4,009
Views
96
CrossRef citations to date
0
Altmetric
Review Article

Recent Progress on Uric Acid Detection: A Review

, &
Pages 359-375 | Published online: 12 Jul 2019

References

  • Scheele, K. W. Examen Chemicum Calculi Urinarii. Opuscula 1776, 2, 73–79.
  • Lakshmi, D.; Whitcombe, M. J.; Davis, F.; Sharma, P. S.; Prasad, B. B. Electrochemical Detection of Uric Acid in Mixed and Clinical Samples: A Review. Electroanalysis 2011, 23, 305–320. DOI:10.1002/elan.201000525.
  • Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of Uric Acid Metabolism and Excretion. Int. J. Cardiol. 2016, 213, 8–14. DOI:10.1016/j.ijcard.2015.08.109.
  • Perez-Ruiz, F.; Dalbeth, N.; Bardin, T. A Review of Uric Acid, Crystal Deposition Disease, and Gout. Adv. Ther. 2015, 32, 31–41. DOI:10.1007/s12325-014-0175-z.
  • Kuo, C.-F.; Grainge, M. J.; Zhang, W.; Doherty, M. Global Epidemiology of Gout: prevalence, Incidence and Risk Factors. Nat. Rev. Rheumatol. 2015, 11, 649–662. DOI:10.1038/nrrheum.2015.91.
  • Dalbeth, N.; Merriman, T. R.; Stamp, L. K. Gout. The Lancet 2016, 388, 2039–2052. DOI:10.1016/S0140-6736(16)00346-9.
  • Gk, G.; Ec, T.; Am, K.; G, D. A. Uric Acid and Oxidative Stress. Curr. Pharm. Des. 2005, 11, 4145–4151.
  • Tao, L.; Li, D.; Li, Y.; Shi, X.; Wang, J.; Rao, C.; Zhang, Y. Designing a Mutant Candida Uricase with Improved Polymerization State and Enzymatic Activity. Protein Eng. Des. Sel. 2017, 30, 753–759. DOI:10.1093/protein/gzx056.
  • Maxwell, S. R.; Thomason, H.; Sandler, D.; Leguen, C.; Baxter, M. A.; Thorpe, G. H.; Jones, A. F.; Barnett, A. H. Antioxidant Status in Patients with Uncomplicated Insulin-Dependent and Non-Insulin-Dependent Diabetes Mellitus. Eur. J. Clin. Invest. 1997, 27, 484–490.
  • Ames, B. N.; Cathcart, R.; Schwiers, E.; Hochstein, P. Uric Acid Provides an Antioxidant Defense in Humans against Oxidant- and Radical-Caused Aging and Cancer: A Hypothesis. Proc. Natl. Acad. Sci. 1981, 78, 6858–6862. DOI:10.1073/pnas.78.11.6858.
  • Becker, B. F. Towards the Physiological Function of Uric Acid. Free Radic. Biol. Med. 1993, 14, 615–631.
  • Itahana, Y.; Han, R.; Barbier, S.; Lei, Z.; Rozen, S.; Itahana, K. The Uric Acid Transporter SLC2A9 is a Direct Target Gene of the Tumor Suppressor p53 Contributing to Antioxidant Defense. Oncogene 2015, 34, 1799–1810. DOI:10.1038/onc.2014.119.
  • Liu, J.; Xu, C.; Ying, L.; Zang, S.; Zhuang, Z.; Lv, H.; Yang, W.; Luo, Y.; Ma, X.; Wang, L.; et al. Relationship of Serum Uric Acid Level with Non-Alcoholic Fatty Liver Disease and Its Inflammation Progression in Non-Obese Adults. Hepatol. Res. 2017, 47, E104–E112. DOI:10.1111/hepr.12734.
  • Perticone, M.; Tripepi, G.; Maio, R.; Cimellaro, A.; Addesi, D.; Baggetta, R.; Sciacqua, A.; Sesti, G.; Perticone, F. Risk Reclassification Ability of Uric Acid for Cardiovascular Outcomes in Essential Hypertension. Int. J. Cardiol. 2017, 243, 473–478. DOI:10.1016/j.ijcard.2017.05.051.
  • Prasad, M.; Matteson, E. L.; Herrmann, J.; Gulati, R.; Rihal, C. S.; Lerman, L. O.; Lerman, A. Uric Acid is Associated with Inflammation, Coronary Microvascular Dysfunction, and Adverse Outcomes in Postmenopausal Women. Hypertens 2017, 69, 236–242. DOI:10.1161/HYPERTENSIONAHA.116.08436.
  • Pellecchia, M. T.; Savastano, R.; Moccia, M.; Picillo, M.; Siano, P.; Erro, R.; Vallelunga, A.; Amboni, M.; Vitale, C.; Santangelo, G.; Barone, P. Lower Serum Uric Acid Is Associated with Mild Cognitive Impairment in Early Parkinson's Disease: A 4-Year Follow-up Study. J. Neural Transm. 2016, 123, 1399–1402. DOI:10.1007/s00702-016-1622-6.
  • Kubota, Y.; McAdams-DeMarco, M.; Folsom, A. R. Serum Uric Acid, Gout, and Venous Thromboembolism: The Atherosclerosis Risk in Communities Study. Thromb. Res. 2016, 144, 144–148. DOI:10.1016/j.thromres.2016.06.020.
  • Kanbay, M.; Jensen, T.; Solak, Y.; Le, M.; Roncal-Jimenez, C.; Rivard, C.; Lanaspa, M. A.; Nakagawa, T.; Johnson, R. J. Uric Acid in Metabolic Syndrome: From an Innocent Bystander to a Central Player. Eur. J. Intern. Med. 2016, 29, 3–8. DOI:10.1016/j.ejim.2015.11.026.
  • Cantor, J. R.; Abu-Remaileh, M.; Kanarek, N.; Freinkman, E.; Gao, X.; Louissaint, A.; Lewis, C. A.; Sabatini, D. M. Physiologic Medium Rewires Cellular Metabolism and Reveals Uric Acid as an Endogenous Inhibitor of UMP Synthase. Cell. 2017, 169, 258–272. DOI:10.1016/j.cell.2017.03.023.
  • Claverie-Martin, F.; Trujillo-Suarez, J.; Gonzalez-Acosta, H.; Aparicio, C.; Justa Roldan, M. L.; Stiburkova, B.; Ichida, K.; Martín-Gomez, M. A.; Herrero Goñi, M.; Carrasco Hidalgo-Barquero, M.; et al. URAT1 and GLUT9 Mutations in Spanish Patients with Renal Hypouricemia. Clin. Chim. Acta 2018, 481, 83–89. DOI:10.1016/j.cca.2018.02.030.
