1,273
Views
48
CrossRef citations to date
0
Altmetric
Review Articles

Hybrid Microgels for Catalytic and Photocatalytic Removal of Nitroarenes and Organic Dyes From Aqueous Medium: A Review

, ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 513-537 | Published online: 27 Sep 2019

References

  • Chen, P.; Lo, W.; Hu, K. Molecular Structures of Mononitroanilines and Their Thermal Decomposition Products. Theoret. Chim. Acta. 1997, 95, 99–112. DOI: 10.1007/BF02341695.
  • VanVliet, D. S.; Gillespie, P.; Scicinski, J. J. Rapid One-Pot Preparation of 2-Substituted Benzimidazoles from 2-Nitroanilines Using Microwave Conditions. Tetrahedron Lett. 2005, 46, 6741–6743. DOI: 10.1016/j.tetlet.2005.07.130.
  • Gnanaprakasam, P.; Selvaraju, T. Green Synthesis of Self Assembled Silver Nanowire Decorated Reduced Graphene Oxide for Efficient Nitroarene Reduction. RSC Adv. 2014, 4, 24518–24525. DOI: 10.1039/C4RA01798F.
  • Yang, K.; Wu, W.; Jing, Q.; Zhu, L. Aqueous Adsorption of Aniline, Phenol, and Their Substitutes by Multi-Walled Carbon Nanotubes. Environ. Sci. Technol. 2008, 42, 7931–7936. DOI: 10.1021/es801463v.
  • Teixeira, A.; Silva, R.; Neto, E. C.; Santana, J.; Rizzo, L. Malignant, non-Hodgkin's Lymphomas in Trypanosoma Cruzi-Infected Rabbits Treated with Nitroarenes. J. Comp. Pathol. 1990, 103, 37–48. DOI: 10.1016/S0021-9975(08)80133-8.
  • Corbett, J. F. An Historical Review of the Use of Dye Precursors in the Formulation of Commercial Oxidation Hair Dyes. Dyes Pigm. 1999, 41, 127–136. DOI: 10.1016/S0143-7208(98)00075-8.
  • Blakey, D.; Maus, K.; Bell, R.; Bayley, J.; Douglas, G. R.; Nestmann, E. Mutagenic Activity of 3 Industrial Chemicals in a Battery of in Vitro and in Vivo Tests. Mutat. Res. Genet. Toxicol. Test. 1994, 320, 273–283. DOI: 10.1016/0165-1218(94)90080-9.
  • Arias-Estévez, M.; López-Periago, E.; Martínez-Carballo, E.; Simal-Gándara, J.; Mejuto, J.-C.; García-Río, L. The Mobility and Degradation of Pesticides in Soils and the Pollution of Groundwater Resources. Agric. Ecosyst. Environ. 2008, 123, 247–260. DOI: 10.1016/j.agee.2007.07.011.
  • Razo-Flores, E.; Donlon, B.; Lettinga, G.; Field, J. A. Biotransformation and Biodegradation of N-Substituted Aromatics in Methanogenic Granular Sludge. FEMS Microbiol. Rev. 1997, 20, 525–538. DOI: 10.1111/j.1574-6976.1997.tb00335.x.
  • Dong, Z.; Le, X.; Li, X.; Zhang, W.; Dong, C.; Ma, J. Silver Nanoparticles Immobilized on Fibrous Nano-Silica as Highly Efficient and Recyclable Heterogeneous Catalyst for Reduction of 4-Nitrophenol and 2-Nitroaniline. Appl. Catal. 2014, 158, 129–135. DOI: 10.1016/j.apcatb.2014.04.015.
  • Carmen, Z.; Daniela, S. Textile organic dyes–characteristics, polluting effects and separation/elimination procedures from industrial effluents–a critical overview. In Organic Pollutants Ten Years after the Stockholm Convention-Environmental and Analytical Update. IntechOpen, London, United Kingdom, 2012.
  • Yamjala, K.; Nainar, M. S.; Ramisetti, N. R. Methods for the Analysis of Azo Dyes Employed in Food Industry–A Review. Food Chem. 2016, 192, 813–824. DOI: 10.1016/j.foodchem.2015.07.085.
  • Guerra, E.; Llompart, M.; Garcia-Jares, C. Analysis of Dyes in Cosmetics: Challenges and Recent Developments. Cosmetics 2018, 5, 47–62. DOI: 10.3390/cosmetics5030047.
  • Chaudhuri, S.; Ray, K.; Chaudhuriand, U.; Chakraborty, R. Purification of Natural Food Colourants Using Membrane Technology a Review. Food Sci. (Mysore). 2004, 41, 1–8.
  • Yao, W.; Zhang, B.; Huang, C.; Ma, C.; Song, X.; Xu, Q. Synthesis and Characterization of High Efficiency and Stable Ag3PO4/TiO2 Visible Light Photocatalyst for the Degradation of Methylene Blue and Rhodamine B Solutions. J. Mater. Chem. 2012, 22, 4050–4055. DOI: 10.1039/c2jm14410g.
  • Shahid, M.; Farrukh, M. A.; Umar, A. A.; Khaleeq-Ur-Rahman, M. Solvent Controlled Synthesis of CaO-MgO Nanocomposites and Their Application in the Photodegradation of Organic Pollutants of Industrial Waste. Russ. J. Phys. Chem. 2014, 88, 836–844. DOI: 10.1134/S0036024414050215.
