1,906
Views
34
CrossRef citations to date
0
Altmetric
Review Article

Research Progress on Metal-Organic Framework Composites in Chemical Sensors

ORCID Icon, , & ORCID Icon
Pages 376-392 | Published online: 29 Jul 2019

References

  • James, S. L. Metal-Organic Frameworks. Chem. Soc. Rev. 2003, 32, 276–288.
  • Glover, T. G.; Peterson, G. W.; Schindler, B. J.; Britt, D.; Yaghi, O. MOF-74 Building Unit Has a Direct Impact on Toxic Gas Adsorption. Chem. Eng. Sci. 2011, 66, 163–170.
  • Ma, D.; Li, B.; Zhou, X.; Zhou, Q.; Liu, K.; Zeng, G.; Li, G.; Shi, Z.; Feng, S. A Dual Functional MOF as a Luminescent Sensor for Quantitatively Detecting the Concentration of Nitrobenzene and Temperature. Chem. Commun. (Camb.). 2013, 49, 8964–8966. DOI: 10.1039/c3cc44546a.
  • Wu, M. X.; Yang, Y. W. Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater. 2017, 29, 1606134. DOI: 10.1002/adma.201606134.
  • Kumar, R. S.; Kumar, S. S.; Kulandainathan, M. A. Efficient Electrosynthesis of Highly Active Cu3(BTC)2-MOF and Its Catalytic Application to Chemical Reduction. Microporous Mesoporous Mater. 2013, 168, 57–64.
  • Li, Y. S.; Liang, F. Y.; Bux, H.; Feldhoff, A.; Yang, W. S.; Caro, J. Molecular Sieve Membrane: supported Metal-Organic Framework with High Hydrogen Selectivity. Angew. Chem. Int. 2010, 49, 548–551. DOI: 10.1002/ange.200905645.
  • Zhu, Q. L.; Xu, Q. Metal-Organic Framework Composites. Chem. Soc. Rev. 2014, 43, 5468–5512. DOI: 10.1039/c3cs60472a.
  • Yang, S. J.; Choi, J. Y.; Chae, H. K.; Cho, J. H.; Nahm, K. S.; Park, C. R. Preparation and Enhanced Hydrostability and Hydrogen Storage Capacity of CNT@MOF-5 Hybrid Composite. Chem. Mater. 2009, 21, 1893–1897. DOI: 10.1021/cm803502y.
  • Aurl, S.; John, S. A. Silver Nanoparticles Built-in Zinc Metal Organic Framework Modified Electrode for the Selective Non-Enzymatic Determination of H2O2. Electrochim. Acta 2017, 235, 680–689. DOI: 10.1016/j.electacta.2017.03.097.
  • Yang, L.; Xu, C.; Ye, W.; Liu, W. An Electrochemical Sensor for H2O2 Based on a New Co-Metal-Organic Framework Modified Electrode. Sensor. Actuat. B-Chem. 2015, 215, 489–496. DOI: 10.1016/j.snb.2015.03.104.
  • Zhao, J.; Wang, Y. N.; Dong, W. W.; Wu, Y. P.; Li, D. S.; Zhang, Q. C. A Robust Luminescent Tb (III)-MOF with Lewis Basic Pyridyl Sites for the Highly Sensitivce Detection of Metal Ions and Small Molecules. Inorg. Chem. 2016, 55, 3265–3271. DOI: 10.1021/acs.inorgchem.5b02294.
  • Ye, J.; Zhao, L.; Bogale, R. F.; Gao, Y.; Wang, X. X.; Qian, X. M.; Guo, S. G.; Zhao, J. Z.; Ning, G. L. Highly Selective Detection of 2, 4, 6-Trinitrophenol and Cu2+ Ions Based on a Fluorescent Cadmium-Pamoate Metal-Organic Framework. Chem. Eur. J. 2015, 21, 2029–2037. DOI: 10.1002/chem.201405267.
  • Xie, S.; Ye, J.; Yuan, Y.; Chai, Y. Q.; Yuan, R. A Multifunctional Hemin@Metal-Organic Framework and Its Application to Construct an Electrochemical Aptasensor for Thrombin Detection. Nanoscale 2015, 7, 18232–18238. DOI: 10.1039/C5NR04532K.
  • Koo, W. T.; Choi, S. J.; Kim, S. J.; Jang, J. S.; Tuller, H. L.; Kim, I. D. Heterogeneous Sensitization of Metal-Organic Framework Driven Metal@Metal Oxide Complex Catalysts on an Oxide Nanofiber Scaffold toward Superior Gas Sensors. J. Am. Chem. Soc. 2016, 138, 13431–13437. DOI: 10.1021/jacs.6b09167.
  • Yang, Q.; Xu, Q.; Jiang, H. L. Metal-Organic Frameworks Meet Metal Nanoparticles: synergistic Effect for Enhanced Catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808. DOI: 10.1039/C6CS00724D.
  • Fernández-García, M.; Rodriguez, J. A. Metal Oxide Nanoparticles; Encyclopedia of inorganic and bioinorganic chemistry; John Wiley & Sons: Hoboken, USA, 2011.
  • Kang, Z.; Xue, M.; Zhang, D. L.; Fan, L. L.; Pan, Y.; Qiu, S. L. Hybrid Metal-Organic Framework Nanomaterials with Enhanced Carbon Dioxide and Methane Adsorption Enthalpy by Incorporation of Carbon Nanotubes. Inorg. Chem. Commun. 2015, 58, 79–83. DOI: 10.1016/j.inoche.2015.06.007.
  • Lan, Q.; Zhang, Z. M.; Qin, C.; Wang, X. L.; Li, Y. G.; Tan, H. Q.; Wang, E. B. Highly Dispersed Polyoxometalate-Doped Porous Co3O4 Water Oxidation Photocatalysts Derived from POM@MOF Crystalline Materials. Chem. Eur. J. 2016, 22, 15513–15520. DOI: 10.1002/chem.201602127.
  • Zhu, M.; Wu, X.; Niu, B.; Guo, H.; Zhang, Y. Fluorescence Sensing of 2,4,6-Trinitrophenol Based on Hierarchical IRMOF-3 Nanosheets Fabricated through a Simple One-Pot Reaction. Appl. Organometal. Chem. 2018, 32, e4333. DOI: 10.1002/aoc.4333.
  • Borycz, J.; Tiana, D.; Haldoupis, E.; Sung, J. C.; Farha, O. K.; Siepmann, J. I.; Gagliardi, L. CO2 Adsorption in M-IRMOF-10 (M = Mg, Ca, Fe, Cu, Zn, Ge, Sr, Cd, Sn, Ba). J. Phys. Chem. C 2016, 120, 12819–12830. DOI: 10.1021/acs.jpcc.6b02235.
  • Canossa, S.; Fornasari, L.; Demitri, N.; Mattarozzi, M.; Choquesillo-Lazarte, D.; Pelagatti, P.; Bacchi, A. MOF Transmetalation beyond Cation Substitution: defective Distortion of IRMOF-9 in the Spotlight. CrystEngComm 2019, 21, 827–834. DOI: 10.1039/C8CE01808A.
  • Wei, J. Z.; Wang, X. L.; Sun, X. J.; Hou, Y.; Zhang, X.; Yang, D. D.; Dong, H.; Zhang, F. M. Rapid and Large-Scale Synthesis of IRMOF-3 by Electrochemistry Method with Enhanced Fluorescence Detection Performance for TNP. Inorg. Chem. 2018, 57, 3818–3824. DOI: 10.1021/acs.inorgchem.7b03174.
  • Rodríguez-Albelo, L. M.; López-Maya, E.; Hamad, S.; Ruiz-Salvador, R.; Calero, S.; Navarro, J. A. R. Selective Sulfur Dioxide Adsorption on Crystal Defect Sites on an Isoreticular Metal Organic Framework Series. Nat Commun. 2017, 8, 14457.
  • Esrafili, L.; Safarifard, V.; Tahmasebi, E.; Esrafili, M. D.; Morsali, A. Functional Group Effect of Isoreticular Metal-Organic Frameworks on Heavy Metal Ion Adsorption. New J. Chem. 2018, 42, 8864–8873. DOI: 10.1039/C8NJ01150H.
