphenols. Pharmaceutics 2019, 11, 53. DOI:10.3390/pharmaceutics11020053.
  • Abdel-Bar, H. M.; Sanad, R. A. B. Endocytic Pathways of Optimized Resveratrol Cubosomes Capturing into Human Hepatoma Cells. Biomed. Pharmacother. 2017, 93, 561–569. DOI:10.1016/j.biopha.2017.06.093.
  • Pentek, T.; Newenhouse, T.; O’Brien, B.; Chauhan, A. S. Development of a Topical Resveratrol Formulation for Commercial Applications Using Dendrimer Nanotechnology. Molecules 2017, 22, 137. DOI:10.3390/molecules22010137.
  • Eloy, J. O.; Petrilli, R.; Noboru, L.; Trevizan, F.; Chorilli, M. Immunolipossomes: A Review on Functionalization Strategies and Targets for Drug Delivery. Colloids Surf. B: Biointerfaces 2017, 159, 454–467. DOI:10.1016/j.colsurfb.2017.07.085.
  • Makhmalzade, B. S.; Chavoshy, F. Polymeric Micelles as Cutaneous Drug Delivery System in Norma Skin and Dermatological Disorders. J. Adv. Pharm. Technol. Res. 2018, 9, 208. DOI:10.4103/japtr.JAPTR_314_17.
  • Prasad, B. S. G.; Gupta, V. R. M.; Devanna, M.; Jayasurya, K. Microspheres as Drug Delivery System – A Review. J. Global Trends Pharm. Sci 2014, 5, 1961–1972. ISSN: 2230-7346.
  • Wong, C. Y.; Al-Salami, H.; Dass, C. R. Microparticles, Microcapsules and Microspheres: A Review of Recent Developments and Prospects for Oral Delivery of Insulin. Int. J. Pharm. 2018, 537, 223–244. DOI:10.1016/j.ijpharm.2017.12.036.
  • Cho, A. R.; Chun, Y. G.; Kim, B. K.; Park, D. J. Preparation of Chitosan-TPP Microspheres as Resveratrol Carriers. Food Eng. Phys. Prop 2014, 79, E568–E577. DOI:10.1111/1750-3841.12395.
  • Baghel, S.; Cathcart, H.; O’Reilly, N. J. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-state Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J. Pharm. Sci. 2016, 105, 2527–2544. DOI:10.1016/j.xphs.2015.10.008.
  • Gerwert, K.; Kötting, C. Fourier Transform Infrared (FTIR) Spectroscopy. In Encyclopedia of Life Sciences. Wiley: Chichester; 2010, DOI:10.1002/9780470015902.a0003112.pub2.
  • Gambi, G.; Simone, E.; Basso, V.; Ricci, L.; Wang, R.; Verma, A.; Elemento, O.; Ponzoni, M.; Inghirami, G.; Icardi, L.; Mondini, A. The Transcription Regulator Sin3A Contributes to Oncogenic Potential of STAT3. Cancer Res. 2019, 79, 3076–3087. DOI:10.1158/0008-5472.CAN-18-0359.
  • El-Readi, M. Z.; Eid, S. Y.; Abdelghany, A. A.; Al-Amoudi, H. S.; Efferth, T.; Wink, M. Resveratrol Mediated Cancer Cell Apoptosis, and Modulation of Multidrug Resistance Proteins and Metabolic Enzymes. Phytomedicine 2019, 55, 269–291. DOI:10.1016/j.phymed.2018.06.046.
  • Li, R.; Ma, X.; Song, Y.; Zhang, Y.; Xiong, W.; Li, L.; Zhou, L. Anti-Colorectal Cancer Targets of Resveratrol and Biological Molecular Mechanism: Analyses of Network Pharmacology, Human and Experimental Data. J. Cel. Biochem. 2019, 120, 11265–11273. DOI:10.1002/jcb.28404.
  • Yousef, M.; Vlachogiannis, I. A.; Tsiani, E. Effects of Resveratrol on Lunger Cancer: in vivo and in vitro Studies. Nutrients 2017, 9, 1231–1252. DOI:10.3390/nu9111231.
  • Shamsara, J.; Shahir-Sadr, A. Developing a CoMSIA Model for Inhibition of COX-2 by Resveratrol Derivatives. Iran. J. Pharm. Res. 2016, 15, 459–469. PMID:27980581.
  • Abbas, A. K.; Lichtman, A. H. H.; Pillai, S. Cellular and Molecular Immunology. 8th ed.; Elsevier: Philadelphia, PA; 2015.
  • Berman, A. Y.; Motechin, R. A.; Wiesenfeld, M. Y.; Holz, M. K. The Therapeutic Potential of Resveratrol: A Review of Clinical Trials. Precis. Oncol. 2015, 1, 35. DOI:10.1038/s41698-017-0038-6.
  • Grimberg-Bleyer, Y.; Dainichi, T.; Oh, H.; Heise, N.; Klein, U.; Schmid, R. M.; Hayden, M. S.; Ghosh, S. Cutting Edge: NF-κB p65 and c-Rel Control Epidermal Development and Immune Homeostasis in the Skin. J Immunol. 2015, 194, 2472–2476. DOI:10.4049/jimmunol.1402608.
  • Yamamoto, N.; Tokuda, H.; Kuroyanagi, G.; Mizutani, J.; Matsushima-Nishiwaki, R.; Kondo, A.; Kozawa, O.; Otsuka, T. Regulation by Resveratrol of Prostaglandin E2-stimulated Osteoprotegerin Synthesis in Osteoblasts. Int. J. Mol. Med. 2014, 34, 1439–1445. DOI:10.3892/ijmm.2014.1934.
  • Szmurlo, A.; Kucharska, A.; Sinska, B. Significance of Diet in Treated and Untreated Acne Vulgaris. Postepy Dermatol Alergol. 2016, 33, 81–86. DOI:10.5114/ada.2016.59146.
  • Costa, I. V.; Velho, G. M. C. C. Acne Vulgaris in Adults. Rev. SPDV 2018, 76, 299–313. DOI:10.29021/spdv.76.3.953. [Portuguese].
  • Bodo, C.; Melnik, M. D. Acne Vulgaris: The Metabolic Syndrome of the Pilosebaceous Follicle. Clin. Dermatol. 2018, 36, 29–40. DOI:10.1016/j.clindermatol.2017.09.006.
  • Taylor, E. J. M.; Yu, Y.; Champer, J.; Kim, J. Resveratrol Demonstrates Antimicrobial Effects Against Propioniumbacterium acnes in vitro. Dermatol. Ther. (Heidelb) 2014, 4, 249–257. DOI:10.1007/s13555-014-0063-0.
  • Apolonio-Rodriguez, I.; Franco-Mora, O.; Salgado-Síclan, M. L. In vitro Inhibition of Botrytis cinérea with Extracts of Grapevine (Vitis spp.) Leaves. Mex. J. Phytopathol. 2017, 170–185. 2017. DOI:http://hdl.handle.net/20.500.11799/68684. [Spanish].
  • Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Narciso, V.; Tenore, G. C.; Novellino, E. Resveratrol as a Novel Anti-Herpes Simplex Virus Nutraceutical Agent: an Overview. Viruses 2018, 10, 473–483. DOI:10.3390/v10090473.
