705
Views
22
CrossRef citations to date
0
Altmetric
Review Articles

An Optimistic Vision of Future: Diagnosis of Bacterial Infections by Sensing Their Associated Volatile Organic Compounds

, , ORCID Icon, , & ORCID Icon
Pages 501-512 | Published online: 12 Sep 2019

References

  • Ratiu, I.-A.; Ligor, T.; Bocos-Bintintan, V.; Buszewski, B. Mass Spectrometric Techniques for the Analysis of Volatile Organic Compounds Emitted from Bacteria. Bioanalysis. 2017, 9, 1069–1092. DOI:10.4155/bio-2017-0051.
  • Sohrabi, M.; Zhang, L.; Zhang, K.; Ahmetagic, A.; Wei, M.-Q. Volatile Organic Compounds as Novel Markers for the Detection of Bacterial Infections. Clin. Microbial. 2014, 3, 1000151. DOI:10.4172/2327-5073.1000151.
  • Nunvar, J.; Kalferstova, L.; Bloodworth, R.-A.-M.; Kolar, M.; Degrossi, J.; Lubovich, S.; Cardona, S.-T.; Drevinek, P. Understanding the Pathogenicity of Burkholderia Contaminants, an Emerging Pathogen in Cystic Fibrosis. PLoS ONE. 2016, 11, e0160975. DOI:10.1371/journal.pone.0160975.
  • Phillips, M.; Basa-Dalay, V.; Blais, J.; Bothamley, G.; Chaturvedi, A.; Modi, K.-D.; Pandya, M.; Natividad, M.-P.; Patel, U.; Ramraje, N.-N. Point-of-Care Breath Test for Biomarkers of Active Pulmonary Tuberculosis. Tuberculosis. 2012, 92, 314–320. DOI:10.1016/j.tube.2012.04.002.
  • Zhang, J.; Fang, A.; Wang, B.; Kim, S.-H.; Bogdanov, B.; Zhou, Z.; McClain, C.; Zhang, X. iMatch: A Retention Index Tool for Analysis of Gas Chromatography-Mass Spectrometry Data. J. Chromatogr. A. 2011, 1218, 6522–6530. DOI: 10.1016/j.chroma.2011.07.039.
  • Woolfenden, E. Sorbent-Based Sampling Methods for Volatile and Semi-Volatile Organic Compounds in Air. Part 2. Sorbent Selection and Other Aspects of Optimizing Air Monitoring Methods. J. Chromatogr. A. 2010, 1217, 2685–2694. DOI:10.1016/j.chroma.2010.01.015.
  • Laaks, J.; Jochmann, M.-A.; Schmidt, T.-C. Solvent-Free Microextraction Techniques in Gas Chromatography. Anal. Bioanal. Chem. 2012, 402, 565–571. DOI:10.1007/s00216-011-5511-4.
  • Ibrahim, W.; Wilde, M.; Cordell, R.; Salman, D.; Ruszkiewicz, D.; Bryant, L.; Richardson, M.; Free, R.-C.; Zhao, B.; Yousuf, A. Assessment of Breath Volatile Organic Compounds in Acute Cardiorespiratory Breathlessness: A Protocol Describing a Prospective Real-World Observational Study. BMJ Open. 2019, 9, e025486. DOI:10.1136/bmjopen.
  • Zhu, J.; Bean, H.-D.; Kuo, Y.-M.; Hill, J.-E. Fast Detection of Volatile Organic Compounds from Bacterial Cultures by Secondary Electrospray Ionization-Mass Spectrometry. J. Clin. Microbiol. 2010, 48, 4426–4431. DOI:10.1128/JCM.00392-10.
  • Moll, V.-H.; Bocoş-Binţinţan, V.; Raţiu, I.-A.; Ruszkiewicz, D.; Thomas, C.-L.-P. Control of Dopants/Modifiers in Differential Mobility Spectrometry Using a Piezoelectric Injector. Analyst. 2012, 137, 1458–1465. DOI:10.1039/c2an16109e.
  • Bocos-Bintintan, V.; Smolenschi, A.; Ratiu, I.-A. Rapid Determination of Indoor Air Contaminants in Shoe Shops Using Photoionization Detectors. Stud. UBB Chem. 2016, LXI, 203–212.