  • Malik, P.; Saha, S. Oxidation of Direct Dyes with Hydrogen Peroxide Using Ferrous Ion as Catalyst. Sep. Purif. Technol. 2003, 31, 241–250. https://doi.org/10.1016/S1383-5866(02)00200-9 DOI: 10.1016/S1383-5866(02)00200-9.
  • Bonnia, N.; Kamaruddin, M.; Nawawi, M.; Ratim, S.; Azlina, H.; Ali, E. Green Biosynthesis of Silver Nanoparticles Using ‘Polygonum Hydropiper’and Study Its Catalytic Degradation of Methylene Blue. Proc. Chem. 2016, 19, 594–602. DOI: 10.1016/j.proche.2016.03.058.
  • Qi, Y.; Yang, M.; Xu, W.; He, S.; Men, Y. Natural Polysaccharides-Modified Graphene Oxide for Adsorption of Organic Dyes from Aqueous Solutions. J. Colloid Interface Sci. 2017, 486, 84–96. DOI: 10.1016/j.jcis.2016.09.058.
  • Saikia, P.; Miah, A. T.; Das, P. P. Highly Efficient Catalytic Reductive Degradation of Various Organic Dyes by Au/CeO2-TiO2 Nano-Hybrid. J. Chem. Sci. 2017, 129, 81–93. DOI: 10.1007/s12039-016-1203-0.
  • Singh, K.; Arora, S. Removal of Synthetic Textile Dyes from Wastewaters: A Critical Review on Present Treatment Technologies. Crit. Rev. Environ. Sci. Technol. 2011, 41, 807–878. DOI: 10.1080/10643380903218376.
  • Liu, Y.; Feng, P.; Wang, Z.; Jiao, X.; Akhtar, F. Novel Fabrication and Enhanced Photocatalytic MB Degradation of Hierarchical Porous Monoliths of MoO3 Nanoplates. Sci. Rep. 2017, 7, 1845–1857. DOI: 10.1038/s41598-017-02025-3.
  • Yilmaz, E.; Soylak, M. Facile and Green Solvothermal Synthesis of Palladium Nanoparticle-Nanodiamond-Graphene Oxide Material with Improved Bifunctional Catalytic Properties. J. Iran. Chem. Soc. 2017, 14, 2503–2512. DOI: 10.1007/s13738-017-1185-y.
  • Corma, A.; Concepción, P.; Serna, P. A Different Reaction Pathway for the Reduction of Aromatic Nitro Compounds on Gold Catalysts. Angew. Chem. 2007, 119, 7404–7407. DOI: 10.1002/ange.200700823.
  • Gupta, V. K.; Jain, R.; Mittal, A.; Saleh, T. A.; Nayak, A.; Agarwal, S.; Sikarwar, S. Photo-Catalytic Degradation of Toxic Dye Amaranth on TiO2/UV in Aqueous Suspensions. Mate. Sci. Eng. C. 2012, 32, 12–17. DOI: 10.1016/j.msec.2011.08.018.
  • Bahnemann, D. Photocatalytic Water Treatment: solar Energy Applications. Sol. Energy. 2004, 77, 445–459. DOI: 10.1016/j.solener.2004.03.031.
  • Gao, W.; Guan, N.; Chen, J.; Guan, X.; Jin, R.; Zeng, H.; Liu, Z.; Zhang, F. Titania Supported Pd-Cu Bimetallic Catalyst for the Reduction of Nitrate in Drinking Water. Appl. Catal. B. 2003, 46, 341–351. DOI: 10.1016/S0926-3373(03)00226-1.
  • Huang, X.; Guo, C.; Zuo, J.; Zheng, N.; Stucky, G. D. An Assembly Route to Inorganic Catalytic Nanoreactors Containing Sub‐10‐nm Gold Nanoparticles with anti‐Aggregation Properties. Small. 2009, 5, 361–365 DOI: 10.1002/smll.200800808.
  • Palioura, D.; Armes, S.; Anastasiadis, S.; Vamvakaki, M. Metal Nanocrystals Incorporated within pH-Responsive Microgel Particles. Langmuir. 2007, 23, 5761–5768. DOI: 10.1021/la063359v.
  • Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Dendrimer-Encapsulated Metal Nanoparticles: synthesis, Characterization, and Applications to Catalysis. Acc. Chem. Res. 2001, 34, 181–190. DOI: 10.1021/ar000110a.
  • Mei, Y.; Lu, Y.; Polzer, F.; Ballauff, M.; Drechsler, M. Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core − Shell Microgels. Chem. Mater. 2007, 19, 1062–1069. https://doi.org/10.1021/cm 062554s DOI: 10.1021/cm062554s.
  • Zhong, C.-J.; Maye, M. M. Core–Shell Assembled Nanoparticles as Catalysts. Adv. Mater 2001, 13, 1507–1511. https://doi.org/10.1002/1521-4095(200110)13:19<1507::AID-ADMA1507 > 3.0.CO;2-%23
  • Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W. D.; Xing, X.; Lu, G. Q. M. Yolk/Shell Nanoparticles: new Platforms for Nanoreactors, Drug Delivery and Lithium-Ion Batteries. Chem. Commun. 2011, 47, 12578–12591. DOI: 10.1039/c1cc13658e.