  • Vidanapathirana, D. M.; Jayasena, S.; Jasinge, E.; Stiburkova, B. A Heterozygous Variant in theSLC22A12gene in a Sri Lanka Family Associated with Mild Renal Hypouricemia. BMC Pediatr. 2018, 18, 210. DOI:10.1186/s12887-018-1185-9.
  • Pileggi, V. J.; Di, G. J.; Wybenga, D. R. A One-Tube Serum Uric Acid Method Using Phosphotungstic Acid as Protein Precipitant and Color Reagents. Clin. Chim. Acta 1972, 37, 141–149. DOI:10.1016/0009-8981(72)90425-1.
  • Folin, O. Denis, W. A New (Colorimetric) Method for the Determination of Uric Acid in Blood. J. Biol. Chem. 1913, 13, 469–475.
  • Henry, R. J.; Sobel, C.; Kim, J. A Modified Carbonate-Phosphotungstate Method for the Determination of Uric Acid and Comparison with the Spectrophotometric Uricase Method. Am. J. Clin. Pathol. 1957, 28, 152–160. DOI:10.1093/ajcp/28.2.152.
  • Wheat, J. L. D. o. Uric Acid an Automated Phosphotungstate Method Using NaOH as the Alkali. Clin. Chem. 1968, 14, 630–636.
  • Caraway, W. T. Determination of Uric Acid in Serum by a Carbonate Method. Am. J. Clin. Pathol. 1955, 25, 840–845. DOI:10.1093/ajcp/25.7_ts.0840.
  • Norazmi, N.; Abdul Rasad, Z. R.; Mohamad, M.; Manap, H. Uric Acid Detection Using uv-Vis Spectrometer. IOP Conf. Ser: Mater. Sci. Eng. 2017, 257, 012031–012037. DOI:10.1088/1757-899X/257/1/012031.
  • Jin, D.; Seo, M.-H.; Huy, B. T.; Pham, Q.-T.; Conte, M. L.; Thangadurai, D.; Lee, Y.-I. Quantitative Determination of Uric Acid Using CdTe Nanoparticles as Fluorescence Probes. Biosens. Bioelectron. 2016, 77, 359–365. DOI:10.1016/j.bios.2015.09.057.
  • Azmi, N. E.; Rashid, A. H. A.; Abdullah, J.; Yusof, N. A.; Sidek, H. Fluorescence Biosensor Based on Encapsulated Quantum Dots/Enzymes/Solgel for Non-Invasive Detection of Uric Acid. J. Lumin. 2018, 202, 309–315. DOI:10.1016/j.jlumin.2018.05.075.
  • Wu, W.-C.; Chen, H.-Y. T.; Lin, S.-C.; Chen, H.-Y.; Chen, F.-R.; Chang, H.-T.; Tseng, F.-G. Nitrogen-Doped Carbon Nanodots Prepared from Polyethylenimine for Fluorometric Determination of Salivary Uric Acid. Microchim. Acta 2019, 186, DOI:10.1007/s00604-019-3277-0.
  • Jen, J.-F.; Hsiao, S.-L.; Liu, K.-H. Simultaneous Determination of Uric Acid and Creatinine in Urine by an Eco-Friendly Solvent-Free High Performance Liquid Chromatographic Method. Talanta 2002, 58, 711–717. DOI:10.1016/S0039-9140(02)00377-6.
  • Li, Q.; Qiu, Y.; Han, W.; Zheng, Y.; Wang, X.; Xiao, D.; Mao, M.; Li, Q. Determination of Uric Acid in Biological Samples by High Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry and Study on Pathogenesis of Pulmonary Arterial Hypertension in Pulmonary Artery Endothelium Cells. RSC Adv. 2018, 8, 25808–25814. DOI:10.1039/C7RA12702B.
  • Sun, Y. P.; Chen, J.; Qi, H. Y.; Shi, Y. P. Graphitic Carbon Nitrides Modified Hollow Fiber Solid Phase Microextraction for Extraction and Determination of Uric Acid in Urine and Serum Coupled with Gas Chromatography-Mass Spectrometry. J. Chromatogr. B 2015, 1004, 53–59. DOI:10.1016/j.jchromb.2015.09.025.
  • Li, Q. Q.; Wei, S. S.; Wu, D. H.; Wen, C. P.; Zhou, J. Urinary Metabolomics Study of Patients with Gout Using Gas Chromatography-Mass Spectrometry. Biomed Res. Int. 2018, 1, 1–9. DOI:10.1155/2018/3461572.
  • Zhao, S.; Wang, J.; Ye, F.; Liu, Y.-M. Determination of Uric Acid in Human Urine and Serum by Capillary Electrophoresis with Chemiluminescence Detection. Anal. Biochem. 2008, 378, 127–131. DOI:DOI:10.1016/j.ab.2008.04.014.
  • Tao, Y.; Zhang, X.; Wang, J.; Wang, X.; Yang, N. Simultaneous Determination of Cysteine, Ascorbic Acid and Uric Acid by Capillary Electrophoresis with Electrochemiluminescence. J. Electroanal. Chem. 2012, 674, 65–70. DOI:10.1016/j.jelechem.2012.03.009.
  • Jiang, M.; Chen, J. S. A Lable-Free ECL Biosensor for the Detection of Uric Acid Based on Au NRs@TiO2 Nanocomposite. Int. J. Electrochem. Sci. 2019, 14, 2333–2344. DOI:10.20964/2019.03.48.
  • Liu, L.; Liu, L.; Wang, Y.; Ye, B.-C. A Novel Electrochemical Sensor Based on Bimetallic Metal-Organic Framework-Derived Porous Carbon for Detection of Uric Acid. Talanta 2019, 199, 478–484. DOI:10.1016/j.talanta.2019.03.008.
  • Marie-Josee, R.; William, C.P. The Application of Quaternary Ammonium Ionic Polymers to Electroanalysis: Part 2. Voltammetric Studies with Quaternary Ammonium Functionalized Polymer Film-Coated Electrodes. Electroanalysis 1991, 3, 935–939.
  • Ghanbari, K.; Ahmadi, F. NiO Hedgehog-like Nanostructures/Au/Polyaniline Nanofibers/Reduced Graphene Oxide Nanocomposite with Electrocatalytic Activity for Non-Enzymatic Detection of Glucose. Anal. Biochem. 2017, 518, 143–153. DOI:10.1016/j.ab.2016.11.020.
  • Li, X.-L.; Li, G.; Jiang, Y.-Z.; Kang, D.; Jin, C. H.; Shi, Q.; Jin, T.; Inoue, K.; Todoroki, K.; Toyo'oka, T.; Min, J. Z. Human Nails Metabolite Analysis: A Rapid and Simple Method for Quantification of Uric Acid in Human Fingernail by High-Performance Liquid Chromatography with UV-Detection. J. Chromatogr. B 2015, 1002, 394–398. DOI:10.1016/j.jchromb.2015.08.044.