  • Ghira, G.-B.; Raţiu, I.-A.; Bocoş-Binţinţan, V. Fast Characterization of Pyridine Using Ion Mobility Spectrometry and Photoionization Detection. Environ. Eng. Manag. J. 2013, 12, 251–256. DOI:10.30638/eemj.2013.029.
  • Wilson, A.-D. Application of Electronic-Nose Technologies and VOC-Biomarkers for the Noninvasive Early Diagnosis of Gastrointestinal Diseases. Sensors. 2018, 18, 2613. DOI:10.3390/s18082613.
  • Buszewski, B.; Rațiu, I. A.; Milanowski, M.; Pomastowski, P.; Ligor, T. The Effect of Biosilver Nanoparticles on Different Bacterial Strains’ Metabolism Reflected in Their VOCs Profiles. J. Breath Res. 2018, 12, 027105. DOI:10.1088/1752-7163/aa820f.
  • Ratiu, I.-A.; Ligor, T.; Bocos-Bintintan, V.; Szeliga, J.; Machała, K.; Jackowski, M.; Buszewski, B. GC-MS Application in Determination of Volatile Profiles Emitted by Infected and Uninfected Human Tissue. J. Breath Res. 2019, 13, 026003. DOI:10.1088/1752-7163/aaf708.
  • Lai, S.-Y.; Deffenderfer, O.-F.; Hanson, W.; Phillips, M.-P.; Thaler, E.-R. Identification of Upper Respiratory Bacterial Pathogens with the Electronic Nose. Laryngoscope. 2002, 112, 975–979. DOI:10.1097/00005537-200206000-00007.
  • Filipiak, W.; Sponring, A.; Baur, M.-M.; Filipiak, A.; Ager, C.; Wiesenhofer, H.; Nagl, M.; Troppmair, J.; Amann, A. Molecular Analysis of Volatile Metabolites Released Specifically by Staphylococcus aureus and Pseudomonas aeruginosa. BMC Microbiol. 2012, 12, 113. DOI:10.1186/1471-2180-12-113.
  • Ratiu, I.-A.; Bocos-Bintintan, V.; Patrut, A.; Moll, V.-H.; Turner, M.; Thomas, C.-L.-P. Discrimination of Bacteria by Rapid Sensing Theirmetabolic Volatiles Using an Aspiration-Type Ionmobility Spectrometer (a-IMS) and Gas Chromatography-Mass Spectrometry GC-MS. Anal. Chim. Acta. 2017, 982, 209–217. https://doi.org/10.1088/1752-7163/aaf708. DOI:10.1016/j.aca.2017.06.031.
  • Thorn, R.-M.-S.; Reynold, D.-M.; Greenman, J. Multivariate Analysis of Bacterial Volatile Compound Profiles for Discrimination between Selected Species and Strains in Vitro. J. Microbiol. Meth. 2011, 84, 258–264. DOI:10.1016/j.mimet.2010.12.001.
  • Jünger, M.; Vautz, W.; Kuhns, M.; Hofmann, L.; Ulbricht, S.; Baumbach, J.-I.; Quintel, M.; Perl, T. Ion Mobility Spectrometry for Microbial Volatile Organic Compounds: A New Identification Tool for Human Pathogenic Bacteria. Appl. Microbiol. Biotechnol. 2012, 93, 2603–2614. DOI:10.1007/s00253-012-3924-4.
  • Phillips, M.; Basa-Dalay, V.; Bothamley, G.; Cataneo, R.-N.; Lam, P.-K.; Natividad, M.-P.-R.; Schmitt, P.; Wai, J. Breath Biomarkers of Active Pulmonary Tuberculosis. Tuberculosis 2010, 90, 145–151. DOI:10.1016/j.tube.2010.01.003.
  • Syhre, M.; Manning, L.; Phuanukoonnon, S.; Harino, P.; Chambers, S.-T. The Scent of Mycobacterium tuberculosis – Part II Breath. Tuberculosis. 2009, 89, 263–266. DOI:10.1016/j.tube.2009.04.003.
  • Tait, E.; Perry, J.-D.; Stanforth, S.-P.; Dean, J.-R. Use of Volatile Compounds as a Diagnostic Tool for the Detection of Pathogenic Bacteria. Tr. Anal. Chem. 2014, 53, 117–125. DOI:10.1016/j.trac.2013.08.011.
