382
Views
9
CrossRef citations to date
0
Altmetric
Review Article

Current Innovations of Metal Hexacyanoferrates-Based Nanocomposites toward Electrochemical Sensing: Materials Selection and Synthesis Methods

& ORCID Icon
Pages 393-404 | Published online: 23 Jul 2019

References

  • Liu, S.; Dai, G.; Luo, T.; Wang, J. Novel Hydrogen Peroxide Sensor Using a Multiwalled Carbon Nanotube-Cobalamin Nanocomposite Glassy Carbon Electrode. Instrum. Sci. Technol. 2015, 43, 649–660. DOI: 10.1080/10739149.2015.1043637.
  • Peng, H.; Liang, C. Electrochemical Determination of Hydrazine Based on Polydopamine-Reduced Graphene Oxide Nanocomposite. Fullerenes Nanotub. Carbon Nanostruct. 2017, 25, 29–33. DOI: 10.1080/1536383X.2016.1248759.
  • Liu, S.; Luo, T.; Li, L. Sensitive L-Cysteine Amperometric Sensor Based on a Glassy Carbon Electrode Modified by MnO2 Nanoparticles. Instrum. Sci. Technol. 2013, 41, 382–393. DOI: 10.1080/10739149.2013.769175.
  • Suffredini, H. B.; Santos, M. C.; De Souza, D.; Codognoto, L.; Homem‐de‐Mello, P.; Honório, K. M.; da Silva, A. B. F.; Machado, S. A. S.; Avaca, L. A. Electrochemical Behavior of Nicotine Studied by Voltammetric Techniques at Boron‐Doped Diamond Electrodes. Anal. Lett. 2005, 38, 1587–1599. DOI: 10.1081/AL-200065801.
  • Damiri, S.; Oskoei, Y. M.; Fouladgar, M. Highly Sensitive Voltammetric and Impedimetric Sensor Based on an Ionic Liquid/Cobalt Hexacyanoferrate Nanoparticle Modified Multi-Walled Carbon Nanotubes Electrode for Diclofenac Analysis. J. Exp. Nanosci. 2016, 11, 1384–1401. DOI: 10.1080/17458080.2016.1233581.
  • Felix, S.; Kollu, P.; Grace, A. N. Electrochemical Performance of Ag–CuO Nanocomposites towards Glucose Sensing. Mater. Res. Innov. 2019, 23, 27–32. DOI: 10.1080/14328917.2017.1358507.
  • Chen, W.; Cai, S.; Ren, Q. Q.; Wen, W.; Zhao, Y. D. Recent Advances in Electrochemical Sensing for Hydrogen Peroxide: A Review. Analyst 2012, 137, 49–58. DOI: 10.1039/C1AN15738H.
  • Leake, L. L. Electronic Noses and Tongues. Food Technol. 2006, 60, 96–102. DOI: 10.1016/B978-0-12-384862-8.00008-X.
  • Wang, J. Electrochemical Biosensors: Towards Point-of-Care Cancer Diagnostics. Biosens. Bioelectron. 2006, 21, 1887–1892. DOI: 10.1016/j.bios.2005.10.027.
  • Oliveira, P. R.; Kalinke, C.; Mangrich, A. S.; Marcolino-Junior, L. H.; Bergamini, M. F. Copper Hexacyanoferrate Nanoparticles Supported on Biochar for Amperometric Determination of Isoniazid. Electrochim. Acta 2018, 285, 373–380. DOI: 10.1016/j.electacta.2018.08.004.
  • Karyakin, A. A.; Karyakina, E. E.; Gorton, L. Amperometric Biosensor for Glutamate Using Prussian Blue-Based “Artificial Peroxidase” as a Transducer for Hydrogen Peroxide. Anal. Chem. 2000, 72, 1720–1723. DOI: 10.1021/ac990801o.
  • Karyakin, A. A. Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications. Electroanalysis 2001, 13, 813–819. DOI: 10.1002/1521-4109(200106)13:10< 813::AID-ELAN813 > 3.0.CO;2-Z.
  • Song, N.; Zhu, Y.; Ma, F.; Wang, C.; Lu, X. Facile Preparation of Prussian Blue/Polypyrrole Hybrid Nanofibers as Robust Peroxidase Mimics for Colorimetric Detection of L-Cysteine. Mater. Chem. Front. 2018, 2, 768–774. DOI: 10.1039/c7qm00571g.