  • Oyenihi, O. R.; Oyenihi, A. B.; Adeyanju, A. A.; Oguntibeju, O. O. Antidiabetic Effects of Resveratrol: The Way Forward in its Clinical Utility. J. Diabetes Res 2016, 2016, 1–14. DOI:10.1155/2016/9737483.
  • Thadhani, V. M. Resveratrol in Management of Diabetes and Obesity: Clinical Applications, Bioavailability, and Nanotherapy. In Resveratrol – Adding Life to Years, Not Adding Years to Life. Budapest. IntechOpen 2019, p. 139–156. London, UK. DOI:10.5772/intechopen.79498.
  • Côté, C. D.; Rasmussen, B. A.; Duca, F. A.; Zadeh-Tahmasebi, M.; Baur, J. A.; Daljeet, M.; Breen, D. M.; Filippi, B. M.; Lam, T. K. T. Resveratrol Activates Duodenal Sirt1 to Reverse Insulin Resistance in Rats Through a Neuronal Network. Nat. Med. 2015, 21, 498–505. DOI:10.1038/nm.3821.
  • Zhang, A. J.; Rimando, A. M.; Mizuno, C. S.; Mathews, S. T. Alpha-Glucosidase Inhibitory Effect of Resveratrol and Piceatannol. J. Nutr. Biochem. 2017, 47, 86–93. DOI:10.1016/j.jnutbio.2017.05.008.
  • Narciso, L. G.; Almeida, B. F. M.; Bosco, A. M.; Pereira, P. P.; Vendrame, K. E.; Louzada, M. J. Q.; Ciarlini, P. C. Resveratrol Attenuates Oxidative Stress and Muscle Damage in Sedentary Rats Subjected to Physical Exercise. Arq. Bras. Med. Vet. Zootec. 2018, 70, 850–856. DOI:[Portuguese]. DOI:10.1590/1678-4162-9448.
  • Truong, V. L.; Jun, M.; Jeong, W. S. Role of Resveratrol in Regulation of Cellular Defense Systems Against Oxidative Stress. Biofactors 2018, 44, 36–49. DOI:10.1002/biof.1399.
  • Kurvietiene, L.; Staneviciene, I.; Mongidierne, A.; Bernatoiniene, J. Multiplicity of Effects and Health Benefits of Resveratrol. Medicina 2016, 52, 248–155. DOI:10.1016/j.medici.2016.03.003.
  • Cardoso, L. M. F.; Pimenta, N. M. A.; Fiochi, R. S. F.; Mota, B. F.; Monnerat, J. A. S.; Teixeira, C. C.; Ramalho, R. B. R.; Silva, I. W. S. M. S.; Dolinsky, M.; Boaventura, G. T.; et al. Effects of Red Wine, Grape Juice and Resveratrol Consuption on Bone Parameters of Wistar Rats Submitted to High-fat Diet and Physical Training. Nutr. Hosp. 2017, 35, 416–420. DOI:10.20960/nh.765.
  • Hasheminia, D.; Razavi, S. M.; Nazari, H.; Khazaei, S.; Soleimanzadeh, P.; Nazari, H. Systemic Supplement with Resveratrol Increased Bone Formation in Rats’ Alveolar Socket. Int. J. Morphol. 2018, 36, 391–394. DOI:10.4067/S0717-95022018000200391.
  • Wang, H.; Hu, Z.; Wu, J.; Mei, Y.; Zhang, Q.; Hengwei, Z.; Miao, D.; Sun, W. Sirt1 Promotes Osteogenic Differentiation and Increases Alveolar Bone Mass via Bmi1 Activation in Mice. J. Bone Min. Res. 2019, 34, 1169–1181. DOI:10.1002/jbmr.3677.
  • Siti, H. N.; Kamisah, Y.; Kamisah, J. The Role of Oxidative Stress, Antioxidants and Vascular Inflammation in Cardiovascular Disease (A Review). Vasc. Pharmacol. 2015, 71, 40–56. DOI:10.1016/j.vph.2015.03.005.
  • Bonnefont-Rousselot, D. Resveratrol and Vascular Diseases. Nutrients 2016, 8, 250–274. DOI:10.3390/nu8050250.
  • Bedê, T. P.; Pascoal, A. C.; Facó, L. H.; Castro, E. S.; Mattoso, V.; Dias, J. F.; Azeredo, V. B. Effect of the Intake of Liquids Rich in Polyphenols on Blood Pressure and Fat Liver Deposition in Rats Submitted to High-fat Diet. Nutr. Hosp. 2015, 31, 2545–2529. [Mismatch] DOI:10.3305/nh.2015.31.6.8655.
  • Bhatla, S. C.; Manju, A. L. Plant Physiology, Development and Metabolism. Springer: Singapore; 2018; p. 1133.
  • Chang, G.; Chen, P.; Hou, P.; Mao, F. Resveratrol Protects Against Diet-induced Atherosclerosis by Reducing Low-density Lipoprotein Cholesterol and Inhibiting Inflammation in Apoliprotein E-deficient Mice. Iran. J. Basic Med. Sci. 2015, 18, 1063–1071.
  • Azzaz, J. A.; Rieu, A.; Aires, V.; Dilemas, D.; Chluba, J.; Winckler, P.; Bringer, M.; Lamarche, J.; Vervandler-Fasseur, D.; Dalle, F.; Lapaquette, P.; et al. Resveratrol-Induced Xenophagy Promotes Interacallular Bacteria Clearance in Intestinal Epithelial Cells and Macrophages. Front. Immunol. 2019, 9, 1–15. DOI:10.3389/fimmu.2018.03149.
  • Costa, S. C. C.; Detoni, C. B.; Branco, C. R. C.; Botura, M. B.; Branco, A. In vitro Photoprotective Effects of Marcetia taxifolia Ethanolic Extract and its Potential for Sunscreen Formulations. Rev. Bras. Farmacog. 2015, 25, 413–418. DOI:10.1016/j.bjp.2015.07.013.
  • D’Mello, S. A. N.; Finlay, G. J.; Baguley, B. C.; Askarian-Amiri, M. E. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144–1162. DOI:10.3s390/ijms17071144.
  • Liu, Q.; Kim, C. T.; Jo, Y. H.; Kim, S. B.; Hwang, B. Y.; Lee, M. K. Synthesis and Biological Evaluation of Resveratrol Derivatives as Melanogenesis Inhibitors. Molecules 2015, 20, 16933–16945. DOI:10.3390/molecules200916933.
  • Lee, T. H.; Seo, J. O.; Baek, S.; Kim, S. Y. Inhibitory Effects of Resveratrol on Melanin Synthesis in Ultraviolet B-Induced Pigmentation in Guinea Pig Skin. Biomol. Ther. 2014, 22, 35–40. DOI:10.4062/biomolther.2013.081.
  • Miguel, N. A.; Andrade, S. F.; Nai, G.; Laposy, C. B.; Nascimento, F. F.; Dinallo, H. R.; Melchert, A. Effects of Resveratrol on Liver Function of Obese Female Wistar Rats. Ciênc. Anim. Bras. 2016, 17, 402–410. DOI:10.1590/1089-6891v17i332990.