  • DeMilo, A.-B.; Lee, C.-J.; Moreno, D.-S.; Martinez, A.-J. Identification of Volatiles Derived from Citrobacter freundii Fermentation of a Trypticase Soy Broth. J. Agric. Food Chem. 1996, 44, 607–612. DOI:10.1021/jf950525o.
  • Probert, C.-S.-J.; Jones, P.-R.-H.; Ratcliffe, N.-M. A Novel Method for Rapidly Diagnosing the Causes of Diarrhoea. Gut. 2004, 53, 58–61. DOI:10.1136/gut.53.1.58.
  • Robroeks, C. M. H. H. T.; van Berkel, J. J. B. N.; Dallinga, J. W.; Jöbsis, Q.; Zimmermann, L. J. I.; Hendriks, H. J. E.; Wouters, M. F. M.; van der Grinten, C. P. M.; van de Kant, K. D. G.; van Schooten, F.-J.; Dompeling, E. Metabolomics of Volatile Organic Compounds in Cystic Fibrosis Patients and Controls. Pediatr. Res. 2010, 68, 75–80. DOI:10.1203/00006450-201011001-00143.
  • Mgode, G. F.; Weetjens, B. J.; Nawrath, T.; Lazar, D.; Cox, C.; Jubitana, M.; Mahoney, A.; Kuipers, D.; Machang'u, R. S.; Weiner, J.; et al. Mycobacterium tuberculosis Volatiles for Diagnosis of Tuberculosis by Cricetomys Rats. Tuberculosis. 2012, 92, 535–542. DOI:10.1016/j.tube.2012.07.006.
  • Karpas, Z.; Cohen, C.; Atweh, E.; Barnard, G.; Golan, M. Recent Applications of Ion Mobility Spectrometry in Diagnosis of Vaginal Infections. Int. J. Spec. 2012, 2012, 323859. DOI:10.1155/2012/323859.
  • Storer, M.-K.; Hibbard-Melles, K.; Davis, B.; Scotter, J. Detection of Volatile Compounds Produced by Microbial Growth in Urine by Selected Ion Flow Tube Mass Spectrometry (SIFT-MS). J. Microbiol. Met. 2011, 87, 111–113. DOI:10.1016/j.mimet.2011.06.012.
  • Garner, C.-E.; Smith, S.; Bardhan, P.-K.; Ratcliffe, N.-M.; Probert, C.-S.-J. A Pilot Study of Faecal Volatile Organic Compounds in Faeces from Cholera Patients in Bangladesh to Determine Their Utility in Disease Diagnosis. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 1171–1173. DOI:10.1016/j.trstmh.2009.02.004.
  • Ratiu, I.-A.; Ligor, T.; Monedeiro, F.; Al-Suod, H.; Bocos-Bintintan, V.; Szeliga, J.; Jackowski, M.; Buszewski, B. Features of Chemical Profiles Released from Infected versus Uninfected Human Exudates. Stud. UBB Chem. 2019, 64, 207. in press.
  • Eckenrode, B.-A. Environmental and Forensic Applications of Field-Portable GC-MS: An Overview. J. Am. Soc. Mass Spectrom. 2001, 12, 683–693. https://doi.org/10.1016/S1044-0305(01)00251-3. DOI:10.1016/S1044-0305(01)00251-3.
  • O’Hara, M.; Mayhew, C.-A.-A. Preliminary Comparison of Volatile Organic Compounds in the Headspace of Cultures of Staphylococcus aureus Grown in Nutrient, Dextrose and Brain Heart Bovine Broths Measured Using a Proton Transfer Reaction Mass Spectrometer. J. Breath Res. 2009, 3, 027001. DOI:10.1088/1752-7155/3/2/027001.
  • Zhan, X.; Duan, J.; Duan, Y. Recent Developments of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and Its Applications in Medical Research. Mass Spectrom. Rev. 2013, 32, 143–165. DOI:10.1002/mas.21357.
  • Lough, F.; Perry, J.-D.; Stanforth, S.-P.; Dean, J.-R. Detection of Exogenous VOCs as a Novel in Vitro Diagnostic Technique for the Detection of Pathogenic Bacteria. Trends Anal. Chem. 2017, 87, 71–81. DOI:10.1016/j.trac.2016.12.004.