  • Zhang, J. T.; Wei, G.; Keller, T. F.; Gallagher, H.; Stötzel, C.; Müller, F. A.; Gottschaldt, M.; Schubert, U. S.; Jandt, K. D. Responsive Hybrid Polymeric/Metallic Nanoparticles for Catalytic Applications. Macromol. Mater. Eng. 2010, 295, 1049–1057. DOI: 10.1002/mame.201000204.
  • Zhang, J.; Ma, N.; Tang, F.; Cui, Q.; He, F.; Li, L. pH-and Glucose-Responsive Core–Shell Hybrid Nanoparticles with Controllable Metal-Enhanced Fluorescence Effects. ACS Appl. Mater. Interfaces 2012, 4, 1747–1751. DOI: 10.1021/am201858u.
  • Ye, T.; Jiang, X.; Xu, W.; Zhou, M.; Hu, Y.; Wu, W. Tailoring the Glucose-Responsive Volume Phase Transition Behaviour of Ag@ Poly (Phenylboronic Acid) Hybrid Microgels: From Monotonous Swelling to Monotonous Shrinking upon Adding Glucose at Physiological pH. Polym. Chem. 2014, 5, 2352–2362. DOI: 10.1039/c3py01564e.
  • Farooqi, Z. H.; Siddiq, M. Temperature-Responsive Poly (N-Isopropylacrylamide-Acrylamide-Phenylboronic Acid) Microgels for Stabilization of Silver Nanoparticles. J. Dispers. Sci. Technol. 2015, 36, 423–429. 2014.911106 DOI: 10.1080/01932691.2014.911106.
  • Wang, Y.; Wang, L.; Hao, J.; Dong, S. Plasmonic Core–Shell Ionic Microgels for Photo-Tuning Catalytic Applications. New J. Chem. 2018, 42, 2149–2157. DOI: 10.1039/C7NJ03661B.
  • Döring, A.; Birnbaum, W.; Kuckling, D. Responsive Hydrogels–Structurally and Dimensionally Optimized Smart Frameworks for Applications in Catalysis, Micro-System Technology and Material Science. Chem. Soc. Rev. 2013, 42, 7391–7420. DOI: 10.1039/c3cs60031a.
  • Ashraf, S.; Begum, R.; Rehan, R.; Wu, W.; Farooqi, Z. H. Synthesis and Characterization of pH-Responsive Organic–Inorganic Hybrid Material with Excellent Catalytic Activity. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1872–1884. DOI: 10.1007/s10904-018-0879-7.
  • Yan, S.; Jiang, C.; Guo, J.; Fan, Y.; Zhang, Y. Synthesis of Silver Nanoparticles Loaded onto Polymer-Inorganic Composite Materials and Their Regulated Catalytic Activity. Polymers. 2019, 11, 401–417. DOI: 10.3390/polym11030401.
  • Karg, M.; Hellweg, T. New “Smart” Poly (NIPAM) Microgels and Nanoparticle Microgel Hybrids: Properties and Advances in Characterisation. Curr. Opin. Colloid Interface Sci. 2009, 14, 438–450. DOI: 10.1016/j.cocis.2009.08.002.
  • Farooqi, Z.; Khan, S.; Begum, R. Temperature-Responsive Hybrid Microgels for Catalytic Applications: A Review. Mater. Sci. Technol. 2017, 33, 129–137. DOI: 10.1080/02670836.2016.1170396.
  • Zhang, K.; Suh, J. M.; Choi, J.-W.; Jang, H. W.; Shokouhimehr, M.; Varma, R. S. Recent Advances in the Nanocatalyst-Assisted NaBH4 Reduction of Nitroaromatics in Water. ACS Omega. 2019, 4, 483–495. DOI: 10.1021/acsomega.8b03051.
  • Naseem, K.; Begum, R.; Farooqi, Z. H. Catalytic Reduction of 2-Nitroaniline: A Review. Environ. Sci. Pollut. Res. 2017, 24, 6446–6460. DOI: 10.1007/s11356-016-8317-2.
  • Qian, Z.; Guye, K. N.; Masiello, D. J.; Ginger, D. S. Dynamic Optical Switching of Polymer/Plasmonic Nanoparticle Hybrids with Sparse Loading. J. Phys. Chem. B. 2017, 121, 1092–1099. DOI: 10.1021/acs.jpcb.7b00013.
  • Liu, G.; Wang, D.; Zhou, F.; Liu, W. Electrostatic Self‐Assembly of Au Nanoparticles onto Thermosensitive Magnetic Core‐Shell Microgels for Thermally Tunable and Magnetically Recyclable Catalysis. Small. 2015, 11, 2807–2816. DOI: 10.1002/smll.201403305.
  • Kureha, T.; Nagase, Y.; Suzuki, D. High Reusability of Catalytically Active Gold Nanoparticles Immobilized in Core–Shell Hydrogel Microspheres. ACS Omega. 2018, 3, 6158–6165. DOI: 10.1021/acsomega.8b00819.
  • Farooqi, Z. H.; Khan, S. R.; Begum, R.; Ijaz, A. Review on Synthesis, Properties, Characterization, and Applications of Responsive Microgels Fabricated with Gold Nanostructures. Rev. Chem. Eng. 2016, 32, 49–69. https://doi.org/10.1515/revce-2015-0033
  • Shi, S.; Wang, Q.; Wang, T.; Ren, S.; Gao, Y.; Wang, N. Thermo-, pH-, and Light-Responsive Poly (N-Isopropylacrylamide-co-Methacrylic Acid)–Au Hybrid Microgels Prepared by the in Situ Reduction Method Based on Au-Thiol Chemistry. J. Phys. Chem. B. 2014, 118, 7177–7186. DOI: 10.1021/jp5027477.