  • Schaffer, T. K.; Wohlenberg, M. F.; Medeiros, N.; Martins, J. B.; Agostini, F.; Funchal, C.; Dani, C. Evaluation of Antioxidant Activity of Grapevine Leaves Extracts (Vitis labrusca) in Liver of Wistar Rats. An. Acad. Bras. Ciênc. 2016, 88, 187–196. DOI:10.1590/0001-3765201620140658.
  • Albertoni, G.; Schor, N. Resveratrol Inhibits the Intracellular Calcium Increase and Angiotensin/Endothelin System Activation Induced by Soluble Uric Acid in Mesangial Cells. Braz. J. Med. Biol. Res. 2014, 48, 51–56. DOI:10.1590/1414-431x20144032.
  • Bierzynska, A.; Saleem, M. Recent Advances in Understanding and Treating Nephrotic Syndromes. F1000Res. 2017, 6, 1–7. DOI:10.12688/f1000research.10165.1.
  • Chen, Y.; Fu, Y.; Wu, M. Does Resveratrol Play a Role in Decreasing the Inflammation Associated with Contrast Induced Nephropathy in Rat Model? J. Clin. Med. 2019, 8, 147. DOI:10.3390/jcm8020147.
  • Kong, L.; Wu, H.; Zhou, W.; Luo, M.; Tan, Y.; Miao, L.; Cai, L. Sirtuin 1: A Target for Kidney Diseases. Mol. Med. 2015, 21, 87–97. DOI:10.2119/molmed.2014.00211.
  • Rosa, M. O.; Machado, F. S.; Frusciante, M. R.; Gutierrez, L. L. P.; Funchal, C. O. Efeito do Resveratrol na Doença de Alzheimer. Rev. Bras. Multidiscip.-ReBraM. 2017, 20, 174. DOI:[Portuguese]. DOI:10.25061/2527-2675/ReBraM/2017.v20i1.477.
  • Wang, J.; Gu, B. J.; Masters, C. L.; Wang, Y. J. A Systematic View of Alzheimer Disease – Insights from Amyloid-ß Metabolism Beyond the Brain. Nat Rev Neurol. 2017, 13, 612–624. DOI:10.1038/nrneurol.2017.111.
  • Bastianetto, S.; Ménard, C.; Quirion, R. Neuroprotective Action of Resveratrol. Biochim. Biophys. Acta 2015, 1852, 1195–1201. DOI:10.1016/j.bbadis.2014.09.011.
  • Fu, W.; Zhuang, W.; Zhou, S.; Wang, X. Plant-Derived Neuroprotective Agents in Parkinson’s Disease. Am. J. Transl. Res. 215, 7, 1189–1202. ISSN: 1943-8141/AJTR0009821.
  • DeMaagd, G.; Philip, A. Parkinsons Disease and its Management. P T. 2015, 40, 504–512. PMID: 26236139.
  • Lin, K.; Lin, K.; Wang, P.; Chuang, J.; Lin, H.; Chen, S.; Chuang, Y.; Lin, H.; Huang, S.; Chen, S.; et al. Resveratrol Provides Neuroprotective Effects Through Modulation of Mitochondrial Dynamics and ERK1/2 Regulated Autophagy. Free Rad. Res. 2018, 52, 1371–1386. DOI:10.1080/10715762.2018.1489128.
  • Lançon, A.; Frazzi, R.; Latruffe, N. Anti-Oxidant, Anti-inflammatory and Anti-angiogenic Properties of Resveratrol in Ocular Diseases. Molecules 2016, 21, 304. DOI:10.3390/molecules21030304.
  • Abengozár-Vela, A.; Schaumburg, C. S.; Stern, M. E.; Calonge, M.; Enríquez-de-Salamanca. González-García, M. J. Topical Quercitin and Resveratrol Protect the Ocular Surface in Experimental Dry Eye Disease. Ocul. Immunol. Inflamm. 2018, 1–10. DOI:10.1080/09273948.2018.1497664.
  • Razali, N.; Agarwal, R.; Agarwal, P.; Kumar, S.; Tripathy, M.; Vasudevan, S.; Crowston, J. G.; Ismail, N. M. Role of Adenosine Receptors in Resveratrol-induced Intraocular Pressure Lowering in Rats with Steroid-Induced Ocular Hypertension. Clin. Exp. Ophthalmol. 2015, 43, 54–66. DOI:10.1111/ceo.12375.
  • Ma, H.; Qiao, Z. Analysis of the Efficacy of Resveratrol Treatment in Patients with Scarred Uterus. Exp. Ther. Med. 2018, 15, 5410–5414. DOI:10.3892/etm.2018.6126.
  • Jalili, C.; Salahshoor, M. R.; Jalili, F.; Kakabaraei, S.; Akrami, A.; Sohrabi, M.; Ahookhash, M.; Ghanbari, A. Therapeutic Effect of Resveratrol on Morphine-induced Damage in Male Reproductive System of Mice by Reducing Nitric Oxide Serum Level. Int. J. Morphol. 2017, 35, 1342–1347. DOI:10.4067/S0717-95022017000401342.
  • Noriega-González, J. E.; Chirino, Y. I.; Mata-Miranda, M. M.; Vázquez-Zapién, G. J.; Sánchez-Monroy, V. Effect of Resveratrol on Mitochondrial Activity in Differentiated Mature Adipocytes. Int. J. Morphol. 2015, 33, 1085–1092. DOI:10.4067/S0717-95022015000300044.
  • Andolfi, C.; Fisichella, P. M. Epidemiology of Obesity and Associated Comorbidities. J. Laparoendosc. Adv. Surg. Tech 2018, 28, A, 919–924. DOI:10.1089/lap.2018.0380.
  • Made, S. M.; Plat, J.; Mensink, R. P. Trans-Resveratrol Supplementation and Endothelial Function during the Fasting and Postprandial Phase: A Randomized Placebo-controlled Trial in Overweight and Slightly Obese Participants. Nutrients 2019, 9, 1–12. DOI:10.3390/nu9060596.
  • Hadi, H. E.; Di Vincenzo, A.; Vettor, R.; Rossato, M. Food Ingredients Involved in White-to-Brown Addipose Tissue Conversion and in Calorie Burning. Front. Physiol. 2019, 9, 1954–1951. DOI:10.3389/fphys.2018.01954.
  • Wang, J. C.; Chen, C. Y.; Wen, H. C.; Lu, H. C.; Chang, C. H. Biphasic Effects of Resveratrol on Adipogenesis: Low Doses of Resveratrol Promote Adipogenesis via Induction of CD36. J. Nutr. Health 2015, 1, 1–8. DOI:ISSN: 2469-4185.
  • Wang, P.; Li, D.; Ke, W.; Liang, D.; Hu, X.; Chen, F. Resveratrol-Induced Gut Microbiota Reduces Obesity in High-fat Diet-fed Mice. Int. J. Obesity 2019. DOI:10.1038/s41366-019-0332-1.
  • Zhao, P.; Sui, B.; Liu, N.; Lv, Y.; Zheng, C.; Lu, Y.; Huang, W.; Zhou, C.; Chen, J.; Pang, D.; et al. Anti-Aging Pharmacology in Cutaneous Wound Healing: Effects of Metformin, Resveratrol, and Rapamycin by Local Application. Aging Cell 2017, 16, 1083–1093. DOI:10.1111/acel.12635.2.