  • Ferin, R.; Pavão, M. L.; Baptista, J. Rapid, Sensitive and Simultaneous Determination of Ascorbic and Uric Acids in Human Plasma by Ion-Exclusion HPLC-UV. Clin. Biochem. 2013, 46, 665–669. DOI:10.1016/j.clinbiochem.2013.01.006.
  • Honeychurch, K. C. The Determination of Uric Acid in Human Saliva by Liquid Chromatography with Electrochemical Detection. J. Anal. Bioanal. Separ. Tech 2017, 2, 1–5.
  • Ma, Q.; Wang, Q.; Zhao, K.; Zhai, S.; Liu, S.; Liu, Z. UPLC-MS/MS Method for Determination of Uric Acid and Creatinine in Serum and Urine of Hyperuricemic Mice. Chem. J. Chin. Univ. 2013, 34, 2716–2720.
  • Erden, P. E.; Kılıç, E. A Review of Enzymatic Uric Acid Biosensors Based on Amperometric Detection. Talanta 2013, 107, 312–323. DOI:DOI:10.1016/j.talanta.2013.01.043.
  • Wang, X.; Yao, Q.; Tang, X. M.; Zhong, H. P.; Qiu, P.; Wang, X. L. A Highly Selective and Sensitive Colorimetric Detection of Uric Acid in Human Serum Based on MoS2-Catalyzed Oxidation TMB. Anal. Bioanal. Chem. 2019, 411, 943–952. DOI:10.1007/s00216-018-1524-6.
  • He, Y.; Qi, F.; Niu, X.; Zhang, W.; Zhang, X.; Pan, J. Uricase-Free on-Demand Colorimetric Biosensing of Uric Acid Enabled by Integrated CoP Nanosheet Arrays as a Monolithic Peroxidase Mimic. Anal. Chim. Acta 2018, 1021, 113–120. DOI:DOI:10.1016/j.aca.2018.02.073.
  • Liddle, L.; Seegmiller, J. E.; Laster, L. The Enzymatic Spectrophotometric Method for Determination of Uric Acid. J. Lab. Clin. Med. 1959, 54, 903–913.
  • Brown, H. The Determination of Uric Acid in Human Blood. J. Biol. Chem. 1945, 158, 123–133.
  • Trivedi, R. C.; Rebar, L.; Desai, K.; Stong, L. J. New Ultraviolet (340 nm) Method for Assay of Uric Acid in Serum or Plasma. Clin. Chem. 1978, 24, 562–566.
  • Azmi, N. E.; Ramli, N. I.; Abdullah, J.; Hamid, M. A. A.; Sidek, H.; Abd Rahman, S.; Ariffin, N.; Yusof, N. A. A Simple and Sensitive Fluorescence Based Biosensor for the Determination of Uric Acid Using H2O2-Sensitive Quantum Dots/Dual Enzymes. Biosens. Bioelectron. 2015, 67, 129–133. DOI:10.1016/j.bios.2014.07.056.
  • Yang, D.; Luo, M.; Di, J.; Tu, Y.; Yan, J. Gold Nanocluster-Based Ratiometric Fluorescent Probes for Hydrogen Peroxide and Enzymatic Sensing of Uric Acid. Mikrochim. Acta. 2018, 185, 305. DOI:10.1007/S00604-018-2823-5.
  • Çete, S.; Karpuz, G.; Yaşar, A. Preparation of a New Uric Acid Biosensor with Immobilization of Uricase upon Polypyrrole-Paratoluene Sulphonate Film. Gazi Univ. J. Sci. 2016, 29, 293–301.
  • Meng, F.; Yin, H.; Li, Y.; Zheng, S.; Gan, F.; Ye, G. One-Step Synthesis of Enzyme-Stabilized Gold Nanoclusters for Fluorescent Ratiometric Detection of Hydrogen Peroxide, Glucose and Uric Acid. Microchem. J. 2018, 141, 431–437. DOI:10.1016/j.microc.2018.06.006.
  • Fang, A.; Wu, Q.; Lu, Q.; Chen, H.; Li, H.; Liu, M.; Zhang, Y.; Yao, S. Upconversion Ratiometric Fluorescence and Colorimetric Dual-Readout Assay for Uric Acid. Biosens. Bioelectron. 2016, 86, 664–670. DOI:10.1016/j.bios.2016.07.055.
  • Bulger, H. A.; Johns, H. E. The Determination of Plasma Uric Acid. J. Biol. Chem. 1941, 140, 427–440.
  • Emerson, E. The Condensation of Aminoantipyrine. II. A New Color Test for Phenolic Compounds. J. Org. Chem. 1943, 08, 417–428. DOI:10.1021/jo01193a004.
  • Huang, S.-H.; Shih, Y.-C.; Wu, C.-Y.; Yuan, C.-J.; Yang, Y.-S.; Li, Y.-K.; Wu, T.-K. Detection of Serum Uric Acid Using the Optical Polymeric Enzyme Biochip System. Biosens. Bioelectron. 2004, 19, 1627–1633. DOI:10.1016/j.bios.2003.12.026.
  • Wang, J.; Fang, X.; Zhang, Y.; Cui, X.; Zhao, H.; Li, X.; Li, Z. A Simple and Rapid Colorimetric Probe for Uric Acid Detection Based on Redox Reaction of 3,3′,5,5′-Tetramethylbenzidine with HAuCl4. Colloids Surf. Physicochem. Eng. Aspects 2018, 555, 565–571. DOI:DOI:10.1016/j.colsurfa.2018.07.040.
  • Tang, Y. R.; Zhang, Y.; Liu, R.; Su, Y. Y.; Lu, Y. Application of NaYF4: Yb, Er Nanoparticles as Peroxidase Mimetics in Uric Acid Detection. Chin. J. Anal. Chem. 2013, 41, 330–336. DOI:10.3724/SP.J.1096.2013.20596.
  • Zhao, H.; Wang, Z.; Jiao, X.; Zhang, L.; Lv, Y. Uricase-Based Highly Sensitive and Selective Spectrophotometric Determination of Uric Acid Using BSA-Stabilized Au Nanoclusters as Artificial Enzyme. Spectrosc. Lett. 2012, 45, 511–519. DOI:10.1080/00387010.2011.649440.
  • Hu, J. L.; Lu, Q. J.; Wu, C. Y.; Liu, M. L.; Li, H. T.; Zhang, Y. Y.; Yao, S. Z. Germanium Nanoparticles: Intrinsic Peroxidase-like Catalytic Activity and Its Biosensing Application. Talanta 2019, 195, 407–413. DOI:10.1016/j.talanta.2018.11.081.