  • Cumeras, R.; Figueras, E.; Davis, C.-E.; Baumbach, J.-I.; Gràcia, I. Review on Ion Mobility Spectrometry. Part 1: Current Instrumentation. Analyst. 2015, 140, 1376–1390. DOI:10.1039/C4AN01100G.
  • Chouinard, C.-D.; Wei, M.-S.; Beekman, C.-R.; Kemperman, R.-H.; Yost, R.-A. Ion Mobility in Clinical Analysis: Current Progress and Future Perspectives. Clin. Chem. 2016, 62, 124–133. DOI:10.1373/clinchem.2015.238840.
  • Holopainen, S.; Nousiainen, M.; Anttalainen, O.; Sillanpaa, M.-E.-T. Sample-Extraction Methods for Ion-Mobility Spectrometry in Water Analysis. Trends Anal. Chem. 2012, 37, 124–134. DOI:10.1016/j.trac.2012.03.014.
  • Moll, V.-H.; Bocoş-Binţinţan, V.; Chappell, J.; Hutt, D.; Raţiu, I.-A.; Thomas, C.-L.-P. Optimisation of Piezoelectric Injection of Dopants and Drift Gas Modifiers in Transverse Ion Mobility Spectrometry. Int. J. Ion Mobil. Spec. 2010, 13, 149–155. DOI:10.1007/s12127-010-0053-6.
  • Nazarov, E.-G.; Postlethwaite, T.; Markoski, K.; Koo, S.; Borenstein, J.-T. Planar Differential Mobility Spectrometry for Clinical Breath Diagnostics. In Diagnostic Devices with Microfluidics; Piraino, F., Selimovic, S., Eds.; Taylor & Francis Group, 2017. ISBN-13:978-1-4987-7293-8.
  • Sethi, S.; Nanda, R.; Chakraborty, T. Clinical Application of Volatile Organic Compound Analysis for Detecting Infectious Diseases. Clin. Microbiol. Rev. 2013, 26, 462–475. DOI:10.1128/CMR.00020-13.
  • Arasaradnam, R.-P.; Covington, J.-A.; Harmston, C.; Nwokolo, C.-U. Review Article: Next Generation Diagnostic Modalities in Gastroenterology – Gas Phase Volatile Compound Biomarker Detection, Aliment. Aliment. Pharmacol. Ther. 2014, 39, 780–789. DOI:10.1111/apt.12657.
  • Bijland, L.-R.; Bomers, M.-K.; Smulders, Y.-M. Smelling the Diagnosis: A Review on the Use of Scent in Diagnosing Disease. Neth. J. Med. 2013, 71, 300–307.
  • Geldreich, E.-E.; Kenner, B.-A.; Kabler, P.-W. Occurrence of Coliforms, Fecal Coliforms, and Streptococci on Vegetation and Insects. Appl. Microbiol. 1964, 12, 63–69.
  • Ratiu, I.-A.; Bocos-Bintintan, V.; Turner, M.; Moll, V.-H.; Thomas, C. Discrimination of Chemical Profiles of Some Bacterial Species by Analyzing Culture Headspace Air Samples Using TD-GC/MS. CAC. 2014, 10, 488–497. DOI:10.2174/157341101004140701105219.
  • Timm, C.-M.; Lloyd, E.-P.; Egan, A.; Mariner, R.; Karig, D. Direct Growth of Bacteria in Headspace Vials Allows for Screening of Volatiles by Gas Chromatography Mass Spectrometry. Front Microbiol. 2018, 9, 491. DOI:10.3389/fmicb.2018.00491.
  • Ratiu, I.-A.; Ligor, T.; Bocos-Bintintan, V.; Al-Suod, H.; Kowalkowski, T.; Rafińska, K.; Buszewski, B. The Effect of Growth Medium on Escherichia coli Pathway Mirrored into GC/MS Profiles. J. Breath Res. 2017, 11, 036012. DOI:10.1088/1752-7163/aa7ba2.
  • Syhre, M.; Chambers, S.-T. The Scent of Mycobacterium tuberculosis. Tuberculosis. 2008, 88, 317–323. DOI:10.1016/j.tube.2008.01.002.