  • Baca, M. E.; Rapp, D. A.; Knoll, G. M.; Ford, R. D. Evaluation of the Potential for Improved Wound Healing Through The Usage of a Topical Resveratrol Preparation. PRS Global Open 2016, 4, 118–119. DOI:10.1097/01.GOX.0000503052.19988.03.
  • Zeng, G.; Zhong, F.; Li, J.; Luo, S.; Zhang, P. Resveratrol–Mediated Reduction of Collagen by Inhibiting Proliferation and Producing Apoptosis in Human Hypertrophic Scar Fibroblasts. Biosci. Biotechnol. Biochem. 2013, 77, 2389–2396. DOI:10.1271/bbb.130502.
  • Liu, D.; Yang, F.; Xiong, F.; Gu, N. The Smart Drug Delivery System and its Clinical Potential. Theranostics 2016, 6, 1306–1324. DOI:10.7150/thno.14858.
  • Kalepu, S.; Nekkanti, V. Insoluble Drug Delivery Strategies: A Review of Recent Advancesand Business Prospects. Acta Pharm. Sin. B 2015, 5, 442–453. DOI:10.1016/j.apsb.2015.07.003.
  • Pundir, S.; Badola, A.; Sharma, D. Sustained Release Matrix Technology and Recent Advance in Matrix Drug Delivery System: A Review. Int. J. Drug Res. Technol. 2013, 3, 12–20.
  • Lozano-Navarro, J. I.; Díaz-Zavala, N. P.; Velasco-Santos, C.; Martínez-Hernandez, A. L.; Tijerina-Ramos, B. I.; García-Hernández, M.; Rivera-Armenta, J. R.; Páramo-García, U.; Torre, A. I. R. Antimicrobial, Optical and Mechanical Properties of Chitosan-Starch Films with Natural Extracts. Int. J. Mol. Sci. 2017, 18, 997. DOI:10.3390/ijms18050997.
  • Ramu, B.; Chittela, K. B. High Performance Thin Layer Chromatography and its Role in Pharmaceutical Industry: Review. Open Sci. J. Biosci. Bioeng. 2018, 5, 29–34. ISSN: 2381-3814.
  • Rani, N. S.; Reddy, N. K.; Kumar, B. P. Spectrometric and RP-HPLC Method for the Determination os Trans-resveratrol in Vegetation Formulation. Indian J. Res. Pharm. Biotechnol. 2017, 5, 115–118. ISSN: 2320-3471.
  • Tfaili, S.; Josse, G.; Angiboust, J.; Manfait, M.; Piot, O. Monitoring Caffeine and Resveratrol Cutaneous Permeation by Confocal Raman Microspectroscopy. J. Biophoton. 2014, 7, 676–681. DOI:10.1002/jbio.201300011.
  • Kahrami, Z.; Hamidi, M. Cubosomes: Remarkable Drug Delivery Potential. Drug Discov. Today 2016, 21, 789–801. DOI:10.1016/j.drudis.2016.01.004.
  • Sri, V. R.; Madhusudhan, A.; Karthikeyan, R.; Srinavasababu, A. Review On: Cubosomes Drug Delivery System. Indian J. Drugs 2017, 5, 104–108. DOI:ISSN: 2348-1684.
  • Itai, S. Development of Novel Functional Formulations Based on Pharmaceutical Technologies. Yaguku Zasshi J. Pharm. Soc. Jpn. 2019, 139, 419–435. [Japanese]. DOI:10.1248/yakushi.18-00183.
  • Kurangi, B.; Jalalpure, S.; Jagwani, S. A Validated Stability-Indicating HPLC Method for Simultaneous Estimation of Resveratrol and Piperine in Cubosome and Human Plasma. J. Chromatogr. B 2019, 1122-1123, 39–48. DOI:10.1016/j.jchromb.2019.05.017.
  • Dura, A.; Rosell, C. M. Physico-Chemical Properties of Corn Starch Modified with Cyclodextrin Glycosyltransferase. Int. J. Biol. Macromol. 2016, 87, 466–472. DOI:10.1016/j.ijbiomac.2016.03.012.
  • Es, I.; Ribeiro, M. C.; Júnior, S. R. S.; Khaneghah, A. M.; Rodriguez, A. G.; Amaral, A. C. Production of Cyclodextrin Glycosyltransferase by Immobilized Bacillus sp. on Chitosan Matrix. Bioprocess Biosyst. Eng. 2016, 39, 1487–1500. DOI:10.1007/s00449-016-1625-6.
  • Cirini, G.; Fourmentin, S.; Fenyvesi, E.; Torri, G.; Fourmentin, M.; Morin-Cirini, N. Chapter One: Fundamentals and Applications of Cyclodextrins. In Cyclodextrin Fundamentals. Reactivity and Analysis. Springer: Berlin. 2018; p. 3–39. DOI:10.1007/978-3-319-76159-6_1.
  • Shelley, H.; Babu, R. J. Role of Cyclodextrins in Nanoparticles Based Drug Delivery Systems. J. Pharm. Sci. 2018, 107, 1741–1753. DOI:10.1016/j.xphs.2018.03.021.
  • Jansook, P.; Ogawa, O.; Loftsson, T. Cyclodextrins: Structure, Physicochemical Properties and Pharmaceutical Applications. Int. J. Pharm. 2018, 535, 272–284. DOI:10.1016/j.ijpharm.2017.11.018.
  • Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018, 23, 1161–1176. DOI:10.3390/molecules23051161.
  • Singh, G.; Pai, R. S. Trans-Resveratrol Self-Nano-Emulsifying Drug Delivery System (SNEDDS) with Enhanced Bioavailability Potential: Optimization, Pharmacokinetics and in situ Single Pass Intestinal Perfusio Studies. Drug Deliv. 2015, 22, 522–530. DOI:10.3109/10717544.2014.885616.
  • Yu, W.J.H. Ullah, R.S.; Haroon, M.; Fahad, S.; Liu, J.; Shaarani, T.; Khan, R.U.; Nazir, A. Recent Progress in Electron Paramagnetic Resonance Study of Polymers. Polymer Chem. 2018, 9, 3306–3335. DOI:10.1039/C8PY00689.
  • Huang, D.; Wu, D. Biodegradable Dendrimers for Drug Delivery. Mater. Sci. Eng. 2018, 90, 713–727. DOI:10.1016/j.msec.2018.03.002.
  • Kumar, P. S.; Datta, M. S.; Kumar, D. M.; Kumar, T. V.; Kr, V. K.; Ram, C.,D. Dendrimers in Drug Delivery, Diagnosis, and Therapy: Basics and Potential Applications. J. Drug Deliv. Therap. 2016, 6, 67–92. DOI:10.22270/jddt.v6i1.1190.
  • Mendes, L. P.; Pan, J.; Torchilin, V. P. Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy. Molecules 2017, 22, 1401–1422. DOI:10.3390/molecules22091401.
  • Parajapati, S. K.; Maurya, S. D.; Tilak, V. K.; Verma, K. K.; Dhakar, R. C. Potential Application of Dendrimers in Drug Delivery: A Concise Review and Update. J. Drug Deliv. Therap. 2016, 6, 71–88. DOI:10.22270/jddt.v6i2.1195.
  • Castro, R. I.; Forero-Doria, O.; Guzmán, L. Perspectives of Dendrimer-based Nanoparticles in Cancer Therapy. An. Acad. Bras. Ciênc. 2018, 90, 2331–2346. DOI:10.1590/0001-3765201820170387.