  • Abedi, S.; Tehrani, A. A.; Morsali, A. Mechanochemical Synthesis of Isoreticular Metal-Organic Frameworks and Comparative Study of Their Potential for Nitrobenzene Sensing. New J. Chem. 2015, 39, 5108–5111. DOI: 10.1039/C5NJ00153F.
  • Shi, E.; Lin, H.; Wang, Q.; Zhang, F.; Shi, S.; Zhang, T.; Li, X.; Niu, H.; Qu, F. Synergistic Effect of the Composite Films Formed by Zeolitic Imidazolate Framework 8 (ZIF-8) and Porous Nickel Films for Enhanced Amperometric Sensing of Hydrazine. Dalton Trans. 2017, 46, 554–563. DOI: 10.1039/C6DT03684H.
  • Chappanda, K.; Tchalala, M.; Shekhah, O.; Surya, S. G.; Eddaoudi, M.; Salama, K. N. A Comparative Study of Interdigitated Electrode and Quartz Crystal Microbalance Transduction Techniques for Metal-Organic Framework-Based Acetone Sensors. Sensors-Basel 2018, 18, 3898. DOI: 10.3390/s18113898.
  • Liu, C.; Yan, B. Luminescent Zinc Metal-Organic Framework (ZIF-90) for Sensing Metal Ions, Anions and Small Molecules. Photochem. Photobiol. Sci. 2015, 14, 1644–1650. DOI: 10.1039/C5PP00107B.
  • Huang, A.; Dou, W.; Caro, J. Steam-Stable Zeolitic Imidazolate Framework ZIF-90 Membrane with Hydrogen Selectivity through Covalent Functionalization. J. Am. Chem. Soc. 2010, 132, 15562–15564. DOI: 10.1021/ja108774v.
  • Wang, L.; Meng, T.; Fan, Y.; Chen, C.; Guo, Z.; Wang, H.; Zhang, Y. Electrochemical Study of Acetaminophen Oxidation by Gold Nanoparticles Supported on a Leaf-like Zeolitic Imidazolate Framework. J. Colloid. Interface Sci. 2018, 524, 1–7. DOI: 10.1016/j.jcis.2018.04.009.
  • Zhou, T.; Sang, Y.; Wang, X.; Wu, C.; Zeng, D.; Xie, C. Pore Size Dependent Gas-Sensing Selectivity Based on ZnO@ZIF Nanorod Arrays. Sensor. Actuat B-Chem. 2018, 258, 1099–1106. DOI: 10.1016/j.snb.2017.12.024.
  • Qian, J.; Sun, F.; Qin, L. Hydrothermal Synthesis of Zeolitic Imidazolate Framework-67 (ZIF-67) Nanocrystals. Mater. Lett. 2012, 82, 220–223. DOI: 10.1016/j.matlet.2012.05.077.
  • Sarango, L.; Benito, J.; Gascón, I.; Zornoza, B.; Coronas, J. Homogeneous Thin Coatings of Zeolitic Imidazolate Frameworks Prepared on Quartz Crystal Sensors for CO2 Adsorption. Microporous Mesoporous Mater. 2018, 272, 44–52. DOI: 10.1016/j.micromeso.2018.06.018.
  • Pan, Y.; Zhan, S.; Xia, F. Imidazolate Framework-Based Biosensor for Detection of HIV-1 DNA. Anal. Biochem. 2018, 546, 5–9.
  • Han, T. T.; Bai, H. L.; Liu, Y. Y.; Ma, J. F. Two Host-Guest Hybrids by Encapsulation AlQ3 in Zeolitic Imidazolate Framework-8 as Luminescent Sensors for Fe3+, CrO42-and Acetone. J. Solid. State. Chem. 2019, 269, 588–593. DOI: 10.1016/j.jssc.2018.10.044.
  • Tian, H.; Fan, H.; Li, M.; Ma, L. Zeolitic Imidazolate Framework Coated ZnO Nanorods as Molecular Sieving to Improve Selectivity of Formaldehyde Gas Sensor. Acs Sens. 2016, 1, 243–250. DOI: 10.1021/acssensors.5b00236.
  • Han, T.-T.; Yang, J.; Liu, Y.-Y.; Ma, J.-F. 6G Loaded Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocomposites for Highly Selective Luminescent Sensing of Fe3+, Cr6+ and Aniline. Microporous Mesoporous Mater. 2016, 228, 275–288.
  • Gong, C.; Shen, Y.; Chen, J.; Song, Y.; Chen, S.; Song, Y.; Wang, L. Microperoxidase-11@PCN-333 (Al)/Three-Dimensional Macroporous Carbon Electrode for Sensing Hydrogen Peroxide. Sensors. Actuat. B-Chem. 2017, 239, 890–897. DOI: 10.1016/j.snb.2016.08.108.
  • Zhang, Y.; Yang, X.; Zhou, H. C. Direct Synthesis of Functionalized PCN-333 via Linker Design for Fe3+ Detection in Aqueous Media. Dalton Trans. 2018, 47, 11806–11811. DOI: 10.1039/c8dt01508b.
  • Yang, J.; Wang, Z.; Li, Y.; Zhuang, Q.; Zhao, W.; Gu, J. Porphyrinic MOFs for Reversible Fluorescent and Colorimetric Sensing of Mercury (II) Ions in Aqueous Phase. Rsc Adv. 2016, 6, 69807–69814. DOI: 10.1039/C6RA13766K.
  • Zhang, G. Y.; Zhuang, Y. H.; Shan, D.; Su, G. F.; Cosnier, S.; Zhang, X. J. Zirconium-Based Porphyrinic Metal–Organic Framework (PCN-222): Enhanced Photoelectrochemical Response and Its Application for Label-Free Phosphoprotein Detection. Anal. Chem. 2016, 88, 11207–11212. DOI: 10.1021/acs.analchem.6b03484.
  • Li, H.; Cao, X.; Zhang, C.; Yu, Q.; Zhao, Z.; Niu, X.; Sun, X.; Liu, Y.; Ma, L.; Li, Z. Enhanced Adsorptive Removal of Anionic and Cationic Dyes from Single or Mixed Dye Solutions Using MOF PCN-222. Rsc Adv. 2017, 7, 16273–16281. DOI: 10.1039/C7RA01647F.
  • Goswami, S.; Miller, C. E.; Logsdon, J. L.; Buru, C. T.; Wu, Y.-L.; Bowman, D. N.; Islamoglu, T.; Asiri, A. M.; Cramer, C. J.; Wasielewski, M. R.; et al. Atomistic Approach toward Selective Photocatalytic Oxidation of a Mustard-Gas Simulant: A Case Study with Heavy-Chalcogen-Containing PCN-57 Analogues. Acs Appl. Mater. Interfaces 2017, 9, 19535–19540. DOI: 10.1021/acsami.7b07055.
  • Ling, P.; Lei, J.; Ju, H. Porphyrinic Metal-Organic Framework as Electrochemical Probe for DNA Sensing via Triple-Helix Molecular Switch. Biosens. Bioelectron. 2015, 71, 373–379. DOI: 10.1016/j.bios.2015.04.046.
  • Zhang, W.; Zhang, Z.; Li, Y.; Chen, J.; Li, X.; Zhang, Y.; Zhang, Y. Novel Nanostructured MIL-101(Cr)/XC-72 Modified Electrode Sensor: A Highly Sensitive and Selective Determination of Chloramphenicol. Sensor. Actuat. B-Chem. 2017, 247, 756–764. DOI: 10.1016/j.snb.2017.03.104.
  • Wang, D.; Ke, Y.; Guo, D.; Guo, H.; Chen, J.; Weng, W. Facile Fabrication of Cauliflower-like MIL-100 (Cr) and Its Simultaneous Determination of Cd2+, Pb2+, Cu2+ and Hg2+ from Aqueous Solution. Sensor. Actuat. B-Chem. 2015, 216, 504–510. DOI: 10.1016/j.snb.2015.04.054.
  • Guo, H.; Wang, D.; Chen, J.; Weng, W.; Huang, M.; Zheng, Z. Simple Fabrication of Flake-like NH2-MIL-53(Cr) and Its Application as an Electrochemical Sensor for the Detection of Pb2+. Chem. Eng. J. 2016, 289, 479–485. DOI: 10.1016/j.cej.2015.12.099.