  • Nalawade, P.; Mukherjee, T.; Kapoor, S. Green Synthesis of Gold Nanoparticles Using Glycerol as a Reducing Agent. ANP. 2013, 02, 78–86 DOI: 10.4236/anp.2013.22014.
  • Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of Thiol-Derivatised Gold Nanoparticles in a Two-Phase Liquid–Liquid System. J. Chem. Soc. Chem. Commun. 1994, 0, 801–802. DOI: 10.1039/C39940000801.
  • Zeng, T.; Zhang, X-l.; Ma, Y-r.; Niu, H-y.; Cai, Y-q. A Novel Fe3O4–Graphene–Au Multifunctional Nanocomposite: Green Synthesis and Catalytic Application. J. Mater. Chem. 2012, 22, 18658–18663. DOI: 10.1039/c2jm34198k.
  • Pich, A.; Karak, A.; Lu, Y.; Ghosh, A. K.; Adler, H.-J. P. Tuneable Catalytic Properties of Hybrid Microgels Containing Gold Nanoparticles. J. Nanosci. Nanotech. 2006, 6, 3763–3769. DOI: 10.1166/jnn.2006.621.
  • Wu, S.; Dzubiella, J.; Kaiser, J.; Drechsler, M.; Guo, X.; Ballauff, M.; Lu, Y. Thermosensitive Au‐PNIPA Yolk–Shell Nanoparticles with Tunable Selectivity for Catalysis. Angew. Chem. Int. Ed. 2012, 51, 2229–2233. DOI: 10.1002/anie.201106515.
  • Chen, X.; Sun, J.-T.; Pan, C.-Y.; Hong, C.-Y. A Facile Synthesis of Thermo-Responsive Au–Polymer Hybrid Microgels through Temperature-Induced co-Aggregation and Self-Crosslinking. Polym. Chem. 2015, 6, 5989–5992. DOI: 10.1039/C5PY00774G.
  • Wu, Z.; Chen, X.; Li, J.-Y.; ' Pan, C.-Y.; Hong, C.-Y. Au–Polymer Hybrid Microgels Easily Prepared by Thermo-Induced Self-Crosslinking and in Situ Reduction. RSC Adv. 2016, 6, 48927–48932. DOI: 10.1039/C6RA07864H.
  • Bhat, I. U. H.; Anwar, M. N. K.; Appaturi, J. N. Polymer Based Palladium Nanocatalyst for the Degradation of Nitrate and Congo Red. J. Polym. Environ 2019, 27, 1475–1487. https://doi.org/10.1007/s10924-019-01444-9
  • Dong, Z.; Le, X.; Dong, C.; Zhang, W.; Li, X.; Ma, J. Ni@ Pd Core–Shell Nanoparticles Modified Fibrous Silica Nanospheres as Highly Efficient and Recoverable Catalyst for Reduction of 4-Nitrophenol and Hydrodechlorination of 4-Chlorophenol. Appl. Catal., B. 2015, 162, 372–380. DOI: 10.1016/j.apcatb.2014.07.009.
  • Khodadadi, B.; Bordbar, M.; Nasrollahzadeh, M. Green Synthesis of Pd Nanoparticles at Apricot Kernel Shell Substrate Using Salvia Hydrangea Extract: catalytic Activity for Reduction of Organic Dyes. J. Colloid Interface Sci. 2017, 490, 1–10. DOI: 10.1016/j.jcis.2016.11.032.
  • Li, D.; Dunlap, J. R.; Zhao, B. Thermosensitive Water-Dispersible Hairy Particle-Supported Pd Nanoparticles for Catalysis of Hydrogenation in an Aqueous/Organic Biphasic System. Langmuir. 2008, 24, 5911–5918. DOI: 10.1021/la800277j.
  • Xu, J.; Chen, G.; Yan, R.; Wang, D.; Zhang, M.; Zhang, W.; Sun, P. One-Stage Synthesis of Cagelike Porous Polymeric Microspheres and Application as Catalyst Scaffold of Pd Nanoparticles. Macromolecules. 2011, 44, 3730–3778. DOI: 10.1021/ma200320a.
  • Wen, X.; Qiao, X.; Han, X.; Niu, L.; Huo, L.; Bai, G. Multifunctional Magnetic Branched Polyethylenimine Nanogels with in-Situ Generated Fe3O4 and Their Applications as Dye Adsorbent and Catalyst Support. J. Mater. Sci. 2016, 51, 3170–3181. DOI: 10.1007/s10853-015-9627-3.
  • Chen, Y.; Li, L.; Zhang, L.; Han, J. In Situ Formation of Ultrafine Pt Nanoparticles on Surfaces of Polyaniline Nanofibers as Efficient Heterogeneous Catalysts for the Hydrogenation Reduction of Nitrobenzene. Colloid Polym. Sci. 2018, 296, 567–574. DOI: 10.1007/s00396-018-4276-0.
  • Bian, S.-W.; Liu, S.; Chang, L. Synthesis of Magnetically Recyclable Fe3O4@ Polydopamine–Pt Composites and Their Application in Hydrogenation Reactions. J. Mater. Sci. 2016, 51, 3643–3649. DOI: 10.1007/s10853-015-9688-3.