  • Smallyukh, I. I. Liquid Crystals Colloids. Annu. Rev. Condens. Matter Phys. 2018, 9, 207–226. DOI:https://doi.org/10.1146/annurev-conmatphys-033117-054102.
  • Chaudhary, K. K.; Kannojia, P.; Mishra, N. Liquid Crystal Systems in Drug Delivery. In Novel Approaches for Drug Delivery. IGI Global: Hershey, 2017; p. 217–243. DOI:10.4018/978-1-5225-0751-2.ch009.
  • Mo, J.; Milleret, G.; Nagaraj, M. Liquid Crystal Nanoparticles for Commercial Drug Delivery. Liq. Cryst. Rev. 2017, 5, 69–85. DOI:10.1080/21680396.2017.1361874.
  • Rajak, P.; Nath, L. K.; Bhuyan, B. Liquid Crystals: An Approach in Drug Delivery. Indian J. Pharm. Sci. 2019, 81, 11–21. DOI:10.4172/pharmaceutical-sciences.1000474.
  • Gonçalez, M. S.; Corrêa, M. A.; Chorilli, M. Skin Delivery of Kojic Acid-loaded Nanotechnology-based Drug Delivery Systems for the Treatment of Skin Aging. BioMed Res. Int. 2013, 272116, 1–10. DOI:10.1155/2013/271276.
  • Fujimura, A. T.; Martinez, R. M.; Pinho-Ribeiro, F. A.; Silva, A. M. L. D.; Baracat, M. M.; Georgetti, S. R.; Verri, W. A.; Chorilli, M.; Casagrande, R. Resveratrol-Loaded Liquid-Crystalline System Inhibits UVB-Induced Skin Inflammation and Oxidative Stress in Mice. J. Nat. Prod. 2016, 79, 1329–1338. DOI:10.1021/acs.jnatprod.5b01132.
  • Fonseca-Santos, B.; Satake, C. Y.; Calixto, G. M. F.; Santos, A. M.; Chorilli, M. Trans-Resveratrol-Loaded Nonionic Lamellar Liquid-Crystalline Systems: Structural, Rheological, Mechanical, Textural, and Bioadhesive Characterization and Evaluation of In Vivo Anti-inflammatory Activity. Int. J. Nanomed. 2017, 12, 6883–6893. DOI:10.2147/IJN.S138629.
  • Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S. I.; Sood, A. K.; Hua, S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015, 6, 286–213. DOI:10.3389/fphar.2015.00286.
  • Rudokas, M.; Najlah, M.; Alhnan, M. A.; Elhissi, A. Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications. Med. Princ. Pract. 2016, 25, 60–72. DOI:10.1159/000445116.
  • Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Uptated Review. Pharmaceutics 2017, 9, 12–33. DOI:10.3390/pharmaceutics9020012.
  • Nakkanti, V.; Kalepu, S. Recent Advances in Loposomal Drug Delivery. Pharm. Nanotchnol. 2015, 3, 1–21. DOI:10.2174/2211738503666150709173905.
  • Tosato, M. G.; Girón, J. V. M.; Mele, M. F. L.; Dicelio, L. Comparative Study of Transdermal Drug Delivery Systems of Resveratrol: High Efficiency of Deformable Lipossomes. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 90, 356–364. DOI:10.1016/j.msec.2018.04.073.
  • Caddeo, C.; Pucci, L.; Gabriele, M.; Carbone, C.; Fernàndez-Busquets, X.; Valenti, D.; Pons, R.; Vassallo, A.; Fadda, A. M.; Manconi, M. Stability, Biocompatibility and Antioxidant Activity of PEG-modified Liposomes Containing Resveratrol. Int. J. Pharm. 2018, 538, 40–47. DOI:10.1016/j.ijpharm.2017.12.047.
  • Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H.-B. Polymeric Micelles as Drug Delivery Vehicles. RSC Adv. 2014, 4, 1728–1740. DOI:10.1039/c3ra47370h.
  • Tanbour, R.; Martins, A. M.; Pitt, W. G.; Husseini, G. A. Drug Delivery Systems Based on Polymeric Micelles and Ultrasound: A Review. Curr. Pharm. Des. 2016, 22, 1–13. DOI:10.2174/1381612822666160217125215.
  • Yotsumoto, K.; Ishii, K.; Kokubo, M.; Yasuoka, S. Improvement of the Skin Penetration of Hydrophobic Drugs by Polymeric Micelles. Int. J. Pharm. 2018, 553, 132–140. DOI:10.1016/j.ijpharm.2018.10.039.
  • Li, T.; Wong, W.; Chen, L.; Su, C.; Chen, L.; Liu, D.; Ho, H.; Sheu, M. Physical and Pharmacokinetic Characterizations of Trans-resveratrol (t-Rev) Encapsulated wit Self-assembling Lecithin-based Mixed Polymeric Micelles (sαLMPMs). Sci. Rep. 2017, 7, 10674. DOI:10.1038/s41598-017-11320-y.
  • Kumar, A.; Mahajan, S.; Bhandari, N. Microspheres: A Review. World J. Pharm. Pharm. Sci. 2017, 6, 724–740. DOI:10.20959/wjpps20174-8942.
  • Pignatello, R.; Pecora, T. M. G.; Cutuli, G. G.; Catalfo, A.; De Guidi, G.; Ruozi, B.; Tosi, G.; Cianciolo, S.; Musumeci, T. Antioxidant Activity and Photostability of Trans-resveratrol Acrylate Microspheres. Pharm. Dev. Technol. 2019, 24, 222–234. DOI:10.1080/10837450.2018.1455697.
  • Bi, Y.; Wu, C.; Xin, M.; Bi, S.; Yan, C.; Hao, J.; Li, F.; Li, S. Facile Large-Scale Preparation of Mesoporous Silica Microspheres with the Assistance of Sucrose and Their Drug Loading and Releasing Properties. Int. J. Pharm. 2016, 500, 77–84. DOI:10.1016/j.ijpharm.2016.01.027.
  • Min, J. Y.; Ahn, S. I.; Lee, Y. K.; Kwak, H. S.; Chang, Y. H. Optimized Conditions to Produce Water-in-oil-in-water Naanoemulsion and Spay-dried Naanocapsule of Red Ginseng Extract. Food Sci. Technol. 2018, 38, 485–492. DOI:10.1590/fst.09517.
  • Chen, B. H.; Inbaraj, B. S. Nanoemulsion and Nanolipossome Based Strategies for Improving Anthocyanin Stability and Bioavailability. Nutrients 2019, 11, 1052–1074. DOI:10.3390/nu11051052.
  • Oliveira, M. B.; Calixto, G.; Graminha, M.; Cerecetto, H.; González, M.; Chorilli, M. Development, Characterization, and in vitro Biological Performance of Fluconazole-loaded Microemulsions for the Topical Treatment of Cuteaneous Leshmaniasis. BioMed Res. Int. 2015, 396894, 1–12. DOI:10.1155/2015/396894.
  • Teixe-Roig, J.; Oms-Oliu, G.; Velderrain-Rodriguez, G. R.; Odriozola-Serrano, I.; Martin-Belloso, O. The Effect of Sodium Carboxymethylcellulose on the Stability and Bioaccessibility of Anthocyanin Water-in-oil-in-water Emulsions. Food Bioprocess Technol. 2018, 11, 2229–2241. DOI:10.1007/s11947-018-2181-7.