  • Lu, T.; Song, H.; Dong, X.; Hu, J.; Lv, Y. A Highly Selective and Fast-Response Photoluminescence Humidity Sensor Based on F- Decorated NH2-MIL-53(Al) Nanorods. J. Mater. Chem. C 2017, 5, 9465–9471. DOI: 10.1039/C7TC01742A.
  • Ghanbarian, M.; Zeinali, S.; Mostafavi, A. A Novel MIL-53(Cr-Fe)/Ag/CNT Nanocomposite Based Resistive Sensor for Sensing of Volatile Organic Compounds. Sensor. Actuat. B-Chem. 2018, 267, 381–391. DOI: 10.1016/j.snb.2018.02.138.
  • Zhao, C.; Jiang, Z.; Mu, R.; Li, Y. A Novel Sensor for Dopamine Based on the Turn-on Fluorescence of Fe-MIL-88 Metal-Organic Frameworks-Hydrogen Peroxide-o-Phenylenediamine System. Talanta 2016, 159, 365–370. DOI: 10.1016/j.talanta.2016.06.043.
  • Wang, M.; Yang, L.; Hu, B.; Liu, Y.; Song, Y.; He, L.; Zhang, Z.; Fang, S. A Novel Electrochemical Sensor Based on Cu3P@NH2-MIL-125 (Ti) Nanocomposite for Efficient Electrocatalytic Oxidation and Sensitive Detection of Hydrazine. Appl. Surf. Sci. 2018, 445, 123–132. DOI: 10.1016/j.apsusc.2018.03.144.
  • Zhang, J.; Sun, L.; Chen, C.; Liu, M.; Dong, W.; Guo, W.; Ruan, S. High Performance Humidity Sensor Based on Metal Organic Framework MIL-101(Cr) Nanoparticles. J. Alloy. Compd. 2017, 695, 520–525. DOI: 10.1016/j.jallcom.2016.11.129.
  • Yu, H.; Zhang, W.; Lv, S.; Han, J.; Xie, G.; Chen, S. A One-Step Structure-Switching Electrochemical Sensor for Transcription Factor Detection Enhanced with Synergistic Catalysis of PtNi@MIL-101 and Exo III-Assisted Cycling Amplification. Chem. Commun. 2018, 54, 11901–11904.
  • Duan, S.; Huang, Y. Electrochemical Sensor Using NH2-MIL-88(Fe)-rGO Composite for Trace Cd2+, Pb2+, and Cu2+ Detection. J. Electroanal. Chem. 2017, 807, 253–260. DOI: 10.1016/j.jelechem.2017.11.051.
  • Liu, H.; Ni, T.; Mu, L.; Zhang, D.; Wang, J.; Wang, S.; Sun, B. Sensitive Detection of Pyrraline with a Molecularly Imprinted Sensor Based on Metal-Organic Frameworks and Quantum Dots. Sensor. Actuat. B-Chem. 2018, 256, 1038–1044. DOI: 10.1016/j.snb.2017.10.048.
  • Kitagawa, S.; Kitaura, R.; Noro, S. Functional Porous Coordination Polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375. DOI: 10.1002/anie.200300610.
  • Buser, H. J.; Schwarzenbach, D.; Petter, W.; Ludi, A. The Crystal Structure of Prussian Blue: Fe4[Fe (CN)6]3.xH2O. Inorg. Chem. 1977, 16, 2704–2710. DOI: 10.1021/ic50177a008.
  • Hirai, K.; Sumida, K.; Meilikhov, M.; Louvain, N.; Nakahama, M.; Uehara, H.; Kitagawa, S.; Furukawa, S. Impact of Crystal Orientation on the Adsorption Kinetics of a Porous Coordination Polymer-Quartz Crystal Microbalance Hybrid Sensor. J. Mater. Chem. C 2014, 2, 3336–3344. DOI: 10.1039/c3tc32101k.
  • Meilikhov, M.; Furukawa, S.; Hirai, K.; Fischer, R. A.; Kitagawa, S. Binary Janus Porous Coordination Polymer Coatings for Sensor Devices with Tunable Analyte Affinity. Angew. Chem. 2013, 125, 359–363. DOI: 10.1002/ange.201207320.
  • Yanai, N.; Kitayama, K.; Hijikata, Y.; Sato, H.; Matsuda, R.; Kubota, Y.; Takata, M.; Mizuno, M.; Uemura, T.; Kitagawa, S. Gas Detection by Structural Variations of Fluorescent Guest Molecules in a Flexible Porous Coordination Polymer. Nature Mater. 2011, 10, 787. DOI: 10.1038/nmat3104.
  • Ye, J. W.; Li, X. Y.; Zhou, H. L.; Zhang, J. P. Optimizing Luminescence Sensitivity and Moisture Stability of Porous Coordination Frameworks by Varying Ligand Side Groups. Sci. China Chem. 2019, 62, 341–346. DOI: 10.1007/s11426-018-9369-6.
  • Kumar, P.; Deep, A.; Paul, A. K.; Bharadwaj, L. M. Bioconjugation of MOF-5 for Molecular Sensing. J. Porous Mater. 2014, 21, 99–104. DOI: 10.1007/s10934-013-9752-9.
  • Nguyen, L. T. L.; Nguyen, T. T.; Nguyen, K. D.; Phan, N. T. S. Metal-Organic Framework MOF-199 as an Efficient Heterogeneous Catalyst for the aza-Michael Reaction. Appl. Catal. A-Gen. 2012, 425, 44–52. DOI: 10.1016/j.apcata.2012.02.045.
  • Haque, E.; Jun, J. W.; Jhung, S. H. Adsorptive Removal of Methyl Orange and Methylene Blue from Aqueous Solution with a Metal-Organic Framework Material, Iron Terephthalate (MOF-235). J. Hazard. Mater. 2011, 185, 507–511. DOI: 10.1016/j.jhazmat.2010.09.035.
  • Lin, K. S.; Adhikari, A. K.; Ku, C. N.; Chiang, C. L.; Kuo, H. Synthesis and Characterization of Porous HKUST-1 Metal Organic Frameworks for Hydrogen Storage. Int. J. Hydrogen. Energy 2012, 37, 13865–13871. DOI: 10.1016/j.ijhydene.2012.04.105.
  • Buragohain, A.; Biswas, S. Cerium-Based Azide-and Nitro-Functionalized UiO-66 Frameworks as Turn-on Fluorescent Probes for the Sensing of Hydrogen Sulphide. CrystEngComm 2016, 18, 4374–4381. DOI: 10.1039/C6CE00032K.
  • Meng, Q.; Xin, X.; Zhang, L.; Dai, F.; Wang, R.; Sun, D. A Multifunctional Eu MOF as a Fluorescent pH Sensor and Exhibiting Highly Solvent-Dependent Adsorption and Degradation of Rhodamine B. J. Mater. Chem. A 2015, 3, 24016–24021. DOI: 10.1039/C5TA04989J.
  • Zhu, X. D.; Zhang, K.; Wang, Y.; Long, W. W.; Sa, R. J.; Liu, T. F.; Lü, J. Fluorescent Metal-Organic Framework (MOF) as a Highly Sensitive and Quickly Responsive Chemical Sensor for the Detection of Antibiotics in Simulated Wastewater. Inorg. Chem. 2018, 57, 1060–1065. DOI: 10.1021/acs.inorgchem.7b02471.
  • Zhu, Q.; Chen, Y.; Wang, W.; Zhang, H.; Ren, C.; Chen, H.; Chen, X. A Sensitive Biosensor for Dopamine Determination Based on the Unique Catalytic Chemiluminescence of Metal-Organic Framework HKUST-1. Sensor. Actuat. B-Chem. 2015, 210, 500–507.
  • Sha, J.; Yang, X.; Sun, L.; Zhang, X.; Li, S.; Li, J.; Sheng, N. Unprecedented α-Cyclodextrin Metal-Organic Frameworks with Chirality: Structure and Drug Adsorptions. Polyhedron 2017, 127, 396–402. DOI: 10.1016/j.poly.2016.10.012.
  • Hod, I.; Bury, W.; Gardner, D. M.; Deria, P.; Roznyatovskiy, V.; Wasielewski, M. R.; Farha, O. K.; Hupp, J. T. Bias-Switchable Permselectivity and Redox Catalytic Activity of a Ferrocene-Functionalized, Thin-Film Metal-Organic Framework Compound. J. Phys. Chem. Lett. 2015, 6, 586–591. DOI: 10.1021/acs.jpclett.5b00019.