  • Wang, C.; Zhang, L.; Guo, Z.; Xu, J.; Wang, H.; Shi, H.; Zhai, K.; Zhuo, X. A New Amperometric Hydrazine Sensor Based on Prussian Blue/Single-Walled Carbon Nanotube Nanocomposites. Electroanalysis 2010, 22, 1867–1872. DOI: 10.1002/elan.201000058.
  • Zhang, X. Z.; Zhou, Y.; Zhang, W.; Zhang, Y.; Gu, N. Polystyrene@Au@Prussian Blue Nanocomposites with Enzyme-Like Activity and Their Application in Glucose Detection. Colloids Surf. A: Physicochem. Eng. Asp. 2016, 490, 291–299. DOI: 10.1016/j.colsurfa.2015.11.035.
  • Karyakin, A. A.; Gitelmacher, O. V.; Karyakina, E. E. A High-Sensitive Glucose Amperometric Biosensor Based on Prussian Blue Modified Electrodes. Anal. Lett. 1994, 27, 2861–2869. DOI: 10.1080/00032719408000297.
  • Reilly, C. A.; Aust, S. D. Peroxidase Substrates Stimulate the Oxidation of Hydralazine to Metabolites Which Cause Single-Strand Breaks in DNA. Chem. Res. Toxicol. 1997, 10, 328–334. DOI: 10.1021/tx960189l.
  • Blasco, F.; Medina-Hernández, M. J.; Sagrado, S. Use of PH Gradients in Continuous-Flow Systems and Multivariate Regression Techniques Applied to the Determination of Methionine and Cysteine in Pharmaceuticals. Anal. Chim. Acta 1997, 348, 151–159. DOI: 10.1016/S0003-2670(97)00063-9.
  • Ricci, F.; Amine, A.; Moscone, D.; Palleschi, G. Prussian Blue Modified Carbon Nanotube Paste Electrodes: A Comparative Study and a Biochemical Application. Anal. Lett. 2003, 36, 1921–1938. DOI: 10.1081/AL-120023622.
  • Wen, W.; Qin, C.; Xie, Q.; Qin, X.; Chao, L.; Yi, H.; Dai, M.; Chen, C.; Huang, J.; Hu, J. Rapid Electrodeposition of a Gold–Prussian Blue Nanocomposite with Ultrahigh Electroactivity for Dual-Potential Amperometric Biosensing of Uric Acid. Analyst 2014, 139, 2904–2911. DOI: 10.1039/c3an02390g.
  • Wang, Z.; Yang, H.; Gao, B.; Tong, Y.; Zhang, X.; Su, L. Stability Improvement of Prussian Blue in Nonacidic Solutions via an Electrochemical Post-Treatment Method and the Shape Evolution of Prussian Blue from Nanospheres to Nanocubes. Analyst 2014, 139, 1127–1133. DOI: 10.1039/c3an02071a.
  • Zhang, R. Z.; Pan, B. G.; Wang, H. N.; Dan, J. M.; Hong, C. L.; Li, H. L. Polydopamine and Graphene Oxide Synergistically Modified Prussian Blue Electrochemical Immunosensor for the Detection of Alpha-Fetoprotein with Enhanced Stability and Sensibility. RSC Adv. 2015, 5, 38176–38182. DOI: 10.1039/c5ra04325e.
  • Karyakin, A. A.; Karyakina, E. E.; Gorton, L. On the Mechanism of H2O2 Reduction at Prussian Blue Modified Electrodes. Electrochem. Commun. 1999, 1, 78–82. DOI: 10.1016/S1388-2481(99)00010-7..
  • Karyakin, A. A.; Puganova, E. A.; Budashov, I. A.; Kurochkin, I. N.; Karyakina, E. E.; Levchenko, V. A.; Matveyenko, V. N.; Varfolomeyev, S. D. Prussian Blue Based Nanoelectrode Arrays for H2O2 Detection. Anal. Chem. 2004, 76, 474–478. DOI: 10.1021/ac034859l.