  • Naseem, K.; Begum, R.; Farooqi, Z. H. Platinum Nanoparticles Fabricated Multiresponsive Microgel Composites: synthesis, Characterization, and Applications. Polym. Compos. 2018, 39, 2167–2180. DOI: 10.1002/pc.24212.
  • Nakao, T.; Nagao, D.; Ishii, H.; Konno, M. Synthesis of Monodisperse Composite Poly (N-Isopropylacrylamide) Microgels Incorporating Dispersive Pt Nanoparticles with High Contents. Colloids Surf., A. 2014, 446, 134–138. DOI: 10.1016/j.colsurfa.2014.01.049.
  • Wang, R.; Jiang, X.; Yu, B.; Yin, J. Stimuli-Responsive Microgels Formed by Hyperbranched Poly (Ether Amine) Decorated with Platinum Nanoparticles. Soft Matter. 2011, 7, 8619–8627. DOI: 10.1039/c1sm05938f.
  • Farooqi, Z. H.; Khalid, R.; Begum, R.; Farooq, U.; Wu, Q.; Wu, W.; Ajmal, M.; Irfan, A.; Naseem, K. Facile Synthesis of Silver Nanoparticles in a Crosslinked Polymeric System by in Situ Reduction Method for Catalytic Reduction of 4-Nitroaniline. Environ. Technol. 2019, 40, 2027–2036. DOI: 10.1080/09593330.2018.1435737.
  • Farooqi, Z. H.; Ijaz, A.; Begum, R.; Naseem, K.; Usman, M.; Ajmal, M.; Saeed, U. Synthesis and Characterization of Inorganic–Organic Polymer Microgels for Catalytic Reduction of 4‐Nitroaniline in Aqueous Medium. Polym. Compos. 2018, 39, 645–653. DOI: 10.1002/pc.23980.
  • Talebi, J.; Halladj, R.; Askari, S. Sonochemical Synthesis of Silver Nanoparticles in Y-Zeolite Substrate. J. Mater. Sci. 2010, 45, 3318–3324. DOI: 10.1007/s10853-010-4349-z.
  • Zhang, Y.; Yuan, X.; Wang, Y.; Chen, Y. One-Pot Photochemical Synthesis of Graphene Composites Uniformly Deposited with Silver Nanoparticles and Their High Catalytic Activity towards the Reduction of 2-Nitroaniline. J. Mater. Chem. 2012, 22, 7245–7251. DOI: 10.1039/c2jm16455h.
  • Farooqi, Z. H.; Naseem, K.; Ijaz, A.; Begum, R. Engineering of Silver Nanoparticle Fabricated Poly (N-Isopropylacrylamide-co-Acrylic Acid) Microgels for Rapid Catalytic Reduction of Nitrobenzene. J. Polym. Eng. 2016, 36, 87–96. https://doi.org/10.1515/polyeng-2015-0082
  • Lu, Y.; Mei, Y.; Ballauff, M.; Drechsler, M. Thermosensitive Core − Shell Particles as Carrier Systems for Metallic Nanoparticles. J. Phys. Chem. B. 2006, 110, 3930–3937. DOI: 10.1021/jp057149n.
  • Shah, L. A.; Sayed, M.; Fayaz, M.; Bibi, I.; Nawaz, M.; Siddiq, M. Ag-Loaded Thermo-Sensitive Composite Microgels for Enhanced Catalytic Reduction of Methylene Blue. Nano. Environ. Eng. 2017, 2, 14–21. https://doi.org/10.1007/s41204-017-0026-7
  • Ajmal, M.; Farooqi, Z. H.; Siddiq, M. Silver Nanoparticles Containing Hybrid Polymer Microgels with Tunable Surface Plasmon Resonance and Catalytic Activity. Korean J. Chem. Eng. 2013, 30, 2030–2036. DOI: 10.1007/s11814-013-0150-4.
  • Khan, S. R.; Farooqi, Z. H.; Ali, A. A.; Begum, R.; Kanwal, F.; Siddiq, M. Kinetics and Mechanism of Reduction of Nitrobenzene Catalyzed by Silver-Poly (N-Isopropylacryl Amide-co-Allylacetic Acid) Hybrid Microgels. Mater. Chem. Phys. 2016, 171, 318–327. https://doi.org/10.1016/j.matchemphys.2016.01.023
  • Shah, M.; Guo, Q.-X.; Fu, Y. The Colloidal Synthesis of Unsupported Nickel‐Tin Bimetallic Nanoparticles with Tunable Composition That Have High Activity for the Reduction of Nitroarenes. Catal. Commun. 2015, 65, 85–90. DOI: 10.1016/j.catcom.2015.02.026.
  • Le, X.; Dong, Z.; Zhang, W.; Li, X.; Ma, J. Fibrous Nano-Silica Containing Immobilized Ni@ Au Core–Shell Nanoparticles: A Highly Active and Reusable Catalyst for the Reduction of 4-Nitrophenol and 2-Nitroaniline. J. Mol. Catal. A: Chem. 2014, 395, 58–65. DOI: 10.1016/j.molcata.2014.08.002.
  • Lu, Y.; Yuan, J.; Polzer, F.; Drechsler, M.; Preussner, J. In Situ Growth of Catalytic Active Au − Pt Bimetallic Nanorods in Thermoresponsive Core-Shell Microgels. Acs Nano. 2010, 4, 7078–7086. DOI: 10.1021/nn102622d.