  • Liu, J.; Strachan, D. M.; Thallapally, P. K. Enhanced Noble Gas Adsorption in Ag@MOF-74Ni. Chem. Commun. (Camb.). 2014, 50, 466–468. DOI: 10.1039/c3cc47777k.
  • Zhou, H.; Zhang, J.; Zhang, J.; Yan, X. F.; Shen, X. P.; Yuan, A. H. Spillover Enhanced Hydrogen Storage in Pt-Doped MOF/Graphene Oxide Composite Produced via an Impregnation Method. Inorg. Chem. Commun. 2015, 54, 54–56. DOI: 10.1016/j.inoche.2015.02.001.
  • Masih, D.; Chernikova, V.; Shekhah, O.; Eddaoudi, M.; Mohammed, O. F. Metal-Organic Framework (MOF) Encaged Pt (II)-Porphyrin for Anion-Selective Sensing. ACS. Appl. Mater. Interface 2018, 10, 11399–11405.
  • Zhang, W.; Lu, G.; Cui, C.; Liu, Y.; Li, S.; Yan, W.; Xing, C.; Chi, Y. R.; Yang, Y.; Huo, F. A Family of Metal-Organic Frameworks Exhibiting Size-Selective Catalysis with Encapsulated Noble-Metal Nanoparticles. Adv. Mater. 2014, 26, 4056–4060.
  • Xu, Z.; Yang, L.; Xu, C. Pt@UiO-66 Heterostructures for Highly Selective Detection of Hydrogen Peroxide with an Extended Linear Range. Anal. Chem. 2015, 87, 3438–3444. DOI: 10.1021/ac5047278.
  • da Silva, C. T. P.; Veregue, F. R.; Aguiar, L. W.; Meneguin, J. G.; Moisés, M. P.; Fávaro, S. L.; Radovanovic, E.; Girotto, E. M.; Rinaldi, A. W. AuNP@MOF Composite as Electrochemical Material for Determination of Bisphenol a and Its Oxidation Behavior Study. New J. Chem. 2016, 40, 8872–8877. DOI: 10.1039/C6NJ00936K.
  • Saraf, M.; Rajak, R.; Mobin, S. M. A Fascinating Multitasking Cu-MOF/rGO Hybrid for High Performance Supercapacitors and Highly Sensitive and Selective Electrochemical Nitrite Sensors. J. Mater. Chem. A 2016, 4, 16432–16445. DOI: 10.1039/C6TA06470A.
  • Song, Y.; Gong, C.; Su, D.; Shen, Y.; Song, Y.; Wang, L. A Novel Ascorbic Acid Electrochemical Sensor Based on Spherical MOF-5 Arrayed on a Three-Dimensional Porous Carbon Electrode. Anal. Methods 2016, 8, 2290–2296. DOI: 10.1039/C6AY00136J.
  • Han, T.; Li, C.; Guo, X.; Huang, H.; Liu, D.; Zhong, C. In-Situ Synthesis of SiO2@MOF Composites for High-Efficiency Removal of Aniline from Aqueous Solution. Appl. Surf. Sci. 2016, 390, 506–512. DOI: 10.1016/j.apsusc.2016.08.111.
  • Li, H.; Li, Q.; He, X.; Zhang, N.; Xu, Z.; Wang, Y.; Wang, Y. The Magnetic Hybrid Cu (I)-MOF@ Fe3O4 with Hierarchically Engineered Micropores for Highly Efficient Removal of Cr(VI) from Aqueous Solution. Cryst. Growth Des. 2018, 18, 6248–6256. DOI: 10.1021/acs.cgd.8b01053.
  • Rad, M.; Dehghanpour, S. ZnO as an Efficient Nucleating Agent and Morphology Template for Rapid, Facile and Scalable Synthesis of MOF-46 and ZnO@MOF-46 with Selective Sensing Properties and Enhanced Photocatalytic Ability. Rsc Adv. 2016, 6, 61784–61793. DOI: 10.1039/C6RA12410K.
  • Wang, F.; Jia, S.; Li, D.; Yu, B.; Zhang, L.; Liu, Y.; Han, X.; Zhang, R.; Wu, S. Self-Template Synthesis of CuO@Cu3(BTC)2 Composite and Its Application in Cumene Oxidation. Mater. Lett. 2016, 164, 72–75. DOI: 10.1016/j.matlet.2015.09.044.
  • Shen, L.; Liang, S.; Wu, W.; Liang, R.; Wu, L. CdS-Decorated UiO-66 (NH2) Nanocomposites Fabricated by a Facile Photodeposition Process: An Efficient and Stable Visible-Light-Driven Photocatalyst for Selective Oxidation of Alcohols. J. Mater. Chem. A 2013, 1, 11473–11482. DOI: 10.1039/c3ta12645e.
  • Gan, H.; Wang, Z.; Li, H.; Wang, Y.; Sun, L.; Li, Y. CdSe QDs@UIO-66 Composite with Enhanced Photocatalytic Activity towards RhB Degradation under Visible-Light Irradiation. Rsc Adv. 2016, 6, 5192–5197. DOI: 10.1039/C5RA23565K.
  • Liu, F.; Xiong, W.; Feng, X.; Shi, L.; Chen, D.; Zhang, Y. A Novel Monolith ZnS-ZIF-8 Adsorption Material for Ultraeffective Hg (II) Capture from Wastewater. J. Hazard. Mater. 2019, 367, 381–389. DOI: 10.1016/j.jhazmat.2018.12.098.
  • Zhao, D.; Wan, X.; Song, H.; Hao, L.; Su, Y.; Lv, Y. Metal-Organic Frameworks (MOFs) Combined with ZnO Quantum Dots as a Fluorescent Sensing Platform for Phosphate. Sensor. Actuat. B-Chem. 2014, 197, 50–57. DOI: 10.1016/j.snb.2014.02.070.
  • Xin, W. L.; Jiang, L. F.; Zong, L. P.; Zeng, H. B.; Shu, G. F.; Marks, R.; Zhang, X. J.; Shan, D. MoS2 Quantum Dots-Combined Zirconium-Metalloporphyrin Frameworks: Synergistic Effect on Electron Transfer and Application for Bioassay. Sensor. Actuat. B-Chem. 2018, 273, 566–573. DOI: 10.1016/j.snb.2018.06.090.
  • Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J. L.; Banerjee, S. y.; Lollar, C.; Wang, X.; Zhou, H. C. Enzyme-MOF (Metal-Organic Framework) Composites. Chem. Soc. Rev. 2017, 46, 3386–3401. DOI: 10.1039/C7CS00058H.
  • Lykourinou, V.; Chen, Y.; Wang, X. S.; Meng, L.; Hoang, T.; Ming, L. J.; Musselman, R. L.; Ma, S. Immobilization of MP-11 into a Mesoporous Metal-Organic Framework, MP-11@mesoMOF: A New Platform for Enzymatic Catalysis. J. Am. Chem. Soc. 2011, 133, 10382–10385. DOI: 10.1021/ja2038003.
  • Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C.-W.; Tsung, C.-K. Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: size-Selective Sheltering of Catalase in Metal-Organic Framework Microcrystals. J. Am. Chem. Soc. 2015, 137, 4276–4279. DOI: 10.1021/ja513058h.
  • Hu, S.; Ouyang, W.; Guo, L.; Lin, Z.; Jiang, X.; Qiu, B.; Chen, G. Facile Synthesis of Fe3O4/g-C3N4/HKUST-1 Composites as a Novel Biosensor Platform for Ochratoxin A. Biosens. Bioelectron. 2017, 92, 718–723. DOI: 10.1016/j.bios.2016.10.006.
  • Ma, Y.; Xu, G.; Wei, F.; Cen, Y.; Xu, X.; Shi, M.; Cheng, X.; Chai, Y.; Sohail, M.; Hu, Q. One-Pot Synthesis of a Magnetic Ratiometric Fluorescent Nanoprobe by Encapsulating Fe3O4 Magnetic Nanoparticles and Dual-Emissive Rhodamine B Modified Carbon Dots in Metal-Organic Framework for Enhanced HClO Sensing. Acs Appl. Mater. Interfaces 2018, 10, 20801–20805. DOI: 10.1021/acsami.8b05643.
  • Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112, 933–969. DOI: 10.1021/cr200304e.
  • Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z. Rapid Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocrystals in an Aqueous System. Chem. Commun. 2011, 47, 2071–2073. DOI: 10.1039/c0cc05002d.
  • Martinez Joaristi, A.; Juan-Alcañiz, J.; Serra-Crespo, P.; Kapteijn, F.; Gascon, J. Electrochemical Synthesis of Some Archetypical Zn2+, Cu2+, and Al3+ Metal Organic Frameworks. Cryst. Growth. Des. 2012, 12, 3489–3498. DOI: 10.1021/cg300552w.
  • Mingos, D. M. P.; Baghurst, D. R. Tilden Lecture Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry. Chem. Soc. Rev. 1991, 20, 1–47. DOI: 10.1039/cs9912000001.
  • Jhung, S. H.; Lee, J. H.; J. S. Microwave, C. Synthesis of a Nanoporous Hybrid Material, Chromium Trimesate. B. Korean. Chem. Soc. 2005, 26, 880–881.
  • Bang, J. H.; Suslick, K. S. Applications of Ultrasound to the Synthesis of Nanostructured Materials. Adv. Mater. Weinheim 2010, 22, 1039–1059. DOI: 10.1002/adma.200904093.
  • Son, W. J.; Kim, J.; Kim, J.; Ahn, W. S. Sonochemical Synthesis of MOF-5. Chem. Commun. 2008, 6336–6338. DOI: 10.1039/b814740j.
  • Fernández-Bertran, J. F. Mechanochemistry: An Overview. Pure. Appl. Chem. 1999, 71, 581–586. DOI: 10.1351/pac199971040581.
  • Liédana, N.; Galve, A.; Rubio, C.; Téllez, C.; Coronas, J. CAF@ZIF-8: one-Step Encapsulation of Caffeine in MOF. ACS Appl. Mater. Interfaces 2012, 4, 5016–5021. DOI: 10.1021/am301365h.
  • Li, P.; Moon, S. Y.; Guelta, M. A.; Harvey, S. P.; Hupp, J. T.; Farha, O. K. Encapsulation of a Nerve Agent Detoxifying Enzyme by a Mesoporous Zirconium Metal-Organic Framework Engenders Thermal and Long-Term Stability. J. Am. Chem. Soc. 2016, 138, 8052–8055. DOI: 10.1021/jacs.6b03673.
  • Chen, L.; Chen, H.; Luque, R.; Li, Y. Metal-Organic Framework Encapsulated Pd Nanoparticles: Towards Advanced Heterogeneous Catalysts. Chem. Sci. 2014, 5, 3708–3714. DOI: 10.1039/C4SC01847H.
  • Biswal, B. P.; Shinde, D. B.; Pillai, V. K.; Banerjee, R. Stabilization of Graphene Quantum Dots (GQDs) by Encapsulation inside Zeolitic Imidazolate Framework Nanocrystals for Photoluminescence Tuning. Nanoscale 2013, 5, 10556–10561. DOI: 10.1039/c3nr03511e.
  • Zhang, T.; Zhang, X.; Yan, X.; Kong, L.; Zhang, G.; Liu, H.; Qiu, J.; Yeung, K. L. Synthesis of Fe3O4@ZIF-8 Magnetic Core-Shell Microspheres and Their Potential Application in a Capillary Microreactor. Chem. Eng. J. 2013, 228, 398–404. DOI: 10.1016/j.cej.2013.05.020.
  • Moon, H. R.; Kim, J. H.; Suh, M. P. Redox-Active Porous Metal-Organic Framework Producing Silver Nanoparticles from AgI Ions at Room Temperature. Angew. Chem. Int. 2005, 44, 1261–1265. DOI: 10.1002/ange.200461408.
  • Esken, D.; Zhang, X.; Lebedev, O. I.; Schröder, F.; Fischer, R. A. Pd@MOF-5: limitations of Gas-Phase Infiltration and Solution Impregnation of [Zn4O(Bdc)3](MOF-5) with Metal-Organic Palladium Precursors for Loading with Pd Nanoparticles. J. Mater. Chem. 2009, 19, 1314–1319. DOI: 10.1039/b815977g.
  • Müller, M.; Lebedev, O. I.; Fischer, R. A. Gas-Phase Loading of [Zn4O(Btb)2](MOF-177) with Organometallic CVD-Precursors: inclusion Compounds of the Type [LnM]a@MOF-177 and the Formation of Cu and Pd Nanoparticles inside MOF-177. J. Mater. Chem. 2008, 18, 5274–5281. DOI: 10.1039/b810989c.
  • Chen, Y.; Lv, D.; Wu, J.; Xiao, J.; Xi, H.; Xia, Q.; Li, Z. A New MOF-505@GO Composite with High Selectivity for CO2/CH4 and CO2/N2 Separation. Chem. Eng. J. 2017, 308, 1065–1072. DOI: 10.1016/j.cej.2016.09.138.
  • Tsuruoka, T.; Kawasaki, H.; Nawafune, H.; Akamatsu, K. Controlled Self-Assembly of Metal-Organic Frameworks on Metal Nanoparticles for Efficient Synthesis of Hybrid Nanostructures. Acs Appl. Mater. Interfaces 2011, 3, 3788–3791. DOI: 10.1021/am200974t.
  • Zhao, M.; Deng, K.; He, L.; Liu, Y.; Li, G.; Zhao, H.; Tang, Z. Core–Shell Palladium Nanoparticle@Metal-Organic Frameworks as Multifunctional Catalysts for Cascade Reactions. J. Am. Chem. Soc. 2014, 136, 1738–1741. DOI: 10.1021/ja411468e.
  • Guo, H.; Zhang, Y.; Zheng, Z.; Lin, H.; Zhang, Y. Facile One-Pot Fabrication of Ag@MOF(Ag) Nanocomposites for Highly Selective Detection of 2,4,6-Trinitrophenol in Aqueous Phase. Talanta 2017, 170, 146–151. DOI: 10.1016/j.talanta.2017.03.096.
  • Yan, A. X.; Yao, S.; Li, Y. G.; Zhang, Z. M.; Lu, Y.; Chen, W.; L.; Wang, E. B. Incorporating Polyoxometalates into a Porous MOF Greatly Improves Its Selective Adsorption of Cationic Dyes. Chem. Eur. J. 2014, 20, 6927–6933. DOI: 10.1002/chem.201400175.
  • Li, Z. Q.; Wang, A.; Guo, C. Y.; Tai, Y. F.; Qiu, L. G. One-Pot Synthesis of Metal-Organic Framework@SiO2 Core-Shell Nanoparticles with Enhanced Visible-Light Photoactivity. Dalton Trans. 2013, 42, 13948–13954. DOI: 10.1039/c3dt50845e.
  • Tianbin, W. U.; Zhang, P.; Jun, M. A.; Fan, H.; Wang, W.; Jiang, T.; Han, B. Catalytic Activity of Immobilized Ru Nanoparticles in a Porous Metal-Organic Framework Using Supercritical Fluid. J. Catal. 2013, 34, 167–175. DOI: 10.1016/S1872-2067(11)60475-0.
  • Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; et al. Imparting Functionality to a Metal-Organic Framework Material by Controlled Nanoparticle Encapsulation. Nature Chem. 2012, 4, 310. DOI: 10.1038/nchem.1272.
  • Zhou, J.; Wang, P.; Wang, C.; Goh, Y. T.; Fang, Z.; Messersmith, P. B.; Duan, H. Versatile Core–Shell Nanoparticle@Metal-Organic Framework Nanohybrids: Exploiting Mussel-Inspired Polydopamine for Tailored Structural Integration. ACS. Nano 2015, 9, 6951–6960. DOI: 10.1021/acsnano.5b01138.
  • Ameloot, R.; Roeffaers, M. B. J.; De Cremer, G.; Vermoortele, F.; Hofkens, J.; Sels, B. F.; De Vos, D. E. Metal-Organic Framework Single Crystals as Photoactive Matrices for the Generation of Metallic Microstructures. Adv. Mater. 2011, 23, 1788–1791. DOI: 10.1002/adma.201100063.
  • Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective Gas Adsorption and Separation in Metal-Organic Frameworks. Chemical Society Reviews. Chem. Soc. Rev. 2009, 38, 1477–1504. DOI: 10.1039/b802426j.
  • Lee, J.; Y.; Farha, O.; K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-Organic Framework Materials as Catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. DOI: 10.1039/b807080f.
  • Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352. DOI: 10.1039/b802352m.
  • Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent Functional Metal-Organic Frameworks. Chem. Rev. 2012, 112, 1126–1162. DOI: 10.1021/cr200101d.
  • Kurmoo, M. Magnetic Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1353–1379. DOI: 10.1039/b804757j.
  • Yang, J.; Yang, L.; Ye, H.; Zhao, F.; Zeng, B. Highly Dispersed AuPd Alloy Nanoparticles Immobilized on UiO-66-NH2 Metal-Organic Framework for the Detection of Nitrite. Electrochim. Acta 2016, 219, 647–654. DOI: 10.1016/j.electacta.2016.10.071.
  • Yang, J.; Ye, H.; Zhao, F.; Zeng, B. A Novel CuxO Nanoparticles@ZIF-8 Composite Derived from Core-Shell Metal-Organic Frameworks for Highly Selective Electrochemical Sensing of Hydrogen Peroxide. Acs Appl. Mater. Interfaces 2016, 8, 20407–20414. DOI: 10.1021/acsami.6b06436.
  • Wu, Y.; Ma, Y.; Xu, G.; Wei, F.; Ma, Y.; Song, Q.; Wang, X.; Tang, T.; Song, Y.; Shi, M.; et al. Metal-Organic Framework Coated Fe3O4 Magnetic Nanoparticles with Peroxidase-like Activity for Colorimetric Sensing of Cholesterol. Sensor. Actuat. B-Chem. 2017, 249, 195–202. DOI: 10.1016/j.snb.2017.03.145.
  • Qian, J. J.; Qiu, L. G.; Wang, Y. M.; Yuan, Y. P.; Xie, A. J.; Shen, Y. H. Fabrication of Magnetically Separable Fluorescent Terbium-Based MOF Nanospheres for Highly Selective Trace-Level Detection of TNT. Dalton Trans. 2014, 43, 3978–3983. DOI: 10.1039/c3dt52777h.
  • Samadi-Maybodi, A.; Ghasemi, S.; Ghaffari-Rad, H. Ag-Doped Zeolitic Imidazolate Framework-8 Nanoparticles Modified CPE for Efficient Electrocatalytic Reduction of H2O2. Electrochim. Acta 2015, 163, 280–287. DOI: 10.1016/j.electacta.2015.02.129.
  • Drobek, M.; Kim, J. H.; Bechelany, M.; Vallicar, C.; Julbe, A.; Kim, S. S. MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity. Acs Appl. Mater. Interfaces 2016, 8, 8323–8328. DOI: 10.1021/acsami.5b12062.
  • Zhang, S.; Du, Z.; Li, G. Metal-Organic Framework-199/Graphite Oxide Hybrid Composites Coated Solid-Phase Microextraction Fibers Coupled with Gas Chromatography for Determination of Organochlorine Pesticides from Complicated Samples. Talanta 2013, 115, 32–39. DOI: 10.1016/j.talanta.2013.04.029.
  • Zhou, E.; Zhang, Y.; Li, Y.; He, X. Cu (II)-Based MOF Immobilized on Multiwalled Carbon Nanotubes: synthesis and Application for Nonenzymatic Detection of Hydrogen Peroxide with High Sensitivity. Electroanalysis 2014, 26, 2526–2533. DOI: 10.1002/elan.201400341.
  • Yang, J. M.; Hu, X. W.; Liu, Y. X.; Zhang, W. Fabrication of a Carbon Quantum Dots-Immobilized Zirconium-Based Metal-Organic Framework Composite Fluorescence Sensor for Highly Sensitive Detection of 4-Nitrophenol. Microporous Mesoporous Mater. 2019, 274, 149–154. DOI: 10.1016/j.micromeso.2018.07.042.
  • Lin, X.; Gao, G.; Zheng, L.; Chi, Y.; Chen, G. Encapsulation of Strongly Fluorescent Carbon Quantum Dots in Metal-Organic Frameworks for Enhancing Chemical Sensing. Anal. Chem. 2014, 86, 1223–1228. DOI: 10.1021/ac403536a.
  • Zhou, J.; Li, X.; Yang, L.; Yan, S.; Wang, M.; Cheng, D.; Chen, Q.; Dong, Y.; Liu, P.; Cai, W.; Zhang, C. The Cu-MOF-199/Single-Walled Carbon Nanotubes Modified Electrode for Simultaneous Determination of Hydroquinone and Catechol with Extended Linear Ranges and Lower Detection Limits. Anal. Chem. Acta 2015, 899, 57–65. DOI: 10.1016/j.aca.2015.09.054.
  • Zhang, C.; Wang, X.; Hou, M.; Li, X.; Wu, X.; Ge, J. Immobilization on Metal-Organic Framework Engenders High Sensitivity for Enzymatic Electrochemical Detection. ACS. Appl. Mater. Interface 2017, 9, 13831–13836.
  • Petit, C.; Bandosz, T. J. Enhanced Adsorption of Ammonia on Metal-Organic Framework/Graphite Oxide Composites: analysis of Surface Interactions. Adv. Funct. Mater. 2010, 20, 111–118. DOI: 10.1002/adfm.200900880.
  • Liu, X.; Gong, W.; Luo, J.; Zou, C.; Yang, Y.; Yang, S. Selective Adsorption of Cationic Dyes from Aqueous Solution by Polyoxometalate-Based Metal-Organic Framework Composite. Appl. Surf. Sci. 2016, 362, 517–524. DOI: 10.1016/j.apsusc.2015.11.151.
  • Lyu, F.; Zhang, Y.; Zare, R. N.; Ge, J.; Liu, Z. One-Pot Synthesis of Protein-Embedded Metal-Organic Frameworks with Enhanced Biological Activities. Nano Lett. 2014, 14, 5761–5765. DOI: 10.1021/nl5026419.
  • Li, J.; Xia, J.; Zhang, F.; Wang, Z.; Liu, Q. An Electrochemical Sensor Based on Copper-Based Metal-Organic Frameworks-Graphene Composites for Determination of Dihydroxybenzene Isomers in Water. Talanta 2018, 181, 80–86. DOI: 10.1016/j.talanta.2018.01.002.
  • Lu, T.; Zhang, L.; Sun, M.; Deng, D.; Su, Y.; Lv, Y. Amino-Functionalized Metal-Organic Frameworks Nanoplates-Based Energy Transfer Probe for Highly Selective Fluorescence Detection of Free Chlorine. Anal. Chem. 2016, 88, 3413–3420. DOI: 10.1021/acs.analchem.6b00253.
  • Liu, Q.; Yang, Y.; Liu, X.-P.; Wei, Y.-P.; Mao, C.-J.; Chen, J.-S.; Niu, H.-L.; Song, J.-M.; Zhang, S.-Y.; Jin, B.-K.; Jiang, M. A Facile in Situ Synthesis of MIL-101-CdSe Nanocomposites for Ultrasensitive Electrochemiluminescence Detection of Carcinoembryonic Antigen. Sensor. Actuat. B-Chem. 2017, 242, 1073–1078. DOI: 10.1016/j.snb.2016.09.143.
  • Fu, X.; Li, H.; Lv, R.; Hong, D.; Yang, B.; Gu, W.; Liu, X. Synthesis of Mn2+ Doped ZnS Quantum Dots/ZIF-8 Composite and Its Applications as a Fluorescent Probe for Sensing Co2+ and Dichromate. J. Solid. State. Chem. 2018, 264, 35–41. DOI: 10.1016/j.jssc.2018.04.021.
  • Hou, C.; Wang, Y.; Ding, Q.; Jiang, L.; Ming, L.; Zhu, W.; Pan, D.; Zhu, H.; Liu, M. Facile Synthesis of Enzyme-Embedded Magnetic Metal-Organic Frameworks as a Reusable Mimic Multi-Enzyme System: mimetic Peroxidase Properties and Colorimetric Sensor. Nanoscale 2015, 7, 18770–18779.
  • Fan, L.; Deng, M.; Lin, C.; Xu, C.; Liu, Y.; Shi, Z.; Wang, Y.; Xu, Z.; Li, L.; He, M. A Multifunctional Composite Fe3O4/MOF/L-Cysteine for Removal, Magnetic Solid Phase Extraction and Fluorescence Sensing of Cd (II). Rsc Adv. 2018, 8, 10561–10572. DOI: 10.1039/C8RA00070K.