  • Lu, Q.; Deng, J.; Hou, Y.; Wang, H.; Li, H.; Zhang, Y. One-Step Electrochemical Synthesis of Ultrathin Graphitic Carbon Nitride Nanosheets and Their Application to the Detection of Uric Acid. Chem. Commun. 2015, 51, 12251–12253. DOI:10.1039/C5CC04231C.
  • Li, X.; Kong, C.; Chen, Z. Colorimetric Sensor Arrays for Antioxidant Discrimination Based on the Inhibition of the Oxidation Reaction between 3,3 ',5,5 '-Tetramethylbenzidine and Hydrogen Peroxides. Acs Appl. Mater. Interfaces 2019, 11, 9504–9509. DOI:10.1021/acsami.8b18548.
  • Deng, L.; Chen, C. G.; Zhu, C. Z.; Dong, S. J.; Lu, H. M. Multiplexed Bioactive Paper Based on GO@SiO2@CeO2 Nanosheets for a Low-Cost Diagnostics Platform. Biosens. Bioelectron. 2014, 52, 324–329. DOI:10.1016/j.bios.2013.09.005.
  • Lu, H. F.; Li, J. Y.; Zhang, M. M.; Wu, D.; Zhang, Q. L. A Highly Selective and Sensitive Colorimetric Uric Acid Biosensor Based on Cu(II)-Catalyzed Oxidation of 3,3',5,5'-Tetramethylbenzidine. Sens. Actuator B-Chem. 2017, 244, 77–83. DOI:10.1016/j.snb.2016.12.127.
  • Wang, X.; Tang, C. L.; Liu, J. J.; Zhang, H. Z.; Wang, J. Ultra-Small CuS Nanoparticles as Peroxidase Mimetics for Sensitive and Colorimetric Detection of Uric Acid in Human Serum. Chin. J. Anal. Chem. 2018, 46, E1825–E1831. DOI:10.1016/S1872-2040(17)61083-1.
  • Huang, W.; Xie, Z. Y.; Deng, Y. Q.; He, Y. 3,3',5,5'-Tetramethylbenzidine-Based Quadruple-Channel Visual Colorimetric Sensor Array for Highly Sensitive Discrimination of Serum Antioxidants. Sens. Actuator B-Chem. 2018, 254, 1057–1060. DOI:10.1016/j.snb.2017.08.005.
  • Zhang, T. L.; Sun, X. Y.; Liu, B. Synthesis of Positively Charged CdTe Quantum Dots and Detection for Uric Acid. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2011, 79, 1566–1572. DOI:10.1016/j.saa.2011.05.014.
  • Yang, F.; Yu, Z. Y.; Li, X. Y.; Ren, P. P.; Liu, G. H.; Song, Y. T.; Wang, J. Design and Synthesis of a Novel Lanthanide Fluorescent Probe (Tb-III-Dtpa-Bis(2,6-Diaminopurine)) and Its Application to the Detection of Uric Acid in Urine Sample. Spectroc. Acta Pt. A-Mol. Biomol. Spectr. 2018, 203, 461–471. DOI:10.1016/j.saa.2018.06.011.
  • Amjadi, M.; Hallaj, T.; Kouhi, Z. An Enzyme-Free Fluorescent Probe Based on Carbon dots - MnO2 Nanosheets for Determination of Uric Acid. J. Photochem. Photobiol. A-Chem. 2018, 356, 603–609. DOI:10.1016/j.jphotochem.2018.02.002.
  • Soberanes, Y.; Arvizu-Santamaria, A. G.; Machi, L.; Navarro, R. E.; Inoue, M. Fluorescent Aza-Cyclophanes Derived from Diethylenetriaminepentaacetic Acid (DTPA), and Their Complexation with Gd(III). Polyhedron 2012, 35, 130–136. DOI:10.1016/j.poly.2012.01.007.
  • Pradhan, T.; Maiti, S.; Kumar, R.; Lee, Y. H.; Kim, J. W.; Lee, J. H.; Kim, J. S. Rationally Designed Non-Enzymatic Fluorogenic 'Turn-On' Probe for Uric Acid. Dyes Pigment 2015, 121, 1–6. DOI:10.1016/j.dyepig.2015.05.001.
  • Sahoo, P.; Das, S.; Sarkar, H. S.; Maiti, K.; Uddin, M. R.; Mandal, S. Selective Fluorescence Sensing and Quantification of Uric Acid by Naphthyridine-Based Receptor in Biological Sample. Bioorg. Chem. 2017, 71, 315–324. DOI:10.1016/j.bioorg.2017.03.002.
  • Kan, J.; Pan, X.; Chen, C. Polyaniline–Uricase Biosensor Prepared with Template Process. Biosens. Bioelectron. 2004, 19, 1635–1640. DOI:10.1016/j.bios.2003.12.032.
  • Arora, K.; Sumana, G.; Saxena, V.; Gupta, R. K.; Gupta, S.; Yakhmi, J.; Pandey, M.; Chand, S.; Malhotra, B. Improved Performance of Polyaniline-Uricase Biosensor. Anal. Chim. Acta 2007, 594, 17–23. DOI:10.1016/j.aca.2007.04.068.
  • Thakur, B.; Sawant, S. N. Polyaniline/Prussian-Blue-Based Amperometric Biosensor for Detection of Uric Acid. Chempluschem 2013, 78, 166–174. DOI:10.1002/cplu.201200222.
  • Bhambi, M.; Sumana, G.; Malhotra, B. D.; Pundir, C. S. An Amperomertic Uric Acid Biosensor Based on Immobilization of Uricase onto Polyaniline-Multiwalled Carbon Nanotube Composite Film. Artif. Cell. Blood Subtit. Biotechnol. 2010, 38, 178–185. DOI:10.3109/10731191003716344.
  • Peng, B.; Cui, J.; Wang, Y.; Liu, J.; Zheng, H.; Jin, L.; Zhang, X.; Zhang, Y.; Wu, Y. CeO2-x/C/rGO Nanocomposites Derived from Ce-MOF and Graphene Oxide as a Robust Platform for Highly Sensitive Uric Acid Detection. Nanoscale 2018, 10, 1939–1945. DOI:10.1039/C7NR08858B.
  • Jiang, J.; Du, X. Sensitive Electrochemical Sensors for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid Based on Au@Pd-Reduced Graphene Oxide Nanocomposites. Nanoscale 2014, 6, 11303–11309. DOI:10.1039/C4NR01774A.
  • Zhang, F.; Wang, X.; Ai, S.; Sun, Z.; Wan, Q.; Zhu, Z.; Xian, Y.; Jin, L.; Yamamoto, K. Immobilization of Uricase on ZnO Nanorods for a Reagentless Uric Acid Biosensor. Anal. Chim. Acta 2004, 519, 155–160. DOI:10.1016/j.aca.2004.05.070.