  • Fiorito, P. A.; Brett, C. M. A.; Córdoba De Torresi, S. I. Polypyrrole/Copper Hexacyanoferrate Hybrid as Redox Mediator for Glucose Biosensors. Talanta 2006, 69(2 SPEC. ISS), 403–408. DOI: 10.1016/j.talanta.2005.09.040.
  • Puganova, E. A.; Karyakin, A. A. New Materials Based on Nanostructured Prussian Blue for Development of Hydrogen Peroxide Sensors. Sens. Actuators B Chem. 2005, 109, 167–170. DOI: 10.1016/j.snb.2005.03.094.
  • Thévenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S. Electrochemical Biosensors: Recommended Definitions and Classification. Biosens. Bioelectron. 2001, 16, 121–131. DOI: 10.1016/S0956-5663(01)00115-4..
  • Kao, J.; Thorkelsson, K.; Bai, P.; Rancatore, B. J.; Xu, T. Toward Functional Nanocomposites: Taking the Best of Nanoparticles, Polymers, and Small Molecules. Chem. Soc. Rev. 2013, 42, 2654–2678. DOI: 10.1039/c2cs35375j.
  • Balint, R.; Cassidy, N. J.; Cartmell, S. H. Conductive Polymers: Towards a Smart Biomaterial for Tissue Engineering. Acta Biomater. 2014, 10, 2341–2353. DOI: 10.1016/j.actbio.2014.02.015.
  • Park, Y. W. Editorial for the Conducting Polymers for Carbon Electronics Themed Issue. Chem. Soc. Rev. 2010, 39, 2352. DOI: 10.1039/c005384h.
  • Tao, J. Z.; Xu, G. R.; Hao, H. L.; Yang, F. X.; Ahn, K. S.; Lee, W. Y. Poly(m-Phenylenediamine)-Prussian Blue Hybrid Film Formed by One-Step Electrochemical Deposition for Glucose Biosensor. J. Electroanal. Chem. 2013, 689, 96–102. DOI: 10.1016/j.jelechem.2012.09.043.
  • Zhao, J.; Yue, P.; Tricard, S.; Pang, T.; Yang, Y.; Fang, J. Prussian Blue (PB)/Carbon Nanopolyhedra/Polypyrrole Composite as Electrode: A High Performance Sensor to Detect Hydrazine with Long Linear Range. Sens. Actuators B: Chem. 2017, 251, 706–712. DOI: 10.1016/j.snb.2017.05.042.
  • Sheng, Q.; Zhang, D.; Wu, Q.; Zheng, J.; Tang, H. Electrodeposition of Prussian Blue Nanoparticles on Polyaniline Coated Halloysite Nanotubes for Nonenzymatic Hydrogen Peroxide Sensing. Anal. Methods 2015, 7, 6896–6903. DOI: 10.1039/c5ay01329a.
  • Amarnath, C. A.; Sawant, S. N. Tailoring Synthesis Strategies for Polyaniline-Prussian Blue Composite in View of Energy Storage and H2O2 Sensing Application. Electrochim. Acta 2019, 295, 294–301. DOI: 10.1016/j.electacta.2018.10.132.
  • Yang, Z.; Zheng, X.; Zheng, J. Facile Synthesis of Prussian Blue/Hollow Polypyrrole Nanocomposites for Enhanced Hydrogen Peroxide Sensing. Ind. Eng. Chem. Res. 2016, 55, 12161–12166. DOI: 10.1021/acs.iecr.6b02953.
  • Limachi, D. G. B.; Gonçales, V. R.; Cintra, E. P.; Córdoba De Torresi, S. I. Controlling Hydrophilicity and Electrocatalytic Properties of Metallic Hexacyanoferrates/Conducting Polymers Hybrids for the Detection of H2O2. Electrochim. Acta 2013, 110, 459–464. DOI: 10.1016/j.electacta.2013.03.022.
  • Lee, P. K.; Nia, P. M.; Woi, P. M. Facile Self-Assembled Prussian Blue-Polypyrrole Nanocomposites on Glassy Carbon: Comparative Synthesis Methods and Its Electrocatalytic Reduction towards H2O2. Electrochim. Acta 2017, 246, 841–852. DOI: 10.1016/j.electacta.2017.06.083.