  • Nasr, M. Development of an Optimized Hyaluronic Acid-based Lipidic Nanoemulsion Co-encapsulating Two Polyphenols for Nose to Brain Delivery. Drug Deliv. 2015, 23, 1444–1452. DOI:10.3109/10717544.2015.1092619.
  • Lv, X.; Cong, Z.; Liu, Z.; Ma, X.; Xu, M.; Tian, Y.; Zhang, X.; Xu, B.; Zhang, J.; Tang, Z. Improvement of the Solubility, Photostability, Antioxidant Activity and UVB Photoprotection of Trans-resveratrol by Essential Oil Based Microemulsions for Topical Application. J. Drug Deliv. Sci. Technol. 2018, 48, 346–354. DOI:10.1016/j.jddst.2018.10.017.
  • Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid Lipidic Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation, and Application. Adv. Pharm. Bull. 2015, 5, 305–313. DOI:10.15171/apb.2015.043.
  • Lombardo, D.; Kiselev, M. A.; Caccamo, M. T. Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. 2019, 3702518, 1–26. DOI:10.1155/2019/3702518.
  • Bassi, P.; Kaur, G. Polymeric Films as a Promising Carrier for Bioadhesive Drug Delivery: Development, Characterization and Optmization. Sudi Pharm. J. 2017, 25, 32–43. DOI:10.1016/j.jsps.2015.06.003.
  • Karki, S.; Kim, H.; Na, S. J.; Shin, D.; Jo, K.; Lee, J. Thin Films as an Emerging Platform for Drug Delivery. Asian J. Pharm. Sci. II 2016, 11, 559–574. DOI:10.1016/j.ajps.2016.05.004.
  • Godbole, A.; Joshi, R.; Sontake, M. Oral Thin Film Technology – Current Challenges and Future Scope. Int. J. Adv. Res. Eng. Appl. Sci. 2018, 7, 1–14. DOI:ISSN: 2278-6252.
  • Zhang, D.; Cao, Y.; Ma, C.; Chen, S.; Li, H. Development of Water-triggered Chitosan Film Containing Glucamylase for Sustained Release of Resveratrol. J. Agric. Food Chem. 2017, 65, 2503–2512. DOI:10.1021/acs.jafc.6b05380.
  • Ghule, P. J.; Guilhotra, R.; Jithan, A.; Bairagi, S.; Aher, A. Amorphous Solid Dispersion: A Promising Technique for Improving Oral Bioavailability of Poorly Water-soluble Drugs. S. Afr. Pharm. J. 2018, 85, 50–59. DOI:https://www.researchgate.net/publication/323572857.
  • Mahmoud, Z. N.; Upadhye, S. B.; Ferrizzi, D.; Rajabi-Siahboomi, A. R. In vitro Characterization of a Novel Polymeric System for Preparation of Amorphous Solid Drug Dispersions. AAPS J. 2014, 16, 685–698. DOI:10.1208/s12248-014-9590-y.
  • Chang, C.; Wong, C.; Wu, Y.; Hsu, M. Development of a Solid Dispersion System for Improving the Oral Bioavailability of Resveratrol in Rats. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 239–249. DOI:10.1007/s13318-016-0339-0.
  • Tran, P.; Pyo, Y. C.; Kim, D. H.; Lee, S. E.; Kim, J. K.; Park, J. S. Overview of the Manufacturing Methods of Solid Dispersion Technology for Improving the Solubility of Poorly Water-soluble Drugs and Application to Anticancer Drugs. Pharmaceutics 2019, 11, 132–158. DOI:10.3390/pharmaceutics11030132.
  • Coskun, O. Separation Techniques: Chromatography. North Clin. Instanb. 2016, 3, 156–160. DOI:10.14744/nci.2016.32757.
  • Silva, L. F.; Guerra, C. C.; Czermainski, A. B. C.; Ferrari, L.; Bergold, A. M. Validation of Chromatographic Method to Routine Analysis of Trans-resveratrol and Quercetin in Red Wines. Pesq. Agropec. Bras. 2017, 51, 335–343. DOI:10.1590/s0100-204x2017000500007.
  • Sáez, V.; Gayoso, C.; Riquelme, S.; Pérez, J.; Vergara, C.; Mardones, S.; Bare, D. C18 Core-Shell Column with in-series Absorbance and Fluorescence Detection for Simultaneous Monitoring of Changes in Stilbenoid and Proanthcyanidin Concentrations During Grape Cane Storage. J. Chromatogr. B 2018, 1074, 70–78. DOI:10.1016/j.jchromb.2017.12.028.
  • Qin, J.; Zheng, J.; Fang, X.; Yan, G. Detection of Resveratrol by Phosphorescence Quantum Dots Without Conjunction and Mutual Impact Exploration. RSC Adv. 2018, 8, 25997–26003. DOI:10.1039/C8RA02630K.
  • Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Narciso, V.; Tenore, G. C.; Novellino, E. Effects of Grape Pomace Polyphenolic Extract (Taurisolo®) in Reducing TMAO Serum Levels in Humans: Preliminary Results from a Randomized, Placebo-controlled, Cross-over Study. Nutreints 2019, 11, 139–150. DOI:10.3390/nu11010139.
  • Glavnik, V.; Vovk, I.; Albreht, A. High Performance Thin-Layer Chromatography-Mass Spectrometry of Japanese Knotweed Flavan-3-ols and Proanthocyanidins on Silica Gel Plates. J. Chromatogr. A 2017, 1482, 97–108. DOI:10.1016/j.chroma.2016.12.059.
  • Moreton-Lamas, E.; Lago-Crespo, M.; Lage-Yusty, M. A.; López-Hernandez, J. Comparison of Methods for Analysis of Resveratrol in Dietary Vegetable Supplements. Food Chem. 2017, 224, 219–223. DOI:10.1016/j.foodchem.2016.12.060.
  • Mathias, P.; Connor, T. H.; B’Hymer, C. A Review of High Performance Liquid Chromatographic-Mass Spectrometric Urinary Methods for Anticancer Drug Exposure of Health Care Workers. J. Chromatogr. B 2017, 1060, 316–324. DOI:10.1016/j.jchromb.2017.06.028.
  • Malviya, R.; Bansal, V.; Pal, O. P.; Sharma, P. K. High Performance Liquid Chromatography: A Short Review. J. Global Pharma Technol. 2010, 2, 22–26. DOI:
  • Thammana, M. A Review on High Performance Liquid Chromatography (HPLC). Res. Rev. J. Pharm. Anal. 2016, 5, 22–29. DOI:ISSN: 2320-0812
  • Zuvela, P.; Skoczylas, M.; Liu, J. J.; Baczek, T.; Beczek, T.; Kaliszan, R.; Wong, M. W.; Buszewski, B. Column Characterization and Selection Systems in Reversed-phase High-Performance Liquid Chromatography. Chem. Rev. 2019, 119, 3674–3729. DOI:10.1021/acs.chemrev.8b00246.
  • Pravallika, S. Gas Chromatography A Mini Review. Res. Rev. J. Pharm. Anal. 2016, 5, 55–63. ISSN: 2320-0812.