  • Mgode, G. F.; Weetjens, B. J.; Nawrath, T.; Cox, C.; Jubitana, M.; Machang'u, R. S.; Cohen-Bacrie, S.; Bedotto, M.; Drancourt, M.; Schulz, S.; Kaufmann, S. H. E. Diagnosis of Tuberculosis by Trained African Giant Pouched Rats and Confounding Impact of Pathogens and Microflora of the Respiratory Tract. J. Clin. Microbiol. 2012, 50, 274–280. DOI:10.1128/JCM.01199-11.
  • Duffy, E.; Morrin, A. Endogenous and Microbial Volatile Organic Compounds in Cutaneous Health and Disease. Tr. Anal. Chem. 2019, 111, 163–172. DOI:10.1016/j.trac.2018.12.012.
  • Graham, J.-E. Bacterial Volatiles and Diagnosis of Respiratory Infections. Adv. Appl. Microbiol. 2013, 82, 29–52.
  • Paschke, K.-M.; Mashir, A.; Dweik, R.-A. Clinical Applications of Breath Testing. F1000 Med Rep. 2010, 2, 56. DOI:10.3410/M2-56.
  • Lemfack, M.-C.; Gohlke, B.-O.; Toguem, S.-M.-T.; Preissner, S.; Piechulla, B.; Preissner, R. mVOC 2.0: A Database of Microbial Volatiles. Nucleic Acids Res. 2018, 46, D1261–D1265. DOI:10.1093/nar/gkx1016.
  • Davis, M.-D.; Fowler, S.-J.; Montpetit, A.-J. Exhaled Breath Testing – A Tool for the Clinician and Researcher. Paediatr. Respir. Rev. 2019, 29, 37–41. DOI:10.1016/j.prrv.2018.05.002.
  • Kew, K.-M.; Chang, A.-B.; Petsky, H.-L. Exhaled Nitric Oxide Levels to Guide Treatment for Children with Asthma. Cochrane Database Syst. Rev. 2016, 9, 11. DOI:10.1002/14651858.CD011439.pub2..
  • Kuban, P.; Foret, F. Exhaled Breath Condensate: determination of Non-Volatile Compounds and Their Potential for Clinical Diagnosis and Monitoring. A Review. Anal Chim Acta 2013, 805, 1–18. DOI:10.1016/j.aca.2013.07.049.
  • Rattray, N.-J.; Hamrang, Z.; Trivedi, D.-K.; Goodacre, R.; Fowler, S.-J. Taking Your Breath Away: Metabolomis Breathes Life into Personalized Medicine. Trends Biotechnol. 2014, 32, 538–548. DOI:10.1016/j.tibtech.2014.08.003.
  • Lechner, M.; Karlseder, A.; Niederseer, D.; Lirk, P.; Neher, A.; Rieder, J.; Tilg, H. H. pylori Infection Increases Levels of Exhaled Nitrate. Helicobacter. 2005, 10, 385–390. DOI:10.1111/j.1523-5378.2005.00345.x.
  • Grosset, J. Mycobacterium tuberculosis in the Extracellular Compartment: An Underestimated Adversary. Antimicrob. Agents Chemother. 2003, 47, 833–836. DOI:10.1128/AAC.47.3.833-836.2003.
  • Prach, L.; Kirby, J.; Keasling, J.-D.; Alber, T. Diterpene Production in Mycobacterium tuberculosis. FEBS J. 2010, 277, 3588–3595. DOI:10.1111/j.1742-4658.2010.07767.
  • Nawrath, T.; Mgode, G.-F.; Weetjens, B.; Kaufmann, S.-H.; Schulz, S. The Volatiles of Pathogenic and Nonpathogenic Mycobacteria and Related Bacteria. Beilstein J. Org. Chem. 2012, 8, 290–299. DOI:10.3762/bjoc.8.31.
  • Chambers, S.; Syhre, M.; Murdoch, D.; McCartin, F.; Epton, M.-J. Detection of 2 Pentylfuran in the Breath of Patients with Aspergillus fumigatus. Med. Mycol. 2009, 47, 468–476. DOI:10.1080/13693780802475212.
  • Karami, N.; Karimi, A.; Aliahmadi, A.; Mirzajan, F.; Rezadoost, H.; Ghassempour, A.; Fallah, F. Identification of Bacteria Using Volatile Organic Compounds. Cell. Mol. Biol. (Noisy-le-Grand) 2017, 63, 112–121. DOI:10.14715/cmb/2017.63.2.18.