  • Lupu, S.; Lakard, B.; Hihn, J. Y.; Dejeu, J.; Rougeot, P.; Lallemand, S. Morphological Characterization and Analytical Application of Poly(3,4-Ethylenedioxythiophene)-Prussian Blue Composite Films Electrodeposited in Situ on Platinum Electrode Chips. Thin Solid Films 2011, 519, 7754–7762. DOI: 10.1016/j.tsf.2011.06.011.
  • Fiorito, P. A.; De Torresi, S. I. C. Hybrid Nickel Hexacyanoferrate/Polypyrrole Composite as Mediator for Hydrogen Peroxide Detection and Its Application in Oxidase-Based Biosensors. J. Electroanal. Chem. 2005, 581, 31–37. DOI: 10.1016/j.jelechem.2005.01.039.
  • Miao, Y.; Liu, J. Assembly and Electroanalytical Performance of Prussian Blue/Polypyrrole Composite Nanoparticles Synthesized by the Reverse Micelle Method. Sci. Technol. Adv. Mater. 2009, 10, 025001. DOI: 10.1088/1468-6996/10/2/025001.
  • Ding, Y.; Hu, Y. L.; Gu, G.; Xia, X. H. Controllable Synthesis and Formation Mechanism Investigation of Prussian Blue Nanocrystals by Using the Polysaccharide Hydrolysis Method. J. Phys. Chem. C 2009, 113, 14838–14843. DOI: 10.1021/jp905704c.
  • Qiu, J. D.; Peng, H. Z.; Liang, R. P.; Li, J.; Xia, X. H. Synthesis, Characterization, and Immobilization of Prussian Blue-Modified Au Nanoparticles: Application to Electrocatalytic Reduction of H2O2. Langmuir 2007, 23, 2133–2137. DOI: 10.1021/la062788q.
  • Jin, E.; Bian, X.; Lu, X.; Wang, C. Fabrication of Multiwalled Carbon Nanotubes/Polypyrrole/Prussian Blue Ternary Composite Nanofibers and Their Application for Enzymeless Hydrogen Peroxide Detection. J. Mater. Sci. 2012, 47, 4326–4331. DOI: 10.1007/s10853-012-6283-8.
  • Yang, T.; Gao, Y.; Liu, Z.; Xu, J.; Lu, L.; Yu, Y. Three-Dimensional Gold Nanoparticles/Prussian Blue-Poly(3,4-Ethylenedioxythiophene) Nanocomposite as Novel Redox Matrix for Label-Free Electrochemical Immunoassay of Carcinoembryonic Antigen. Sens. Actuators B: Chem. 2017, 239, 76–84. DOI: 10.1016/j.snb.2016.08.001.
  • Prasanth, R.; Shankar, R.; Gupta, N.; Rana, S.; Ahn, J. H. Application of Carbon Nanotubes for Resolving Issues and Challenges on Electrochemical Capacitors. In Handbook of Polymer Nanocomposites. Processing, Performance and Application: Volume B: Carbon Nanotube Based Polymer Composites; Springer Berlin Heidelberg: Berlin, Heidelberg, 2015; pp 415–446. DOI: 10.1007/978-3-642-45229-1_32.
  • Wong, M. H.; Zhang, Z.; Yang, X.; Chen, X.; Ying, J. Y. One-Pot in Situ Redox Synthesis of Hexacyanoferrate/Conductive Polymer Hybrids as Lithium-Ion Battery Cathodes. Chem. Commun. 2015, 51, 13674–13677. DOI: 10.1039/c5cc04694g.
  • Tuo, X.; Li, B.; Chen, C.; Huang, Z.; Huang, H.; Li, L.; Yu, X. Facile Assembly of Polypyrrole/Prussian Blue Aerogels for Hydrogen Peroxide Reduction. Synth. Met. 2016, 213, 73–77. DOI: 10.1016/j.synthmet.2016.01.006.
  • Wei, D.; Lin, X.; Li, L.; Shang, S.; Yuen, M. C. W.; Yan, G.; Yu, X. Controlled Growth of Polypyrrole Hydrogels. Soft Matter 2013, 9, 2832–2836. DOI: 10.1039/c2sm27253a.
  • Ojani, R.; Hamidi, P.; Raoof, J. B. Efficient Nonenzymatic Hydrogen Peroxide Sensor in Acidic Media Based on Prussian Blue Nanoparticles-Modified Poly(o-Phenylenediamine)/Glassy Carbon Electrode. Chin. Chem. Lett. 2016, 27, 481–486. DOI: 10.1016/j.cclet.2015.12.030.