  • Al-Hubaye, A. F.; Hameed, I. H.; Kadhim, M. J. A Review: Uses of Gas Chromatography-Mass Spectrometry (GC-MS) Technique for Analysis of Bioactive Natural Compounds of Some Plants. Int. J. Toxicol. Pharmacol. Res. 2017, 9, 81–85. DOI:10.25258/ijtpr.v9i01.9042.
  • Bhardwaj, S. K.; Dwivedi, K.; Agarwal, D. D. A Review: CG Method Development and Validation. Int. J. Anal. Bioanal. Chem. 2016, 6, 1–7. ISSN-2231-5012.
  • Sonia, K.; Shree, B. B.; Lakshmi, K. S. L. HPTLC Method Development and Validation: An Overview. J. Pharm. Sci. Res. 2017, 9, 652–657. DOI:317754072.
  • Robinson, K.; Mock, C.; Liang, D. Pre-Formulation Studies of Resveratrol. Drug Dev. Ind. Pharm. 2015, 41, 1464–1469. DOI:10.3109/03639045.2014.958753.10.
  • Plauth, A.; Geikowski, A.; Cichon, S.; Wowro, S. J.; Liedgens, L.; Rousseau, M.; Weidner, C.; Fuhr, L.; Kliem, M.; Jenkins, G.; et al. Data of Oxygen- and pH-dependent Oxidation of Resvratrol. Data Brief 2016, 9, 433–437. DOI:0.1016/j.dib.2016.09.012.11. DOI:10.1016/j.dib.2016.09.012.
  • Menet, M.; Baron, S.; Taghi, M.; Diestra, R.; Dargère, D.; Laprévote, O.; Nivet-Antoine, V.; Beaudeux, J.; Bédarida, T.; Cattart, C. Distribution of Trans-resveratrol and its Matabolites After Acute or Sustained Administration in Mouse Heart, Brain, and Liver. Mol. Nutr. Food. Res 2017, 60, 1–12. DOI:10.1002/mnfr.201600686.
  • Saifutdinov, R. G.; Larina, L. I.; Vakul’skaya, T. I.; Voronkov, M. G. ElectronParamagnetic Resoance; Kluwer Acad. Pub.: Moscow; 2002.
  • Valeur, B.; Berberan-Santos, M. N. Molecular Fluorescence: Principle and Applications, 2nd ed.; Wiley VCH Verlag GmbH & Co. KGaA: Weinheim, Germany; 2012. DOI:10.1002/9783527650002.
  • Santofimia-Castaño, P.; Salido, G. M.; Gonzalez, A. Interferences of Resveratrol with Fura-2-derived Fluorescence in Intracellular Free-Ca2+ Concentration Determinations. Cytotechnology 2016, 68, 1369–1380. DOI:10.1007/s10616-015-9898-1.
  • Balanc, B. D.; Ota, A.; Djordjevic, V. B.; Sentjurc, M.; Nedovic, V. A.; Bugarski, B. M.; Ulrih, N. P. Resveratrol-Loaded Liposomes: Interaction of Resveratrol with Phospholipids. Eur. J. Lipid Sci. Technol. 2015, 117, 1615–1626. DOI:10.1002/ejlt.201400481.14.
  • Bunaciu, A. A.; Aboul-Enein, H. Y.; Fleschin, S. Recent Applications of Fourier Transform Infrared Spectrometry in Herbal Medicine Analysis. Appl. Spectrosc. Rev. 2011, 42, 251–260. DOI:10.1080/05704928.2011.565532.
  • Istenic, K.; Balanc, B. D.; Djordjevic, V. B.; Bele, M.; Nedovic, V. A.; Bugarski, B. M.; Ulrih, N. P. Encapsulation of Resveratrol into Ca-alginate Submicron Particles. J. Food Eng. 2015, 167, 196–203. DOI:10.1016/j.jfoodeng.2015.04.007.
  • Ren, X.; Hou, T.; Liang, Q.; Zhang, X.; Hu, D.; Xu, B.; Chen, X.; Chalamaiah, M.; Ma, H. Effects of Frequency Ultrasound on the Properties of Zein-Chitosan Complex Coacervation for Resveratrol Encapsulation. Food Chem. 2019, 279, 223–230. DOI:10.1016/j.foodchem.2018.11.025.
  • Thompson, J. M. Infrared Spectroscopy. Jenny Stanford Publishing: Singapore; 2018.
  • Roggo, Y.; Chalus, P.; Maurer, L.; Lema-Martinez, C.; Edmond, A.; Jent, N. A Review of Near Infrared Spectroscopy and Chemometrics in Pharmaceutical Technologies. J. Pharm. Biomed. Anal. 2007, 44, 683–700. DOI:10.1016/j.jpba.2007.03.023.
  • Wightman, E. L.; Haskell-Ramsay, C. F.; Reay, J. L.; Williamson, G.; Dew, T.; Zhang, W.; Kennedy, D. O. The Effects of Chronic Trans-resveratrol Supplementation on Aspects of Cognitive Function, Mood, Sleep, Health and Cerebral Blood Flow in Healthy Young Humans. Br. J. Nutr. 2016, 1, 1–11. DOI:10.1017/S000711451500.
  • Hatzakis, E. Nuclear Magnetic Resonance (NMR) Spectroscopy in Food Science: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 189–222. DOI:10.1111/1541-4337.12408.
  • Younis, S.; Hougaard, A.; Vestergaard, M. B.; Larsson, H. B. W.; Ashina, M. Migraine and Megnetic Nuclear Resonance Espectroscopy: A Systematic Review. Curr. Opin. 2017, 30, 1–17. DOI:10.1097/WCO.0000000000000436.
  • Ares, A. M.; Soto, M. E.; Nozal, M. J.; Bernal, J. L.; Higes, M.; Bernal, J. Determination of Resveratrol and Piceid Isomers in Bee Pollen by Liquid Chromatography Coupled to Electroscopy Ionization-mass Spectrometry. Food Anal. Methods 2015, 8, 1565–1575. DOI:10.1007/s12161-014-0048-8.
  • Camont, L.; Cottart, C.-H.; Rhayem, Y.; Nivet-Antoine, V.; Djelidi, R.; Collin, F.; Beaudeux, J.-L.; Bonnefont-Rousselot, D. Simple Spectrophotometric Assessment of the Trans/Cis-resveratrol Ratio in Aqueous Solutions. Ana.l Chim. Acta 2009, 634, 121–128. DOI:10.1016/j.aca.2008.12.003.
  • Sivakumar, B.; Murugan, R.; Baskaran, A.; Khadangale, B. P.; Murugan, S.; Palanisamy, U.; Senthilkumar, U. P. Identification and Characterization of Process-related Impurities of Trans-resveratrol. Sci. Pharm. 2013, 81, 683–695. DOI:10.3797/scipharm.1301-17.
  • Gabaston, J.; Leborne, C.; Waffo-Teguo, P.; Valls, J.; Pinto, A. P.; Richard, T.; Cluzet, S.; Mérillon, J. Wood and Roots of Major Grapevine Cultivars and Rootstocks: A Comparative Analysis of Stilbenes by UHPLC-DAD-MS/MS and NMR. Phytochem. Anal. 2019, 30, 320–331. DOI:10.1002/pca.2815.2.