  • Ahmad, R.; Tripathy, N.; Jang, N. K.; Khang, G.; Hahn, Y.-B. Fabrication of Highly Sensitive Uric Acid Biosensor Based on Directly Grown ZnO Nanosheets on Electrode Surface. Sensors Actuators B: Chem. 2015, 206, 146–151. DOI:DOI:10.1016/j.snb.2014.09.026.
  • Zhang, C.; Si, S.; Yang, Z. A Highly Selective Photoelectrochemical Biosensor for Uric Acid Based on Core-Shell Fe3O4@C Nanoparticle and Molecularly Imprinted TiO2. Biosens. Bioelectron. 2015, 65, 115–120. DOI:10.1016/j.bios.2014.10.013.
  • Zheng, W.; Zhao, M.; Liu, W.; Yu, S.; Niu, L.; Li, G.; Li, H.; Liu, W. Electrochemical Sensor Based on Molecularly Imprinted Polymer/Reduced Graphene Oxide Composite for Simultaneous Determination of Uric Acid and Tyrosine. J. Electroanal. Chem. 2018, 813, 75–82. DOI:DOI:10.1016/j.jelechem.2018.02.022.
  • Arora, K.; Choudhary, M.; Malhotra, B. D. Enhancing Performance of Uricase Using Multiwalled Carbon Nanotube Doped Polyaniline. Appl. Biochem. Biotechnol. 2014, 174, 1174–1187. DOI:10.1007/s12010-014-0996-x.
  • Peng, Y. G.; Zhang, D. D.; Zhang, C. X. Simultaneous Voltammetric Determination of Ascorbic Acid and Uric Acid Using a Seven-Hole Carbon Nanotube Paste Multielectrode Array. Anal. Methods 2014, 6, 8965–8972. DOI:10.1039/C4AY01029A.
  • Sun, C.-L.; Chang, C.-T.; Lee, H.-H.; Zhou, J.; Wang, J.; Sham, T.-K.; Pong, W.-F. Microwave-Assisted Synthesis of a Core-Shell MWCNT/GONR Heterostructure for the Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid. ACS Nano 2011, 5, 7788–7795. DOI:10.1021/nn2015908.
  • Veera Manohara Reddy, Y.; Sravani, B.; Agarwal, S.; Gupta, V. K.; Madhavi, G. Electrochemical Sensor for Detection of Uric Acid in the Presence of Ascorbic Acid and Dopamine Using the Poly(DPA)/SiO2@Fe3O4 Modified Carbon Paste Electrode. J. Electroanal. Chem. 2018, 820, 168–175. DOI:DOI:10.1016/j.jelechem.2018.04.059.
  • Liu, C.; Xu, Z.; Liu, L. Covalent Bonded Graphene/Neutral Red Nanocomposite Prepared by One‐Step Electrochemical Method and Its Electrocatalytic Properties toward Uric Acid. Electroanalysis 2018, 30, 1017–1021. DOI:10.1002/elan.201700817.
  • Li, Y.; Lin, X. Simultaneous Electroanalysis of Dopamine, Ascorbic Acid and Uric Acid by Poly (Vinyl Alcohol) Covalently Modified Glassy Carbon Electrode. Sens. Actuators B: Chem. 2006, 115, 134–139. DOI:DOI:10.1016/j.snb.2005.08.022.
  • Liu, A.; Honma, I.; Zhou, H. Simultaneous Voltammetric Detection of Dopamine and Uric Acid at Their Physiological Level in the Presence of Ascorbic Acid Using Poly(Acrylic Acid)-Multiwalled Carbon-Nanotube Composite-Covered Glassy-Carbon Electrode. Biosens. Bioelectron. 2007, 23, 74–80. DOI:DOI:10.1016/j.bios.2007.03.019.
  • Zhang, R.; Jin, G. D.; Chen, D.; Hu, X. Y. Simultaneous Electrochemical Determination of Dopamine, Ascorbic Acid and Uric Acid Using Poly(Acid Chrome Blue K) Modified Glassy Carbon Electrode. Sens. Actuators B: Chem. 2009, 138, 174–181. DOI:10.1016/j.snb.2008.12.043.
  • Ghanbari, K.; Hajheidari, N. ZnO–CuxO/Polypyrrole Nanocomposite Modified Electrode for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. Anal. Biochem. 2015, 473, 53–62. DOI:DOI:10.1016/j.ab.2014.12.013.
  • Dai, H.; Wang, N.; Wang, D.; Zhang, X.; Ma, H.; Lin, M. Voltammetric Uric Acid Sensor Based on a Glassy Carbon Electrode Modified with a Nanocomposite Consisting of Polytetraphenylporphyrin, Polypyrrole, and Graphene Oxide. Microchim. Acta 2016, 183, 3053–3059. DOI:10.1007/s00604-016-1953-x.
  • Hou, T.; Gai, P.; Song, M.; Zhang, S.; Li, F. Synthesis of a Three-Layered SiO2@Au Nanoparticle@Polyaniline Nanocomposite and Its Application in Simultaneous Electrochemical Detection of Uric Acid and Ascorbic Acid. J. Mater. Chem. B 2016, 4, 2314–2321. DOI:10.1039/C5TB02765A.
  • Li, Y.; Lin, H.; Peng, H.; Qi, R.; Luo, C. A Glassy Carbon Electrode Modified with MoS2 Nanosheets and Poly(3,4-Ethylenedioxythiophene) for Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine and Uric Acid. Microchim. Acta 2016, 183, 1–7.
  • Zhang, G.; He, P.; Feng, W.; Ding, S.; Chen, J.; Li, L.; He, H.; Zhang, S.; Dong, F. Carbon Nanohorns/Poly (Glycine) Modified Glassy Carbon Electrode: preparation, Characterization and Simultaneous Electrochemical Determination of Uric Acid, Dopamine and Ascorbic Acid. J. Electroanal. Chem. 2016, 760, 24–31. DOI:10.1016/j.jelechem.2015.11.035.
  • Ghanbari, K.; Hajian, A. Electrochemical Characterization of Au/ZnO/PPy/RGO Nanocomposite and Its Application for Simultaneous Determination of Ascorbic Acid, Epinephrine, and Uric Acid. J. Electroanal. Chem. 2017, 801, 466–479. DOI:10.1016/j.jelechem.2017.07.024.
  • Bai, Z.; Zhou, C.; Xu, H.; Wang, G.; Pang, H.; Ma, H. Polyoxometalates-Doped Au Nanoparticles and Reduced Graphene Oxide: A New Material for the Detection of Uric Acid in Urine. Sens. Actuators B: Chem. 2017, 243, 361–371. DOI:10.1016/j.snb.2016.11.159.