  • Chu, C.; Su, Z. Facile Synthesis of AuPt Alloy Nanoparticles in Polyelectrolyte Multilayers with Enhanced Catalytic Activity for Reduction of 4-Nitrophenol. Langmuir. 2014, 30, 15345–15350. DOI: 10.1021/la5042019.
  • Peng, J.; Tang, D.; Jia, S.; Zhang, Y.; Sun, Z.; Yang, X.; Zou, H.; Lv, H. In Situ Thermal Synthesis of Molybdenum Oxide Nanocrystals in Thermoresponsive Microgels. Colloids Surf., A. 2019, 563, 130–140. DOI: 10.1016/j.colsurfa.2018.11.065.
  • Yoon, M.; Lee, J.-E.; Jang, Y. J.; Lim, J. W.; Rani, A.; Kim, D. H. Comprehensive Study on the Controlled Plasmon-Enhanced Photocatalytic Activity of Hybrid Au/ZnO Systems Mediated by Thermoresponsive Polymer Linkers. ACS Appl. Mater. Interfaces. 2015, 7, 21073–21081. DOI: 10.1021/acsami.5b03872.
  • Liu, J.; Shu, T.; Su, L.; Zhang, X.; Serpe, M. J. Synthesis of Poly (N-Isopropylacrylamide)-co-(Acrylic Acid) Microgel-Entrapped CdS Quantum Dots and Their Photocatalytic Degradation of an Organic Dye. RSC Adv. 2018, 8, 16850–16857. DOI: 10.1039/C8RA01855C.
  • Jia, H.; Roa, R.; Angioletti-Uberti, S.; Henzler, K.; Ott, A.; Lin, X.; Möser, J.; Kochovski, Z.; Schnegg, A.; Dzubiella, J.; et al. ; Thermosensitive Cu2O–PNIPAM Core–Shell Nanoreactors with Tunable Photocatalytic Activity. J. Mater. Chem. A. 2016, 4, 9677–9684. DOI: 10.1039/C6TA03528K.
  • Din, M. I.; Khalid, R.; Akbar, F.; Ahmad, G.; Najeeb, J.; Nisa Hussain, Z. U. Recent Progress of Poly (N-Isopropylacrylamide) Hybrid Hydrogels: synthesis, Fundamentals and Applications–Review. Soft Mater. 2018, 16, 228–247. DOI: 10.1080/1539445X.2018.1461650.
  • Begum, R.; Naseem, K.; Farooqi, Z. H. A Review of Responsive Hybrid Microgels Fabricated with Silver Nanoparticles: synthesis, Classification, Characterization and Applications. J. Sol-Gel Sci. Technol. 2016, 77, 497–515. DOI: 10.1007/s10971-015-3896-9.
  • Naseem, K.; Begum, R.; Wu, W.; Irfan, A.; Al-Sehemi, A. G.; Farooqi, Z. H. Catalytic Reduction of Toxic Dyes in the Presence of Silver Nanoparticles Impregnated Core-Shell Composite Microgels. J. Cleaner Prod. 2019, 211, 855–864. DOI: 10.1016/j.jclepro.2018.11.164.
  • Naseem, K.; Begum, R.; Wu, W.; Irfan, A.; Farooqi, Z. H. Advancement in Multi-Functional Poly (Styrene)-Poly (N-Isopropylacrylamide) Based Core–Shell Microgels and Their Applications. Polym. Rev. 2018, 58, 288–325. DOI: 10.1080/15583724.2017.1423326.
  • Xiao, C.; Wu, Q.; Chang, A.; Peng, Y.; Xu, W.; Wu, W. Responsive Au@ Polymer Hybrid Microgels for the Simultaneous Modulation and Monitoring of Au-Catalyzed Chemical Reaction. J. Mater. Chem. A. 2014, 2, 9514–9523. DOI: 10.1039/c4ta00409d.
  • Zhai, Z.; Wu, Q.; Li, J.; Zhou, B.; Shen, J.; Farooqi, Z. H.; Wu, W. Enhanced Catalysis of Gold Nanoparticles in Microgels upon on Site Altering the Gold–Polymer Interface Interaction. J. Catal. 2019, 369, 462–468. DOI: 10.1016/j.jcat.2018.10.037.
  • Li, S.; Lin, D.; Zhou, J.; Zha, L. Preparation of Silver Nanoparticles Loaded Photoresponsive Composite Microgels and Their Light-Controllable Catalytic Activity. J. Phys. Chem. C. 2016, 120, 4902–4908. DOI: 10.1021/acs.jpcc.5b11724.
  • Li, G.; Yang, X.; Wang, B.; Wang, J.; Yang, X. Monodisperse Temperature-Responsive Hollow Polymer Microspheres: synthesis, Characterization and Biological Application. Polymer. 2008, 49, 3436–3443. DOI: 10.1016/j.polymer.2008.06.004.
  • He, X.; Liu, Z.; Fan, F.; Qiang, S.; Cheng, L.; Yang, W. Poly (Ionic Liquids) Hollow Nanospheres with PDMAEMA as Joint Support of Highly Dispersed Gold Nanoparticles for Thermally Adjustable Catalysis. J. Nanopart. Res. 2015, 17, 74. https://doi.org/10.1007/s11051-015-2872-1
  • Bradley, M.; Garcia-Risueño, B. S. Symmetric and Asymmetric Adsorption of pH-Responsive Gold Nanoparticles onto Microgel Particles and Dispersion Characterisation. J. Colloid Interface Sci. 2011, 355, 321–327. DOI: 10.1016/j.jcis.2010.12.027.