  • Borisova, A. V.; Karyakina, Elena E.; Cosnier, Serge.; Karyakin, Arkady A. A. Current-Free Deposition of Prussian Blue with Organic Polymers: Towards Improved Stability and Mass Production of the Advanced Hydrogen Peroxide Transducer. Electroanalysis 2009, 21, 409–414. DOI: 10.1002/elan.200804408.
  • Husmann, S.; Nossol, E.; Zarbin, A. J. G. Carbon Nanotube/Prussian Blue Paste Electrodes: Characterization and Study of Key Parameters for Application as Sensors for Determination of Low Concentration of Hydrogen Peroxide. Sens. Actuators B: Chem. 2014, 192, 782–790. DOI: 10.1016/j.snb.2013.10.074.
  • Zhai, X.; Wei, W.; Zeng, J.; Liu, X.; Gong, S. New Nanocomposite Based on Prussian Blue Nanoparticles/Carbon Nanotubes/Chitosan and Its Application for Assembling of Amperometric Glucose Biosensor. Anal. Lett. 2006, 39, 913–926. DOI: 10.1080/00032710600614057.
  • Jin, E.; Lu, X.; Cui, L.; Chao, D.; Wang, C. Fabrication of Graphene/Prussian Blue Composite Nanosheets and Their Electrocatalytic Reduction of H2O2. Electrochim. Acta 2010, 55, 7230–7234. DOI: 10.1016/j.electacta.2010.07.029.
  • Zhai, J.; Zhai, Y.; Wen, D.; Dong, S. Prussian Blue/Multiwalled Carbon Nanotube Hybrids: Synthesis, Assembly and Electrochemical Behavior. Electroanalysis 2009, 21, 2207–2212. DOI: 10.1002/elan.200904680.
  • Wang, L.; Ye, Y.; Zhu, H.; Song, Y.; He, S.; Xu, F.; Hou, H. Controllable Growth of Prussian Blue Nanostructures on Carboxylic Group-Functionalized Carbon Nanofibers and Its Application for Glucose Biosensing. Nanotechnology 2012, 23, 455502. DOI: 10.1088/0957-4484/23/45/455502.
  • Choi, H. C.; Shim, M.; Bangsaruntip, S.; Dai, H. Spontaneous Reduction of Metal Ions on the Sidewalls of Carbon Nanotubes. J. Am. Chem. Soc. 2002, 124, 9058–9059.
  • Zhang, W.; Wang, L.; Zhang, N.; Wang, G.; Fang, B. Functionalization of Single-Walled Carbon Nanotubes with Cubic Prussian Blue and Its Application for Amperometric Sensing. Electroanalysis 2009, 21, 2325–2330. DOI: 10.1002/elan.200904690.
  • Nossol, E.; Zarbin, A. J. G. A Simple and Innovative Route to Prepare a Novel Carbon Nanotube/Prussian Blue Electrode and Its Utilization as a Highly Sensitive H2O2 Amperometric Sensor. Adv. Funct. Mater. 2009, 19, 3980–3986. DOI: 10.1002/adfm.200901478.
  • Zhang, M.; Hou, C.; Halder, A.; Ulstrup, J.; Chi, Q. Interlocked Graphene–Prussian Blue Hybrid Composites Enable Multifunctional Electrochemical Applications. Biosens. Bioelectron. 2017, 89, 570–577. DOI: 10.1016/j.bios.2016.02.044.
  • Zhang, Y.; Sun, X.; Zhu, L.; Shen, H.; Jia, N. Electrochemical Sensing Based on Graphene Oxide/Prussian Blue Hybrid Film Modified Electrode. Electrochim. Acta 2011, 56, 1239–1245. DOI: 10.1016/j.electacta.2010.11.011.
  • Cao, L.; Liu, Y.; Zhang, B.; Lu, L. In Situ Controllable Growth of Prussian Blue Nanocubes on Reduced Graphene Oxide: Facile Synthesis and Their Application as Enhanced Nanoelectrocatalyst for H2O2 Reduction. ACS Appl. Mater. Interfaces 2010, 2, 2339–2346. DOI: 10.1021/am100372m.