  • Prathap, M. U. A.; Srivastava, R. Tailoring Properties of Polyaniline for Simultaneous Determination of a Quaternary Mixture of Ascorbic Acid, Dopamine, Uric Acid, and Tryptophan. Sens. Actuators B: Chem. 2013, 177, 239–250. DOI:10.1016/j.snb.2012.10.138.
  • Motshakeri, M.; Travas-Sejdic, J.; Phillips, A. R. J.; Kilmartin, P. A. Rapid Electroanalysis of Uric Acid and Ascorbic Acid Using a Poly(3,4-Ethylenedioxythiophene)-Modified Sensor with Application to Milk. Electrochim. Acta 2018, 265, 184–193. DOI:10.1016/j.electacta.2018.01.147.
  • Xue, Y.; Zhao, H.; Wu, Z. J.; Li, X. J.; He, Y. J.; Yuan, Z. B. The Comparison of Different Gold Nanoparticles/Graphene Nanosheets Hybrid Nanocomposites in Electrochemical Performance and the Construction of a Sensitive Uric Acid Electrochemical Sensor with Novel Hybrid Nanocomposites. Biosens. Bioelectron. 2011, 29, 102–108. DOI:10.1016/j.bios.2011.08.001.
  • Ponnaiah, S. K.; Periakaruppan, P.; Vellaichamy, B. New Electrochemical Sensor Based on a Silver-Doped Iron Oxide Nanocomposite Coupled with Polyaniline and Its Sensing Application for Picomolar-Level Detection of Uric Acid in Human Blood and Urine Samples. J. Phys. Chem. B 2018, 122, 3037–3046. DOI:10.1021/acs.jpcb.7b11504.
  • Ghanbari, K.; Moloudi, M. Flower-like ZnO Decorated Polyaniline/Reduced Graphene Oxide Nanocomposites for Simultaneous Determination of Dopamine and Uric Acid. Anal. Biochem. 2016, 512, 91–102. DOI:10.1016/j.ab.2016.08.014.
  • Zhang, L.; Zhang, C. H.; Lian, J. Y. Electrochemical Synthesis of Polyaniline Nano-Networks on p-Aminobenzene Sulfonic Acid Functionalized Glassy Carbon Electrode Its Use for the Simultaneous Determination of Ascorbic Acid and Uric Acid. Biosens. Bioelectron. 2008, 24, 690–695. DOI:10.1016/j.bios.2008.06.025.
  • Sheikh-Mohseni, M. A.; Pirsa, S. Nanostructured Conducting Polymer/Copper Oxide as a Modifier for Fabrication of L-DOPA and Uric Acid Electrochemical Sensor. Electroanalysis 2016, 28, 2075–2080. DOI:10.1002/elan.201600089.
  • Wang, C.; Du, J.; Wang, H.; Zou, C. e.; Jiang, F.; Yang, P.; Du, Y. A Facile Electrochemical Sensor Based on Reduced Graphene Oxide and Au Nanoplates Modified Glassy Carbon Electrode for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Sens. Actuators B: Chem. 2014, 204, 302–309. DOI:10.1016/j.snb.2014.07.077.
  • Zhang, L.; Yang, D. Poly(2-Mercaptobenzothiazole) Modified Electrode for the Simultaneous Determinations of Dopamine, Uric Acid and Nitrite. Electrochim. Acta 2014, 119, 106–113. DOI:10.1016/j.electacta.2013.12.031.
  • Liu, J. C.; Xie, Y. Z.; Wang, K.; Zeng, Q. T.; Liu, R.; Liu, X. Y. A Nanocomposite Consisting of Carbon Nanotubes and Gold Nanoparticles in an Amphiphilic Copolymer for Voltammetric Determination of Dopamine, Paracetamol and Uric Acid. Microchim. Acta 2017, 184, 1739–1745. DOI:10.1007/s00604-017-2185-4.
  • Sun, C.-L.; Lee, H.-H.; Yang, J.-M.; Wu, C.-C. The Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid Using Graphene/Size-Selected Pt Nanocomposites. Biosens. Bioelectron. 2011, 26, 3450–3455. DOI:10.1016/j.bios.2011.01.023.
  • Fu, L.; Zheng, Y.; Wang, A.; Cai, W.; Deng, B.; Zhang, Z. An Electrochemical Sensor Based on Reduced Graphene Oxide and ZnO Nanorods-Modified Glassy Carbon Electrode for Uric Acid Detection. Arab. J. Sci. Eng. 2016, 41, 135–141. DOI:10.1007/s13369-015-1621-1.
  • Zhu, Q.; Bao, J.; Huo, D.; Yang, M.; Hou, C.; Guo, J.; Chen, M.; Fa, H.; Luo, X.; Ma, Y. 3D Graphene Hydrogel – Gold Nanoparticles Nanocomposite Modified Glassy Carbon Electrode for the Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Sens. Actuators B: Chem. 2017, 238, 1316–1323. DOI:10.1016/j.snb.2016.09.116.
  • Zhang, D.; Li, L.; Ma, W.; Chen, X.; Zhang, Y. Electrodeposited Reduced Graphene Oxide Incorporating Polymerization of l-Lysine on Electrode Surface and Its Application in Simultaneous Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid. Mater. Sci. Eng. C 2017, 70, 241–249. DOI:10.1016/j.msec.2016.08.078.
  • Kuila, T.; Bose, S.; Khanra, P.; Mishra, A. K.; Kim, N. H.; Lee, J. H. Recent Advances in Graphene-Based Biosensors. Biosens. Bioelectron. 2011, 26, 4637–4648. DOI:10.1016/j.bios.2011.05.039.
  • Zhou, M.; Zhai, Y.; Dong, S. Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Anal. Chem. 2009, 81, 5603–5613. DOI:10.1021/ac900136z.
  • Lee, C.-S.; Yu, S. H.; Kim, T. H. One-Step Electrochemical Fabrication of Reduced Graphene Oxide/Gold Nanoparticles Nanocomposite-Modified Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid. Nanomaterials 2017, 8, 17. DOI:10.3390/nano8010017.
  • Li, S. M.; Wang, Y. S.; Hsiao, S. T.; Liao, W. H.; Lin, C. W.; Yang, S. Y.; Tien, H. W.; Ma, C. C. M.; Hu, C. C. Fabrication of a Silver Nanowire-Reduced Graphene Oxide-Based Electrochemical Biosensor and Its Enhanced Sensitivity in the Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. J. Mater. Chem. C 2015, 3, 9444–9453. DOI:10.1039/C5TC01564B.