  • Zhang, F.; Wang, C.-C. Preparation of P(NIPAM-co-AA) Microcontainers Surface-Anchored with Magnetic Nanoparticles. Langmuir. 2009, 25, 8255–8262. DOI: 10.1021/la9004467.
  • Karg, M.; Pastoriza‐Santos, I.; Pérez‐Juste, J.; Hellweg, T.; Liz‐Marzán, L. M. Nanorod‐Coated PNIPAM Microgels: thermoresponsive Optical Properties. Small. 2007, 3, 1222–1229. DOI: 10.1002/smll.200700078.
  • Wong, J. E.; Gaharwar, A. K.; Müller-Schulte, D.; Bahadur, D.; Richtering, W. Dual-Stimuli Responsive PNiPAM Microgel Achieved via Layer-by-Layer Assembly: Magnetic and Thermoresponsive. J. Colloid Interface Sci. 2008, 324, 47–54. DOI: 10.1016/j.jcis.2008.05.024.
  • Karg, M.; Lu, Y.; Carbó-Argibay, E.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M.; Hellweg, T.; Multiresponsive Hybrid Colloids Based on Gold Nanorods and Poly(NIPAM-co-Allylacetic Acid) Microgels: Temperature-and pH-Tunable Plasmon Resonance. Langmuir. 2009, 25, 3163–3167. DOI: 10.1021/la803458j.
  • Begum, R.; Najeeb, J.; Sattar, A.; Naseem, K.; Irfan, A.; Al-Sehemi, A. G.; Farooqi, Z. H. Chemical Reduction of Methylene Blue in the Presence of Nanocatalysts: A Critical Review. Rev. Chem. Eng. 2019, 1–23. https://doi.org/10.1515/revce-2018-0047
  • Liu, X.; Zhang, C.; Yang, J.; Lin, D.; Zhang, L.; Chen, X.; Zha, L. Silver Nanoparticles Loading pH Responsive Hybrid Microgels: pH Tunable Plasmonic Coupling Demonstrated by Surface Enhanced Raman Scattering. RSC Adv. 2013, 3, 3384–3390. DOI: 10.1039/c3ra22742a.
  • Zhou, X.-J.; Lu, H.-P.; Kong, L.-L.; Zhang, D.; Zhang, W.; Nie, J.-J.; Yuan, J.-Y.; Du, B.-Y.; Wang, X.-P. Thermo-Sensitive Microgels Supported Gold Nanoparticles as Temperature-Mediated Catalyst. Chin. J. Polym. Sci. 2019, 37, 235–242. DOI: 10.1007/s10118-019-2182-7.
  • Lapeyre, V.; Ancla, C.; Catargi, B.; Ravaine, V. Glucose-Responsive Microgels with a Core–Shell Structure. J. Colloid Interface Sci. 2008, 327, 316–323 DOI: 10.1016/j.jcis.2008.08.039.
  • Lu, Y.; Ballauff, M. Thermosensitive Core–Shell Microgels: From Colloidal Model Systems to Nanoreactors. Prog. Polym. Sci. 2011, 36, 767–792. DOI: 10.1016/j.progpolymsci.2010.12.003.
  • Yin, J.; Hu, J.; Zhang, G.; Liu, S. Schizophrenic Core–Shell Microgels: Thermoregulated Core and Shell Swelling/Collapse by Combining UCST and LCST Phase Transitions. Langmuir. 2014, 30, 2551–2558. DOI: 10.1021/la500133y.
  • Jiang, J.; Deng, Y.; Lou, J.; Wang, R.; Yi, X.; Dong, X.; Liu, J. Facile Synthesis of Tunable Core-Shell Particles via One-Step Copolymerization. Colloid Polym. Sci. 2017, 295, 613–617. DOI: 10.1007/s00396-017-4034-8.
  • Gelissen, A. P.; Scotti, A.; Turnhoff, S. K.; Janssen, C.; Radulescu, A.; Pich, A.; Rudov, A. A.; Potemkin, I. I.; Richtering, W. An Anionic Shell Shields a Cationic Core Allowing for Uptake and Release of Polyelectrolytes within Core–Shell Responsive Microgels. Soft Matter. 2018, 14, 4287–4299. DOI: 10.1039/C8SM00397A.
  • Agrawal, G.; Schürings, M. P.; van Rijn, P.; Pich, A. Formation of Catalytically Active Gold–Polymer Microgel Hybrids via a Controlled in Situ Reductive Process. J. Mater. Chem. A. 2013, 1, 13244–13251. DOI: 10.1039/c3ta12370g.
  • Brändel, T.; Sabadasch, V.; Hannappel, Y.; Hellweg, T. Improved Smart Microgel Carriers for Catalytic Silver Nanoparticles. ACS Omega. 2019, 4, 4636–4649. DOI: 10.1021/acsomega.8b03511.
  • Contreras-Cáceres, R.; Schellkopf, L.; Fernández-López, C.; Pastoriza-Santos, I.; Pérez-Juste, J.; Stamm, M. Effect of the Cross-Linking Density on the Thermoresponsive Behavior of Hollow PNIPAM Microgels. Langmuir. 2015, 31, 1142–1149. DOI: 10.1021/la504176a.
  • Xie, L.; Chen, M.; Wu, L. Fabrication and Properties of Hollow Poly(N‐Isopropylacrylamide)‐Ag Nanocomposite Spheres. J. Polym. Sci. A. Polym. Chem. 2009, 47, 4919–4926. DOI: 10.1002/pola.23543.