  • Florea, A.; Guo, Z.; Cristea, C.; Bessueille, F.; Vocanson, F.; Goutaland, F.; Dzyadevych, S.; Săndulescu, R.; Jaffrezic-Renault, N. Anticancer Drug Detection Using a Highly Sensitive Molecularly Imprinted Electrochemical Sensor Based on an Electropolymerized Microporous Metal Organic Framework. Talanta 2015, 138, 71–76. DOI: 10.1016/j.talanta.2015.01.013.
  • Ling, P.; Lei, J.; Zhang, L.; Ju, H. Porphyrin-Encapsulated Metal-Organic Frameworks as Mimetic Catalysts for Electrochemical DNA Sensing via Allosteric Switch of Hairpin DNA. Anal. Chem. 2015, 87, 3957–3963. DOI: 10.1021/acs.analchem.5b00001.
  • Kung, C. W.; Chang, T. H.; Chou, L. Y.; Hupp, J. T.; Farha, O.; K.; Ho, K. C. Porphyrin-Based Metal-Organic Framework Thin Films for Electrochemical Nitrite Detection. Electrochem. Commun. 2015, 58, 51–56. DOI: 10.1016/j.elecom.2015.06.003.
  • Cui, L.; Wu, J.; Li, J.; Ju, H. Electrochemical Sensor for Lead Cation Sensitized with a DNA Functionalized Porphyrinic Metal-Organic Framework. Anal. Chem. 2015, 87, 10635–10641. DOI: 10.1021/acs.analchem.5b03287.
  • Wang, X.; Wang, Q.; Wang, Q.; Gao, F.; Gao, F.; Yang, Y.; Guo, H. Highly Dispersible and Stable Copper Terephthalate Metal-Organic Framework-Graphene Oxide Nanocomposite for an Electrochemical Sensing Application. Acs Appl. Mater. Interfaces 2014, 6, 11573–11580. DOI: 10.1021/am5019918.
  • Hosseini, H.; Ahmar, H.; Dehghani, A.; Bagheri, A.; Tadjarodi, A.; Fakhari, A. R. A Novel Electrochemical Sensor Based on Metal-Organic Framework for Electro-Catalytic Oxidation of L-Cysteine. Biosens. Bioelectron. 2013, 42, 426–429. DOI: 10.1016/j.bios.2012.09.062.
  • Jin, J. C.; Wu, J.; Yang, G. P.; Wu, Y. L.; Wang, Y. Y. A Microporous Anionic Metal-Organic Framework for a Highly Selective and Sensitive Electrochemical Sensor of Cu2+ Ions. Chem. Commun. 2016, 52, 8475–8478. DOI: 10.1039/C6CC03063G.
  • Zhang, J.; Xu, X.; Chen, L. An Ultrasensitive Electrochemical Bisphenol a Sensor Based on Hierarchical Ce-Metal-Organic Framework Modified with Cetyltrimethylammonium Bromide. Sensor Actuat. B-Chem. 2018, 261, 425–433. DOI: 10.1016/j.snb.2018.01.170.
  • Hadi, M.; Bayat, M.; Mostaanzadeh, H.; Ehsani, A.; Yeganeh-Faal, A. Sensitive Electrochemical Detection of Picloram Utilising a Multi-Walled Carbon Nanotube/Cr-Based Metal-Organic Framework Composite-Modified Glassy Carbon Electrode. Int. J. Environ. Anal. Chem. 2018, 98, 197–214. DOI: 10.1080/03067319.2018.1441838.
  • Meng, W.; Wen, Y.; Dai, L.; He, Z.; Wang, L. A Novel Electrochemical Sensor for Glucose Detection Based on Ag@ZIF-67 Nanocomposite. Sensor Actuat B-Chem. 2018, 260, 852–860. DOI: 10.1016/j.snb.2018.01.109.
  • Wang, L.; Teng, Q.; Sun, X.; Chen, Y.; Wang, Y.; Wang, H.; Zhang, Y. Facile Synthesis of Metal-Organic Frameworks/Ordered Mesoporous Carbon Composites with Enhanced Electrocatalytic Ability for Hydrazine. J. Colloid Interface Sci. 2018, 512, 127–133. DOI: 10.1016/j.jcis.2017.10.050.
  • Shi, L.; Zhu, X.; Liu, T.; Zhao, H.; Lan, M. Encapsulating Cu Nanoparticles into Metal-Organic Frameworks for Nonenzymatic Glucose Sensing. Sensor. Actuat. B-Chem. 2016, 227, 583–590. DOI: 10.1016/j.snb.2015.12.092.
  • Wang, M. Q.; Zhang, Y.; Bao, S. J.; Yu, Y. N.; Ye, C. Ni(II)-Based Metal-Organic Framework Anchored on Carbon Nanotubes for Highly Sensitive Non-Enzymatic Hydrogen Peroxide Sensing. Electrochim. Acta. 2016, 190, 365–370. DOI: 10.1016/j.electacta.2015.12.199.
  • Xu, X.; Qi, X.; Wang, X.; Wang, X.; Wang, Q.; Yang, H.; Fu, Y.; Yao, S. Highly Efficient Enzyme Immobilization by Nanocomposites of Metal Organic Coordination Polymers and Carbon Nanotubes for Electrochemical Biosensing. Electrochem. Commun. 2017, 79, 18–22. DOI: 10.1016/j.elecom.2017.04.011.
  • Jiang, X.; Zhao, C.; Zhong, C.; Li, J. The Electrochemical Sensors Based on MOF and Their Application. Prog. Chem. 2017, 29, 1206–1214.
  • Wei, X.; Wu, T.; Yuan, Y.; Ma, X.; Li, J. Highly Sensitive Analysis of Organometallic Compounds Based on Molecularly Imprinted Electrochemical Sensors. Anal. Methods 2017, 9, 1771–1778. DOI: 10.1039/C6AY03320B.
  • Wu, T.; Wei, X.; Ma, X.; Li, J. Amperometric Sensing of L-Phenylalanine Using a Gold Electrode Modified with a Metal Organic Framework, a Molecularly Imprinted Polymer, and β-Cyclodextrin-Functionalized Gold Nanoparticles. Microchim. Acta 2017, 184, 2901–2907. DOI: 10.1007/s00604-017-2281-5.
  • Peng, Z.; Jiang, Z.; Huang, X.; Li, Y. A Novel Electrochemical Sensor of Tryptophan Based on Silver Nanoparticles/Metal-Organic Framework Composite Modified Glassy Carbon Electrode. Rsc Adv. 2016, 6, 13742–13748. DOI: 10.1039/C5RA25251B.
  • Ling, L. J.; Xu, J. P.; Deng, Y. H.; Peng, Q.; Chen, J. H.; He, Y. S.; Nie, Y. J. One-Pot Hydrothermal Synthesis of Amine-Functionalized Metal-Organic Framework/Reduced Graphene Oxide Composites for the Electrochemical Detection of Bisphenol A. Anal. Methods 2018, 10, 2722–2730. DOI: 10.1039/C8AY00052B.
  • Li, Y.; Yu, C.; Yang, B.; Liu, Z.; Xia, P.; Wang, Q. Target-Catalyzed Hairpin Assembly and Metal-Organic Frameworks Mediated Nonenzymatic co-Reaction for Multiple Signal Amplification Detection of miR-122 in Human Serum. Biosens. Bioelectron. 2018, 102, 307–315. DOI: 10.1016/j.bios.2017.11.047.
  • Ma, W.; Jiang, Q.; Yu, P.; Yang, L.; Mao, L. Imidazolate Framework-Based Electrochemical Biosensor for in Vivo Electrochemical Measurements. Anal. Chem. 2013, 85, 7550–7557.
  • Patra, S.; Crespo, T. H.; Permyakova, A.; Sicard, C.; Serre, C.; Chaussé, A.; Steunou, N.; Legrand, L. Design of Metal Organic Framework-Enzyme Based Bioelectrodes as a Novel and Highly Sensitive Biosensing Platform. J. Mater. Chem. B 2015, 3, 8983–8992. DOI: 10.1039/C5TB01412C.
  • Gui, B.; Meng, Y.; Xie, Y.; Tian, J.; Yu, G.; Zeng, W.; Zhang, G.; Gong, S.; Yang, C.; Zhang, D.; Wang, C. Tuning the Photoinduced Electron Transfer in a Zr-MOF: Toward Solid-State Fluorescent Molecular Switch and Turn-on Sensor. Adv. Mater. 2018, 30, 1802329. DOI: 10.1002/adma.201802329.