  • Fang, B.; Shen, R.; Zhang, W.; Wang, G.; Zhang, C. Electrocatalytic Oxidation of Hydrazine at a Chromium Hexacyanoferrate/Single-Walled Carbon Nanotube Modified Glassy Carbon Electrode. Microchim. Acta 2009, 165, 231–236. DOI: 10.1007/s00604-008-0125-z.
  • Senthil Kumar, A.; Barathi, P.; Chandrasekara Pillai, K. In Situ Precipitation of Nickel-Hexacyanoferrate within Multi-Walled Carbon Nanotube Modified Electrode and Its Selective Hydrazine Electrocatalysis in Physiological PH. J. Electroanal. Chem. 2011, 654, 85–95. DOI: 10.1016/j.jelechem.2011.01.022.
  • Li, X.; Chen, Z.; Zhong, Y.; Yang, F.; Pan, J.; Liang, Y. Cobalt Hexacyanoferrate Modified Multi-Walled Carbon Nanotubes/Graphite Composite Electrode as Electrochemical Sensor on Microfluidic Chip. Anal. Chim. Acta 2012, 710, 118–124. DOI: 10.1016/j.aca.2011.10.035.
  • Deng, K.; Li, C.; Qiu, X.; Zhou, J.; Hou, Z. Synthesis of Cobalt Hexacyanoferrate Decorated Graphene Oxide/Carbon Nanotubes-COOH Hybrid and Their Application for Sensitive Detection Ofhydrazine. Electrochim. Acta 2015, 174, 1096–1103. DOI: 10.1016/j.electacta.2015.06.104.
  • Wang, L.; Tricard, S.; Yue, P.; Zhao, J.; Fang, J.; Shen, W. Polypyrrole and Graphene Quantum Dots @ Prussian Blue Hybrid Film on Graphite Felt Electrodes: Application for Amperometric Determination of l-Cysteine. Biosens. Bioelectron. 2016, 77, 1112–1118. DOI: 10.1016/j.bios.2015.10.088.
  • Liu, X. W.; Yao, Z. J.; Wang, Y. F.; Wei, X. W. Graphene Oxide Sheet-Prussian Blue Nanocomposites: Green Synthesis and Their Extraordinary Electrochemical Properties. Colloids Surfaces B Biointerfaces 2010, 81, 508–512. DOI: 10.1016/j.colsurfb.2010.07.049.
  • Devadas, B.; Yeh, H. T.; Chen, S. M.; Piraman, S. Electrochemical Preparation of Yttrium Hexacyanoferrate on Reduced Graphene Oxide and Its Application to Analgesic Drug Sensor. Electroanalysis 2014, 26, 1712–1720. DOI: 10.1002/elan.201400169.
  • Ni, P.; Zhang, Y.; Sun, Y.; Shi, Y.; Dai, H.; Hu, J.; Li, Z. Facile Synthesis of Prussian Blue @ Gold Nanocomposite for Nonenzymatic Detection of Hydrogen Peroxide. RSC Adv. 2013, 3, 15987–15992. DOI: 10.1039/c3ra42572j.
  • Zhao, J.; Liu, J.; Tricard, S.; Wang, L.; Liang, Y.; Cao, L.; Fang, J.; Shen, W. Amperometric Detection of Hydrazine Utilizing Synergistic Action of Prussian Blue @ Silver Nanoparticles/Graphite Felt Modified Electrode. Electrochim. Acta 2015, 171, 121–127. DOI: 10.1016/j.electacta.2015.05.027.
  • Han, L.; Tricard, S.; Fang, J.; Zhao, J.; Shen, W. Prussian Blue @ Platinum Nanoparticles/Graphite Felt Nanocomposite Electrodes: Application as Hydrogen Peroxide Sensor. Biosens. Bioelectron. 2013, 43, 120–124. DOI: 10.1016/j.bios.2012.12.003.
  • Liu, Y.; Chu, Z.; Jin, W. A Sensitivity-Controlled Hydrogen Peroxide Sensor Based on Self-Assembled Prussian Blue Modified Electrode. Electrochem. Commun. 2009, 11, 484–487. DOI: 10.1016/j.elecom.2008.12.029.