  • Westenbrink, E.; Arasaradnam, R. P.; O'Connell, N.; Bailey, C.; Nwokolo, C.; Bardhan, K. D.; Covington, J. A. Development and Application of a New Electronic Nose Instrument for the Detection of Colorectal Cancer. Biosens. Bioelectron. 2015, 67, 733–738. DOI:10.1016/j.bios.2014.10.044.
  • Probert, C.-S.-J.; Ahmed, I.; Khalid, T.; Johnson, E.; Smith, S.; Ratcliffe, N. Volatile Organic Compounds as Diagnostic Biomarkers in Gastrointestinal and Liver Diseases. Gastrointestin. Liver Dis. 2009, 18, 337–343.
  • Wilson, A. D. Biomarker Metabolite Signatures Pave the Way for Electronic-Nose Applications in Early Clinical Disease Diagnoses. Curr. Metabolom. 2017, 5, 90–101. https://doi.org/ DOI:10.2174/2213235X04666160728161251..
  • Bond, A.; Vernon, A.; Reade, S.; Mayor, A.; Minetti, C.; Wastling, J.; Lamden, K.; Probert, C. Investigation of Volatile Organic Compounds Emitted from Faeces for the Diagnosis of Giardiasis. J. Gastrointestin. Liver Dis. 2015, 24, 281–286. DOI:10.15403/jgld.2014.1121.243.abo.
  • Aathithan, S.; Plant, J.-C.; Chaudry, A.-N.; French, G.-L. Diagnosis of Bacteriuria by Detection of Volatile Organic Compounds in Urine Using an Automated Headspace Analyzer with Multiple Conducting Polymer Sensors. J. Clin. Microbiol. 2001, 39, 2590–‐2593. DOI:10.1128/JCM.39.7.2590-2593.2001.
  • Paczkowski, S.; Schütz, S. Post-Mortem Volatiles of Vertebrate Tissue. Appl. Microbiol. Biotechnol. 2011, 9, 917–935. DOI:10.1007/s00253-011-3417-x.
  • Choe, E.; Min, D.-B. Chemistry and Reactions of Reactive Oxygen Species in Foods. J. Food Sci. 2005, 70, 142–159. DOI:10.1080/10408390500455474.
  • Ashrafi, M.; Bates, M.; Baguneid, M.; Alonso-Rasgado, T.; Rautemaa-Richardson, R.; Bayat, A. Volatile Organic Compound Detection as a Potential Means of Diagnosing Cutaneous Wound Infections. Wound Rep. Reg. 2017, 25, 574–590. DOI:10.1111/wrr.12563.
  • Boumba, V.-A.; Ziavrou, K.-S.; Vougiouklakis, T. Biochemical Pathways Generating Post-Mortem Volatile Compounds co-Detected during Forensic Ethanol Analyses. Forensic Sci. Int. 2008, 174, 133–151. DOI:10.1016/j.forsciint.2007.03.018.
  • Moller, J. T.; Cluitmans, P.; Rasmussen, L. S.; Houx, P.; Rasmussen, H.; Canet, J.; Rabbitt, P.; Jolles, J.; Larsen, K.; Hanning, C. D.; et al. Long-Term Postoperative Cognitive Dysfunction in the Elderly: ISPOCD1 Study. Lancet. 1998, 351, 857–861. https://doi.org/10.1016/S0140-6736(97)07382-0. DOI:10.1016/S0140-6736(97)07382-0.
  • Luengo, J.-L.; Garcia, J.-L.; Olivera, E.-R. The Phenylacetyl–CoA Catabolon: A Complex Catabolic Unit with Broad Biotechnological Applications. Mol. Microbiol. 2001, 39, 1434–1442. DOI:10.1046/j.1365-2958.2001.02344.x.
  • Dent, B.-B.; Forbes, S.-L.; Stuart, B.-H. Review of Human Decomposition Processes in Soil. Environ. Geol. 2004, 45, 576–585. DOI:10.1007/s00254-003-0913-z.
  • Lee, J.-H.; Lee, J. Indole as an Intercellular Signal in Microbial Communities. FEMS Microbiol. Rev. 2010, 34, 426–444. DOI:10.1111/j.1574-6976.2009.00204.x.
  • Schulz, S.; Dickschat, J.-S. Bacterial Volatiles: The Smell of Small Organisms. Nat. Prod. Rep. 2007, 24, 814–842. DOI:10.1039/b507392h.