  • Teymourian, H.; Salimi, A.; Khezrian, S. Fe3O4 Magnetic Nanoparticles/Reduced Graphene Oxide Nanosheets as a Novel Electrochemical and Bioeletrochemical Sensing Platform. Biosens. Bioelectron. 2013, 49, 1–8. DOI:10.1016/j.bios.2013.04.034.
  • Deng, K. Q.; Zhou, J. H.; Li, X. F. Noncovalent Nanohybrid of Cobalt Tetraphenylporphyrin with Graphene for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid. Electrochim. Acta 2013, 114, 341–346. DOI:10.1016/j.electacta.2013.09.164.
  • Zhang, X.; Zhang, Y.-C.; Ma, L.-X. One-Pot Facile Fabrication of Graphene-Zinc Oxide Composite and Its Enhanced Sensitivity for Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine and Uric Acid. Sens. Actuators B: Chem. 2016, 227, 488–496. DOI:DOI:10.1016/j.snb.2015.12.073.
  • Zhang, W.; Jin, X.; Chai, H.; Diao, G.; Piao, Y. 3D Hybrids of Interconnected Porous Carbon Nanosheets/Vertically Aligned Polyaniline Nanowires for High-Performance Supercapacitors. Adv. Mater. Interfaces 2018, 5, 1800106. DOI:10.1002/admi.201800106.
  • Xiong, C.; Zhang, T. F.; Kong, W. Y.; Zhang, Z. X.; Qu, H.; Chen, W.; Wang, Y. B.; Luo, L. B.; Zheng, L. ZIF-67 Derived Porous Co3O4 Hollow Nanopolyhedron Functionalized Solution-Gated Graphene Transistors for Simultaneous Detection of Glucose and Uric Acid in Tears. Biosens. Bioelectron. 2018, 101, 21–28. DOI:10.1016/j.bios.2017.10.004.
  • Krishnamoorthy, K.; Sudha, V.; Kumar, S. M. S.; Thangamuthu, R. Simultaneous Determination of Dopamine and Uric Acid Using Copper Oxide Nano-Rice Modified Electrode. J. Alloys Compd. 2018, 748, 338–347. DOI:10.1016/j.jallcom.2018.03.118.
  • Pramoda, K.; Moses, K.; Maitra, U.; Rao, C. N. R. Superior Performance of a MoS2-RGO Composite and a Borocarbonitride in the Electrochemical Detection of Dopamine, Uric Acid and Adenine. Electroanalysis 2015, 27, 1892–1898. DOI:10.1002/elan.201500021.
  • Sun, H. F.; Chao, J.; Zuo, X. L.; Su, S.; Liu, X. F.; Yuwen, L. H.; Fan, C. H.; Wang, L. H. Gold Nanoparticle-Decorated MoS2 Nanosheets for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. RSC Adv. 2014, 4, 27625–27629. DOI:10.1039/c4ra04046e.
  • Zou, H. L.; Li, B. L.; Luo, H. Q.; Li, N. B. 0D-2D Heterostructures of Au Nanoparticles and Layered MoS2 for Simultaneous Detections of Dopamine, Ascorbic Acid, Uric Acid, and Nitrite. Sens. Actuators B: Chem. 2017, 253, 352–360. DOI:10.1016/j.snb.2017.06.158.
  • Movlaee, K.; Norouzi, P.; Beitollahi, H.; Rezapour, M.; Larijani, B. Highly Selective Differential Pulse Voltammetric Determination of Uric Acid Using Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2017, 12, 3241–3251. DOI:10.20964/2017.04.06.
  • Zen, J.-M.; Tang, J.-S. Square-Wave Voltammetric Determination of Uric Acid by Catalytic Oxidation at a Perfluorosulfonated Ionomer/Ruthenium Oxide Pyrochlore Chemically Modified Electrode. Anal. Chem. 1995, 67, 1892–1895. DOI:10.1021/ac00107a021.
  • Raj, C. R.; Ohsaka, T. Voltammetric Detection of Uric Acid in the Presence of Ascorbic Acid at a Gold Electrode Modified with a Self-Assembled Monolayer of Heteroaromatic Thiol. J. Electroanal. Chem. 2003, 540, 69–77. DOI:10.1016/S0022-0728(02)01285-8.
  • Liu, X.; Zhang, L.; Wei, S.; Chen, S.; Ou, X.; Lu, Q. Overoxidized Polyimidazole/Graphene Oxide Copolymer Modified Electrode for the Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid, Guanine and Adenine. Biosens. Bioelectron. 2014, 57, 232–238. DOI:10.1016/j.bios.2014.02.017.
  • Zhang, L.; Feng, J.; Chou, K.-C.; Su, L.; Hou, X. Simultaneously Electrochemical Detection of Uric Acid and Ascorbic Acid Using Glassy Carbon Electrode Modified with Chrysanthemum-like Titanium Nitride. J. Electroanal. Chem. 2017, 803, 11–18. DOI:10.1016/j.jelechem.2017.09.006.
  • Su, C.-H.; Sun, C.-L.; Liao, Y.-C. Printed Combinatorial Sensors for Simultaneous Detection of Ascorbic Acid, Uric Acid, Dopamine, and Nitrite. ACS Omega 2017, 2, 4245–4252. DOI:10.1021/acsomega.7b00681.
  • Ji, D.; Liu, Z.; Liu, L.; Low, S. S.; Lu, Y.; Yu, X.; Zhu, L.; Li, C.; Liu, Q. Smartphone-Based Integrated Voltammetry System for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid with Graphene and Gold Nanoparticles Modified Screen-Printed Electrodes. Biosens. Bioelectron. 2018, 119, 55–62. DOI:DOI:10.1016/j.bios.2018.07.074.
  • Ballesta-Claver, J.; Rodríguez-Gómez, R.; Capitán-Vallvey, L. F. Disposable Biosensor Based on Cathodic Electrochemiluminescence of Tris(2,2-Bipyridine)Ruthenium(II) for Uric Acid Determination. Anal. Chim. Acta 2013, 770, 153–160. DOI:DOI:10.1016/j.aca.2013.01.045.
  • Lin, Z. Y.; Chen, Z. H.; Liu, Y.; Wang, J.; Chen, G. N. An Electrochemiluminescent Biosensor for Uric Acid Based on the Electrochemiluminescence of Bis-3,4,6-Trichloro-2-(Pentyloxycarbonyl)-Phenyl Oxalate on an ITO Electrode Modified by an Electropolymerized Nickel Phthalocyanine Film. Analyst 2008, 133, 797–801. DOI:10.1039/b716281b.
  • Chu, H.; Wei, X.; Wu, M.; Yan, J.; Tu, Y. An Electrochemiluminescent Biosensor Based on Polypyrrole Immobilized Uricase for Ultrasensitive Uric Acid Detection. Sens. Actuators B: Chem. 2012, 163, 247–252. DOI:10.1016/j.snb.2012.01.047.