  • Rostron, P.; Gaber, S.; Gaber, D. Raman Spectroscopy, Review. Int. J. Eng. Technol. Res. 2016, 6, 50–66. DOI:
  • Bumbrah, G. S.; Sharma, R. M. Raman Spectroscopy – Basic Principle, Instrumentation and Selected Applications for the Characterization of Drugs of Abuse. Egypt. J. Forensic Sci. 2016, 6, 209–215. DOI:10.1016/j.ejfs.2015.06.001.
  • Zu, Y.; Overby, H.; Ren, G.; Fan, Z.; Zhao, L.; Wang, S. Resveratrol Liposomes and Lipid Nanocarriers: Comparison of Characteristics and Inducing Browning of White Adipocytes. Colloids Surf. B Biointerfaces 2018, 164, 414–423. DOI:10.1016/j.colsurfb.2017.12.044.
  • Stodghill, S. P. Thermal Analysis – A Review of Techniques and Applications in the Pharmaceutical Sciences. Am. Pharm. Rev 2010, 13. In: <https://www.americanpharmaceuticalreview.com/Featured-Articles/36776-Thermal-Analysis-A-Review-of-Techniques-and-Applications-in-the-Pharmaceutical-Sciences/>.
  • Byrn, S. R.; Zografi, G.; Chen, X. Differential Scanning Calorimetry and Thermogravimetric Analysis. In Solid State Properties of Pharmaceutical Materials; Hoboken, New Jersey: Wiley; 2017, p. 124–142 DOI:10.1002/9781119264408.ch10.
  • Arévalo, A. M. Z.; Ortega, G. C. C.; Lozada, W. A. V.; Ariza, I. E. P.; Bautista, M. M. C.; Ríos, J. S. V. Conceptual Approach to Thermal Analsis and its Mains Applications. Prospect 2017, 15, 117–125. DOI:10.15665/rp.v15i2.1166.
  • Silva, R. C.; Teixeira, J. A.; Nunes, W. D. G.; Zangaro, G. A. C.; Pivatto, M.; Caires, F. J.; Ionashiro, M. Resveratrol: A Thermal Study. Food Chem. 2017, 237, 561–565. DOI:10.1016/j.foodchem.2017.05.146.
  • Dutra, L. A.; Heidenreich, D.; Silva, D. B.; Chin, C. M.; Knapp, S.; Santos, J. L. Dietary Compound Resveratrol is a PAN-BET Bromodomain Inhibitor. Nutrients 2017, 9, 1172–1180. DOI:10.3390/nu9111172.
  • Porcu, O. M. The Incorporative of UV-Vis Spectroscopy: Application in Food Products Characterization. Lupine Publ. 2018, 1, 59–63. DOI:10.32474.
  • Verma, G.; Mishra, M. Development and Optimization of UV-Vis Spectroscopy – A Review. World J. Pharm. Res. 2018, 7, 1170–1180. DOI:10.20959/wjpr201811-12333.
  • Bancuta, O.; Chillian, A.; Bancuta, I.; Ion, R.; Setnescu, R.; Setnescu, T.; Gheboianu, A.; Lungulescu, M. FT-IR and UV-Vis Characterization of Grape Extracts Used as Antioxidants in Polymers. Rev. Roum. Chim. 2015, 60, 571–577. DOI:http://web.icf.ro/rrch/.
  • Kumar, S.; Lather, V.; Pandita, D. Stability Indicating Simplified HPLC Method for Simultaneous Analysis of Resveratrol and Quercetin in Nanoparticles and Human Plasma. Food Chem. 2016, 197, 959–964. DOI:10.1016/j.foodchem.2015.11.078.
  • Kumar, R.; Kaur, K.; Uppal, S.; Mehta, S. K. Ultrasound Processed Nanoemulsion: A Comparative Approach Between Resveratrol and Resveratrol Cyclodextrin Inclusion Complex to Study its Biding Interactions, Antioxidant Activity and UV Light Stability. Ultrasonics Sonochem. 2017, 37, 478–489. DOI:10.1016/j.ultsonch.2017.02.004.
  • Vijayalakshmi, R.; Ramya, Y. N. S.; Dhanaraju, M. D. Method Development for Quantification of Oxidation Complexes of Nadolol and Resveratrol by Visible Spectrophotometry. Int. J. Pharm. Pharm. Sci. 2015, 7, 304–307. ISSN: 0975-1491.
  • Scholz, F. Voltammetric Techniques of Analysis: The Essentials. Chem. Texts 2015, 17, 1–24. DOI:10.1007/s40828-015-0016-y.
  • Batchelor-McAuley, C.; Kätelhön, E.; Barnes, E. O.; Compton, R. G.; Laborda, E.; Molina, A. Recent Advances in Voltammetry. Chem. Open 2015, 4, 224–260. DOI:10.1002/open.201500042.
  • Liu, L.; Zhou, Y.; Kang, Y.; Huang, H.; Li, C.; Xu, M.; Ye, B. Electrochemical Evaluation of Trans-resveratrol Levels in Red Wine Based on the interaction Between Resveratrol and Graphene. J. Anal. Met. Chem. 2017, 2017, 57499025. DOI:10.1155/2017/5749025.
  • Biçer, E.; Özdemir, S.; Güder, A.; Korkmaz, H. Investigation of the Interaction of Resveratrol with Free Radical Diphenyllpicrylhydrazyl at Different pHs by Cyclic Voltammetry: Correlation between Antioxidant Activity and Association Complex Constant. Rus. J. Electrochem. 2014, 50, 1170–1176. ISSN: 1023-1935.
  • Mugo, S. M.; Edmunds, B. J.; Berg, D. J.; Gill, N. K. An Integrated Carbon Entrapped Molecularly Imprinted Polymer (MIP) Electrode for Voltammetric Detection of Resveratrol in Wine. Anal. Methods 2015, 7, 9092–9099. DOI:10.1039/C5AY01799H.
  • Bunaciu, A. A.; Udriştioiu, E. g.; Aboul-Enein, H. Y. X-Ray Diffraction: Instrumentation and Applications. Crit. Rev. Anal. Chem. 2015, 45, 289–299. DOI:10.1080/10408347.2014.949616.
  • Giannini, C.; Ladisa, M.; Altamura, D.; Siliq, D.; Sibillano, T.; Caro, L. D. X-Ray Diffraction: A Powerful Technique for the Multiple-length-scale Structural Analysis of Nanomaterials. Crystals 2016, 6, 87–109. DOI:10.3390/cryst6080087.
  • Liu, Y.; Fan, Y.; Gao, L.; Zhang, Y.; Yi, J. Enhanced pH and Thermal Stability, Solubility and Antioxidant Activity of Resveratrol by Nanocomplexation with α-lactalbumin. Food Funct. 2018, 9, 4781–4790. DOI:10.1039/C8FO01172A.
  • Lakashman, R.; Campbell, J.; Ukani, G.; Beringhs, A. O.; Selvaraju, V.; Thirunavukkarasu, M.; Lu, X.; Palesty, A.; Mulik, N. Evaluation of Dermal Tissue Regeneration using Resveratrol Loaded Fibrous Matrix in a Preclinical Mouse Model of Full-thickness Ischemic Wound. Int. J. Pharm. 2015, 58, 177–186. DOI:10.1016/j.ijpharm.2019.01.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.