  • Sohlenkamp, C.; Geiger, O. Bacterial Membrane Lipids: Diversity in Structures and Pathways. FEMS Microbiol. Rev. 2016, 40, 133–159. DOI:10.1093/femsre/fuv008.
  • Ladygina, N.; Dedyukhina, E.-G.; Vainshtein, M.-B. A Review on Microbial Synthesis of Hydrocarbons. Process Biochem. 2006, 41, 1001–1014. DOI:10.1016/j.procbio.2005.12.007.
  • Gandemer, G. Lipids in Muscles and Adipose Tissues Changes During Processing and Sensory Properties of Meat Products. Meat Sci. 2002, 62, 309–321. https://doi.org/10.1016/S0309-1740(02)00128-6. DOI:10.1016/S0309-1740(02)00128-6.
  • Ryu, C.-M.; Farag, M.-A.; Hu, C.-H.; Reddy, M. S.; Wei, H.-X.; Pare, P. W.; Kloepper, J. W. Bacterial Volatiles Promote Growth in Arabidopsis. Proc. Natl. Acad. Sci. 2003, 100, 4927–4932. DOI:10.1073/pnas.0730845100.
  • Tellez, M.-R.; Schrader, K.-K.; Kobaisy, M. Volatile Components of the Cyanobacterium oscillatoria Perornata (Skuja). J. Agric. Food Chem. 2001, 49, 5989–5992. DOI:10.1021/jf010722p.
  • Audrain, B.; Farag, M.-A.; Ryu, C.-M.; Ghigo, J.-M. Role of Bacterial Volatile Compounds in Bacterial Biology. FEMS Microbiol. Rev. 2015, 39, 222–233. DOI:10.1093/femsre/fuu013.
  • James, A.-G.; Austin, C.-J.; Cox, D.-S.; Taylor, D.; Calvert, R. Microbiological and Biochemical Origins of Human Axillary Odour. FEMS Microbiol. Ecol. 2013, 83, 527–540. DOI:10.1111/1574-6941.12054.
  • Ara, K.; Hama, M.; Akiba, S.; Koike, K.; Okisaka, K.; Hagura, T.; Kamiya, T.; Tomita, F. Foot Odor Due to Microbial Metabolism and Its Control. Can. J. Microbiol. 2006, 52, 357–364. DOI:10.1139/w05-130.
  • Gu, Y.-Q.; Mo, M.-H.; Zhou, J.-P.; Zou, C.-S.; Zhang, K.-Q. Evaluation and Identification of Potential Organic Nematicidal Volatiles from Soil Bacteria. Soil. Biol. Biochem. 2007, 39, 2567–2575. DOI:10.1016/j.soilbio.2007.05.011.
  • Hsing, C.-H.; Wang, J.-J. Clinical Implication of Perioperative Inflammatory Cytokine Alteration. Acta Anaesthesiol. Taiwan. 2015, 53, 23–28. DOI:10.1016/j.aat.2015.03.002.
  • Thorn, R.-M.; Greenman, J. Microbial Volatile Compounds in Health and Disease Conditions. J. Breath Res. 2012, 6, 024001. DOI:10.1088/1752-7155/6/2/024001.
  • Suckling, D.-M.; Sagar, R.-L. Honeybees Apis mellifera Can Detect the Scent of Mycobacterium tuberculosis. Tuberculosis (Edinb). 2011, 91, 327–328. DOI:10.1016/j.tube.2011.04.008.
  • Scott-Thomas, A.-J.; Syhre, M.; Pattemore, P.-K.; Epton, M.; Laing, R.; Pearson, J.; Chambers, S.-T. 2-Aminoacetophenone as a Potential Breath Biomarker for Pseudomonas aeruginosa in the Cystic Fibrosis Lung. BMC Pulm. Med. 2010, 10, 56. https://doi.org/10.1186/1471-2466-10-56.
  • Shestivska, V.; Nemec, A.; Dřevínek, P.; Sovová, K.; Dryahina, K.; Španěl, P. Quantification of Methyl Thiocyanate in the Headspace of Pseudomonas aeruginosa Cultures and in the Breath of Cystic Fibrosis Patients by Selected Ion Flow Tube Mass Spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 2459–2467. DOI:10.1002/rcm.5146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.