  • Bai, X.; Shiu, K. K. Spontaneous Deposition of Prussian Blue on Reduced Graphene Oxide - Gold Nanoparticles Composites for the Fabrication of Electrochemical Biosensors. Electroanalysis 2015, 27, 74–83. DOI: 10.1002/elan.201400358.
  • Song, Z.; Yuan, R.; Chai, Y.; Yin, B.; Fu, P.; Wang, J. Multilayer Structured Amperometric Immunosensor Based on Gold Nanoparticles and Prussian Blue Nanoparticles/Nanocomposite Functionalized Interface. Electrochim. Acta 2010, 55, 1778–1784. DOI: 10.1016/j.electacta.2009.10.067.
  • Pandey, P. C.; Pandey, A. K.; Chauhan, D. S. Nanocomposite of Prussian Blue Based Sensor for l-Cysteine: Synergetic Effect of Nanostructured Gold and Palladium on Electrocatalysis. Electrochim. Acta 2012, 74, 23–31. DOI: 10.1016/j.electacta.2012.03.179.
  • Jiang, H.; Chen, Z.; Cao, H.; Huang, Y. Peroxidase-like Activity of Chitosan Stabilized Silver Nanoparticles for Visual and Colorimetric Detection of Glucose. Analyst 2012, 137, 5560–5564. DOI: 10.1039/c2an35911a.
  • Pandey, P. C.; Singh, R.; Pandey, Y. Controlled Synthesis of Functional Ag, Ag-Au/Au-Ag Nanoparticles and Their Prussian Blue Nanocomposites for Bioanalytical Applications. RSC Adv. 2015, 5, 49671–49679. DOI: 10.1039/c5ra06251a.
  • Wang, Z.; Sun, S.; Hao, X.; Ma, X.; Guan, G.; Zhang, Z.; Liu, S. A Facile Electrosynthesis Method for the Controllable Preparation of Electroactive Nickel Hexacyanoferrate/Polyaniline Hybrid Films for H2O2 Detection. Sens. Actuators B: Chem 2012, 171–172, 1073–1080. DOI: 10.1016/j.snb.2012.06.036.
  • Han, L.; Wang, Q.; Tricard, S.; Liu, J.; Fang, J.; Zhao, J.; Shen, W. Amperometric Detection of Hydrogen Peroxide Utilizing Synergistic Action of Cobalt Hexacyanoferrate and Carbon Nanotubes Chemically Modified with Platinum Nanoparticles. RSC Adv. 2013, 3, 281–287. DOI: 10.1039/c2ra21998k.
  • Zou, Y.; Sun, L.; Xu, F. Prussian Blue Electrodeposited on MWNTs-PANI Hybrid Composites for H2O2 detection. Talanta 2007, 72, 437–442.
  • Zou, Y.; Sun, L. X.; Xu, F. Biosensor Based on Polyaniline-Prussian Blue/Multi-Walled Carbon Nanotubes Hybrid Composites. Biosens. Bioelectron. 2007, 22, 2669–2674. DOI: 10.1016/j.bios.2006.10.035.
  • Zhang, Y.; Xie, J.; Xiao, S.; Yang, Z.; Pang, P.; Bai, W.; Gao, Y. Facile and Controllable Synthesis of Prussian Blue Nanocubes on TiO2-Graphene Composite Nanosheets for Nonenzymatic Detection of Hydrogen Peroxide. Anal. Methods 2014, 6, 9761–9768. DOI: 10.1039/c4ay02418d.
  • Rapecki, T.; Donten, M.; Stojek, Z. Electrodeposition of Polypyrrole-Au Nanoparticles Composite from One Solution Containing Gold Salt and Monomer. Electrochem. Commun. 2010, 12, 624–627. DOI: 10.1016/j.elecom.2010.02.015.
  • Somani, P.; Radhakrishnan, S. Charge Transport Processes in Conducting Polypyrrole/Prussian Blue Bilayers. Mater. Chem. Phys. 2002, 76, 15–19. DOI: 10.1016/S0254-0584(01)00496-5..
  • Zhao, H.; Yuan, Y.; Adeloju, S.; Wallace, G. G. Study on the Formation of the Prussian Blue Films on the Polypyrrole Surface as a Potential Mediator System for Biosensing Applications. Anal. Chim. Acta 2002, 472, 113–121. DOI: 10.1016/S0003-2670(02)00937-6..