  • Ballesta-Claver, J.; Ortega, I. F. D.; Valencia-Mirón, M. C.; Capitan-Vallvey, L. F. Disposable Luminol Copolymer-Based Biosensor for Uric Acid in Urine. Anal. Chim. Acta 2011, 702, 254–261. DOI:10.1016/j.aca.2011.06.054.
  • Fan, X. M.; Wang, S. M.; Li, Z. J.; Zheng, X. W. Determination of Uric Acid Based on Chitosan/ru (Bpy)(3)(2+)/Silica Nanoparticles Electrochemiluminescence Sensor. Chin. J. Anal. Chem. 2016, 44, 342–347. DOI:10.11895/j.issn.0253.3820.150705.
  • Chen, Z. F.; Zu, Y. B. Selective Detection of Uric Acid in the Presence of Ascorbic Acid Based on Electrochemiluminescence Quenching. J. Electroanal. Chem. 2008, 612, 151–155. DOI:10.1016/j.jelechem.2007.09.018.
  • Lin, Y. Y.; Dai, H.; Yang, C. P.; Lin, S.; Chen, G. N. Electrochemiluminescent Behavior of Eosin Y and Its Application for Detection of Some Bioactive Molecules. Electroanalysis 2011, 23, 1260–1266. DOI:10.1002/elan.201000530.
  • Lou, F. M.; Wang, A. J.; Jin, J.; Li, Q. F.; Zhang, S. H. One-Pot Synthesis of Popcorn-like Au@Polyluminol Nanoflowers for Sensitive Solid-State Electrochemiluminescent Sensor. Electrochim. Acta 2018, 278, 255–262. DOI:10.1016/j.electacta.2018.04.194.
  • Ke, R.; Zhang, X. M.; Wang, L.; Zhang, C. Y.; Zhang, S. Y.; Niu, H. L.; Mao, C. J.; Song, J. M.; Jin, B. K.; Tian, Y. P. Enhanced Electrochemiluminescence of CdSe Quantum Dots Coupled with MoS2-Chitosan Nanosheets. J. Solid State Electrochem. 2015, 19, 1633–1641. DOI:10.1007/s10008-015-2793-z.
  • Tan, K. H.; Yang, G.; Chen, H. D.; Shen, P. F.; Huang, Y. C.; Xia, Y. S. Facet Dependent Binding and Etching: Ultra-Sensitive Colorimetric Visualization of Blood Uric Acid by Unmodified Silver Nanoprisms. Biosens. Bioelectron. 2014, 59, 227–232. DOI:10.1016/j.bios.2014.03.048.
  • Iriyama, K.; Yoshiura, M.; Iwamoto, T.; Ozaki, Y. Simultaneous Determination of Uric and Ascorbic Acids in Human Serum by Reversed-Phase High-Performance Liquid Chromatography with Electrochemical Detection. Anal. Biochem. 1984, 141, 238–243. DOI:10.1016/0003-2697(84)90451-2.
  • Inoue, K.; Namiki, T.; Iwasaki, Y.; Yoshimura, Y.; Nakazawa, H. Determination of Uric Acid in Human Saliva by High-Performance Liquid Chromatography with Amperometric Electrochemical Detection. J. Chromatogr. B 2003, 785, 57–63. DOI:10.1016/S1570-0232(02)00850-4.
  • Perelló, J.; Sanchis, P.; Grases, F. Determination of Uric Acid in Urine, Saliva and Calcium Oxalate Renal Calculi by High-Performance Liquid Chromatography/Mass Spectrometry. J. Chromatogr. B 2005, 824, 175–180. DOI:10.1016/j.jchromb.2005.07.024.
  • Ismail, A. A.; Dakin, T. A. Gas Chromatography and Characterization of Tetraethyl Derivates of Uric Acid. J. Chromatogr 1975, 110, 182–186. DOI:10.1016/S0021-9673(00)91226-3.
  • Langenbeck, U.; Seegmiller, J. E. Gas Chromatography–Mass Spectrometry Studies of Tetramethyl Uric Acids. Anal. Biochem. 1973, 56, 34–42. DOI:10.1016/0003-2697(73)90166-8.
  • Jorgenson, J. W.; Lukacs, K. D. Free-Zone Electrophoresis in Glass Capillaries. Clin. Chem. 1981, 27, 1551.
  • Yao, X.; Wang, Y.; Chen, G. Simultaneous Determination of Aminothiols, Ascorbic Acid and Uric Acid in Biological Samples by Capillary Electrophoresis with Electrochemical Detection. Biomed. Chromatogr. 2007, 21, 520–526. DOI:10.1002/bmc.787.
  • Xu, D.-K.; Hua, L.; Li, Z.-M.; Chen, H.-Y. Identification and Quantitative Determination of Uric Acid in Human Urine and Plasma by Capillary Electrophoresis with Amperometric Detection. J. Chromatogr. B Biomed. Appl. 1997, 694, 461–466. DOI:10.1016/S0378-4347(97)00141-2.
  • Zhao, S.; Lan, X.; Liu, Y.-M. Gold Nanoparticle-Enhanced Capillary Electrophoresis-Chemiluminescence Assay of Trace Uric Acid. Electrophoresis. 2009, 30, 2676–2680. DOI:10.1002/elps.200900115.
  • Harada, S.; Hirayama, A.; Chan, Q.; Kurihara, A.; Fukai, K.; Iida, M.; Kato, S.; Sugiyama, D.; Kuwabara, K.; Takeuchi, A.; et al. Reliability of Plasma Polar Metabolite Concentrations in a Large-Scale Cohort Study Using Capillary Electrophoresis-Mass Spectrometry. PLoS One 2018, 13, e0191230. DOI:10.1371/journal.pone.0191230.
  • Fassett, J. D.; Paulsen, P. J. Isotope Dilution Mass Spectrometry for Accurate Elemental Analysis. Anal. Chem. 1989, 61, 643A–649A. DOI:10.1021/ac00185a001.
  • Chen, X. B.; Calder, A. G.; Prasitkusol, P.; Kyle, D. J.; Jayasuriya, M. C. Determination of 15N Isotopic Enrichment and Concentrations of Allantoin and Uric Acid in Urine by Gas chromatography/mass spectrometry. J. Mass Spectrom. 1998, 33, 130–137. DOI:10.1002/(SICI)1096-9888(199802)33:2<130::AID-JMS616>3.0.CO;2-Y.
  • Ellerbe, P.; Cohen, A.; Welch, M. J.; White, E. V. Determination of Serum Uric Acid by Isotope Dilution Mass Spectrometry as a New Candidate Definitive Method. Anal. Chem. 1990, 62, 2173–2177. DOI:10.1021/ac00219a004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.