  • Chen, Y. Z.; Jiang, H. L. Porphyrinic Metal–Organic Framework Catalyzed Heck-Reaction: fluorescence “Turn-on” Sensing of Cu (II) Ion. Chem. Mater. 2016, 28, 6698–6704. DOI: 10.1021/acs.chemmater.6b03030.
  • Zhu, Q.; Dong, D.; Zheng, X.; Song, H.; Zhao, X.; Chen, H.; Chen, X. Chemiluminescence Determination of Ascorbic Acid Using Graphene Oxide@Copper-Based Metal–Organic Frameworks as a Catalyst. Rsc Adv. 2016, 6, 25047–25055. DOI: 10.1039/C5RA27636E.
  • Yu, H.; Long, D. Highly Chemiluminescent Metal-Organic Framework of Type MIL-101 (Cr) for Detection of Hydrogen Peroxide and Pyrophosphate Ions. Microchim. Acta 2016, 183, 3151–3157. DOI: 10.1007/s00604-016-1963-8.
  • Tang, X. Q.; Zhang, Y. D.; Jiang, Z. W.; Wang, D. M.; Huang, C. Z.; Li, Y. F. Fe3O4 and Metal-Organic Framework MIL-101 (Fe) Composites Catalyze Luminol Chemiluminescence for Sensitively Sensing Hydrogen Peroxide and Glucose. Talanta 2018, 179, 43–50.
  • Feng, D.; Wu, Y.; Tan, X.; Chen, Q.; Yan, J.; Liu, M.; Ai, C.; Luo, Y.; Du, F.; Liu, S.; Han, H. Sensitive Detection of Melamine by an Electrochemiluminescence Sensor Based on Tris (Bipyridine) Ruthenium (II)-Functionalized Metal-Organic Frameworks. Sensor. Actuat. B-Chem. 2018, 265, 378–386. DOI: 10.1016/j.snb.2018.03.046.
  • Shao, H.; Lu, J.; Zhang, Q.; Hu, Y.; Wang, S.; Guo, Z. Ruthenium-Based Metal Organic Framework (Ru-MOF)-Derived Novel Faraday-Cage Electrochemiluminescence Biosensor for Ultrasensitive Detection of miRNA-141. Sensor. Actuat. B-Chem. 2018, 268, 39–46. DOI: 10.1016/j.snb.2018.04.088.
  • Jian, Y.; Wang, H.; Lan, F.; Liang, L.; Ren, N.; Liu, H.; Ge, S.; Yu, J. Electrochemiluminescence Based Detection of microRNA by Applying an Amplification Strategy and Hg (II)-Triggered Disassembly of a Metal Organic Frameworks Functionalized with Ruthenium (II) Tris (Bipyridine). Microchim. Acta 2018, 185, 133. DOI: 10.1007/s00604-018-2693-x.
  • Li, Y.; Yang, L.; Peng, Z.; Huang, C.; Li, Y. Encapsulating a Ruthenium (II) Complex into Metal Organic Frameworks to Engender High Sensitivity for Dopamine Electrochemiluminescence Detection. Anal. Methods 2018, 10, 1560–1564. DOI: 10.1039/C7AY02903A.
  • Fu, X.; Yang, Y.; Wang, N.; Chen, S. The Electrochemiluminescence Resonance Energy Transfer between Fe-MIL-88 Metal-Organic Framework and 3, 4, 9, 10-Perylenetetracar-Boxylic Acid for Dopamine Sensing. Sensor. Actuat. B-Chem. 2017, 250, 584–590. DOI: 10.1016/j.snb.2017.04.054.
  • Ma, H.; Li, X.; Yan, T.; Li, Y.; Liu, H.; Zhang, Y.; Wu, D.; Wei, Q. Electrogenerated Chemiluminescence Behavior of Au Nanoparticles-Hybridized Pb (II) Metal-Organic Framework and Its Application in Selective Sensing Hexavalent Chromium. Sci. Rep-UK 2016, 6, 22059.
  • Chen, J.; Xu, Q.; Shu, Y.; Hu, X. Synthesis of a Novel Au Nanoparticles Decorated Ni-MOF/Ni/NiO Nanocomposite and Electrocatalytic Performance for the Detection of Glucose in Human Serum. Talanta 2018, 184, 136–142. DOI: 10.1016/j.talanta.2018.02.057.
  • Zheng, H.; Yi, H.; Dai, H.; Fang, D.; Hong, Z.; Lin, D.; Zheng, X.; Lin, Y. Fluoro-Coumarin Silicon Phthalocyanine Sensitized Integrated Electrochemiluminescence Bioprobe Constructed on TiO2 MOFs for the Sensing of Deoxynivalenol. Sensor. Actuat. B-Chem. 2018, 269, 27–35. DOI: 10.1016/j.snb.2018.04.149.
  • Zhao, G.; Wang, Y.; Li, X.; Dong, X.; Wang, H.; Du, B.; Cao, W.; Wei, Q. Quenching Electrochemiluminescence Immunosensor Based on Resonance Energy Transfer between Ruthenium (II) Complex Incorporated in UiO-67 Metal-Organic Framework and Gold Nanoparticles for Insulin Detection. ACS Appl. Mater. Interfaces 2018, 10, 22932–22938. DOI: 10.1021/acsami.8b04786.
  • Ma, H.; Li, X.; Yan, T.; Li, Y.; Liu, H.; Zhang, Y.; Wu, D.; Du, B.; Wei, Q. Ensitive Insulin Detection Based on Electrogenerated Chemiluminescence Resonance Energy Transfer between Ru (Bpy)32+ and Au Nanoparticle-Doped β-Cyclodextrin-Pb (II) Metal-Organic Framework. ACS Appl. Mater. Interfaces 2016, 8, 10121–10127. DOI: 10.1021/acsami.5b11991.
  • Zhu, S.; Lin, X.; Ran, P.; Xia, Q.; Yang, C.; Ma, J.; Fu, Y. A Novel Luminescence-Functionalized Metal-Organic Framework Nanoflowers Electrochemiluminesence Sensor via “on-off” System. Biosens, Bioelectron. 2017, 91, 436–440. DOI: 10.1016/j.bios.2016.12.069.
  • Yang, X.; Yu, Y.-Q.; Peng, L.-Z.; Lei, Y.-M.; Chai, Y.-Q.; Yuan, R.; Zhuo, Y. Strong Electrochemiluminescence from MOF Accelerator Enriched Quantum Dots for Enhanced Sensing of Trace cTnI. Anal. Chem. 2018, 90, 3995–4002. DOI: 10.1021/acs.analchem.7b05137.
  • Wannapaiboon, S.; Tu, M.; Sumida, K.; Khaletskaya, K.; Furukawa, S.; Kitagawa, S.; Fischer, R. A. Hierarchical Structuring of Metal-Organic Framework Thin-Films on Quartz Crystal Microbalance (QCM) Substrates for Selective Adsorption Applications. J. Mater. Chem. A 2015, 3, 23385–23394. DOI: 10.1039/C5TA05620A.
  • Chappanda, K. N.; Shekhah, O.; Yassine, O.; Patole, S. P.; Eddaoudi, M.; Salama, K. N. The Quest for Highly Sensitive QCM Humidity Sensors: The Coating of CNT/MOF Composite Sensing Films as Case Study. Sensor. Actuat. B-Chem. 2018, 257, 609–619. DOI: 10.1016/j.snb.2017.10.189.
  • Jin, D.; Xu, Q.; Yu, L.; Hu, X. Photoelectrochemical Detection of the Herbicide Clethodim by Using the Modified Metal-Organic Framework amino-MIL-125 (Ti)/TiO2. Microchim. Acta 2015, 182, 1885–1892. DOI: 10.1007/s00604-015-1505-9.
  • Zhang, F.; Zhang, P.; Wu, Q.; Xiong, W.; Kang, Q.; Shen, D. Impedance Response of Photoelectrochemical Sensor and Size-Exclusion Filter and Catalytic Effects in Mn3 (BTC)2/g-C3N4/TiO2 Nanotubes. Electrochim. Acta 2017, 247, 80–88. DOI: 10.1016/j.electacta.2017.06.084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.