  • Derwinska, K.; Miecznikowski, K.; Koncki, R.; Kulesza, P. J.; Glab, S.; Malik, M. A. Application of Prussian Blue Based Composite Film with Functionalized Organic Polymer to Construction of Enzymatic Glucose Biosensor. Electroanalysis 2003, 15, 1843–1849. DOI: 10.1002/elan.200302761.
  • Gonales, V. R.; Matsubara, E. Y.; Rosolen, J. M.; Córdoba De Torresi, S. I. Micro/Nanostructured Carbon Composite Modified with a Hybrid Redox Mediator and Enzymes as a Glucose Biosensor. Carbon N. Y. 2011, 49, 3039–3047. DOI: 10.1016/j.carbon.2011.03.024.
  • Zhai, C.; Sun, X.; Zhao, W.; Gong, Z.; Wang, X. Acetylcholinesterase Biosensor Based on Chitosan/Prussian Blue/Multiwall Carbon Nanotubes/Hollow Gold Nanospheres Nanocomposite Film by One-Step Electrodeposition. Biosens. Bioelectron. 2013, 42, 124–130. DOI: 10.1016/j.bios.2012.10.058.
  • Kulesza, P. J.; Miecznikowski, K.; Malik, M. A.; Galkowski, M.; Chojak, M.; Caban, K.; Wieckowski, A. Electrochemical Preparation and Characterization of Hybrid Films Composed of Prussian Blue Type Metal Hexacyanoferrate and Conducting Polymer. Electrochim. Acta 2001, 46, 4065–4073. DOI: 10.1016/S0013-4686(01)00687-9..
  • Karyakin, A. A.; Chaplin, M. F. Polypyrrole-Prussian Blue Films with Controlled Level of Doping: Codeposition of Polypyrrole and Prussian Blue. J. Electroanal. Chem. 1994, 370, 301–303. DOI: 10.1016/0022-0728(93)03163-J..
  • Zolotukhina, E. V.; Bezverkhyy, I. S.; Vorotyntsev, M. A. One-Stage Periodical Anodic-Cathodic Double Pulse Deposition of Nanocomposite Materials. Application to Prussian Blue/Polypyrrole Film Coated Electrodes. Electrochim. Acta 2014, 122, 247–258. DOI: 10.1016/j.electacta.2013.10.182.
  • Özkale, B.; Pellicer, E.; Zeeshan, M. A.; López-Barberá, J. F.; Nogués, J.; Sort, J.; Nelson, B. J.; Pané, S. One-Pot Electrosynthesis of Multi-Layered Magnetic Metallopolymer Nanocomposites. Nanoscale 2014, 6, 4683–4690. DOI: 10.1039/c3nr06131k.
  • Hostert, L.; Alvarenga, G. de.; Marchesi, L. F.; Soares, A. L.; Vidotti, M. One-Pot Sonoelectrodeposition of Poly(Pyrrole)/Prussian Blue Nanocomposites: Effects of the Ultrasound Amplitude in the Electrode Interface and Electrocatalytical Properties. Electrochim. Acta 2016, 213, 822–830. DOI: 10.1016/j.electacta.2016.08.013.
  • Zou, Y.; Wang, Q.; Xiang, C.; She, Z.; Chu, H.; Qiu, S.; Xu, F.; Liu, S.; Tang, C.; Sun, L. One-Pot Synthesis of Ternary Polypyrrole-Prussian-Blue-Graphene-Oxide Hybrid Composite as Electrode Material for High-Performance Supercapacitors. Electrochim. Acta 2016, 188, 126–134. DOI: 10.1016/j.electacta.2015.11.123.
  • Santos, P. L.; Katic, V.; Toledo, K. C. F.; Bonacin, J. A. Photochemical One-Pot Synthesis of Reduced Graphene Oxide/Prussian Blue Nanocomposite for Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid. Sens. Actuators B: Chem. 2018, 255, 2437–2447. DOI: 10.1016/j.snb.2017.09.036.
  • Zhang, Y.; Chen, H.; Gao, X.; Chen, Z.; Lin, X. A Novel Immunosensor Based on an Alternate Strategy of Electrodeposition and Self-Assembly. Biosens. Bioelectron. 2012, 35, 277–283. DOI: 10.1016/j.bios.2012.02.063.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.