  • Klinger, D.; Landfester, K. Stimuli-Responsive Microgels for the Loading and Release of Functional Compounds: Fundamental Concepts and Applications. Polymer. 2012, 53, 5209–5231. DOI: 10.1016/j.polymer.2012.08.053.
  • Sahiner, N.; Godbey, W.; McPherson, G. L.; John, V. T. Microgel, Nanogel and Hydrogel–Hydrogel semi-IPN Composites for Biomedical Applications: synthesis and Characterization. Colloid Polym. Sci. 2006, 284, 1121–1129. DOI: 10.1007/s00396-006-1489-4.
  • Duracher, D.; Elaissari, A.; Pichot, C. Characterization of Cross-Linked Poly (N-Isopropylmethacrylamide) Microgel Latexes. Colloid Polym. Sci. 1999, 277, 905–913. DOI: 10.1007/s003960050470.
  • Han, D.-M.; Zhang, Q. M.; Serpe, M. J. Poly (N-Isopropylacryla,Mide)-co-(Acrylic Acid) Microgel/Ag Nanoparticle Hybrids for the Colorimetric Sensing of H2O2. Nanoscale. 2015, 7, 2784–2789. DOI: 10.1039/C4NR06093H.
  • Medeiros, S. F.; Filizzola, J. O.; Oliveira, P. F.; Silva, T. M.; Lara, B. R.; Lopes, M. V.; Rossi-Bergmann, B.; Elaissari, A.; Santos, A. M. Fabrication of Biocompatible and Stimuli-Responsive Hybrid Microgels with Magnetic Properties via Aqueous Precipitation Polymerization. Mater. Lett. 2016, 175, 296–299. https://doi.org/10.1016/j.matlet. 2016.04.004 DOI: 10.1016/j.matlet.2016.04.004.
  • Dong, X.; Chen, S.; Zhou, J.; Wang, L.; Zha, L. Self-Assembly of Monodisperse Composite Microgels with Bimetallic Nanorods as Core and PNIPAM as Shell into Close-Packed Monolayers and SERS Efficiency. Mater. Des. 2016, 104, 303–311. DOI: 10.1016/j.matdes.2016.05.010.
  • Liu, Y.-Y.; Liu, X.-Y.; Yang, J.-M.; Lin, D.-L.; Chen, X.; Zha, L.-S. Investigation of Ag Nanoparticles Loading Temperature Responsive Hybrid Microgels and Their Temperature Controlled Catalytic Activity. Colloids Surf. A. 2012, 393, 105–110. DOI: 10.1016/j.colsurfa.2011.11.007.
  • Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Thermosensitive Core–Shell Particles as Carriers for Ag Nanoparticles: modulating the Catalytic Activity by a Phase Transition in Networks. Angew. Chem. Int. Ed. 2006, 45, 813–816. 200502731 DOI: 10.1002/anie.200502731.
  • Farooqi, Z. H.; Sakhawat, T.; Khan, S. R.; Kanwal, F.; Usman, M.; Begum, R. Synthesis, Characterization and Fabrication of Copper Nanoparticles in N-Isopropylacrylamide Based co-Polymer Microgels for Degradation of p-Nitrophenol. Mater. Sci.-Pol. 2015, 33, 185–192. DOI: 10.1515/msp-2015-0025.
  • Begum, R.; Farooqi, Z. H.; Ahmed, E.; Naseem, K.; Ashraf, S.; Sharif, A.; Rehan, R. Catalytic Reduction of 4‐Nitrophenol Using Silver Nanoparticles‐Engineered Poly (N‐Isopropylacrylamide‐co‐Acrylamide) Hybrid Microgels. Appl. Organometal. Chem. 2017, 31, e3563. DOI: 10.1002/aoc.3563.
  • Begum, R.; Naseem, K.; Ahmed, E.; Sharif, A.; Farooqi, Z. H. Simultaneous Catalytic Reduction of Nitroarenes Using Silver Nanoparticles Fabricated in Poly (N-Isopropylacrylamide-Acrylic Acid-Acrylamide) Microgels. Colloids Surf. A. 2016, 511, 17–26. DOI: 10.1016/j.colsurfa.2016.09.076.
  • Sengel, S. B.; Sahiner, N. Poly ((Thiazol-2-yl) Acrylamide), p (ATA) Microgel: Synthesis, Characterization and Versatile Applications. Colloids Surf. A. 2017, 522, 272–278. DOI: 10.1016/j.colsurfa.2017.03.005.
  • Khan, A.; Khan, T. H.; El-Toni, A. M.; Aldalbahi, A.; Alam, J.; Ahamad, T. In Situ Formation and Immobilization of Silver Nanoparticles Using Thermo-Responsive Microgel Particles and Their Cytotoxicity Evaluation. Mater. Lett. 2019, 235, 197–201. DOI: 10.1016/j.matlet.2018.10.041.
  • Ur Rehman, S.; Khan, A. R.; Shah, A.; Badshah, A.; Siddiq, M. Preparation and Characterization of Poly (N-Isoproylacrylamide-co-Dimethylaminoethyl Methacrylate) Microgels and Their Composites of Gold Nanoparticles. Colloids Surf. A. 2017, 520, 826–833. DOI: 10.1016/j.colsurfa.2017.02.060.
  • Satapathy, S. S.; Bhol, P.; Chakkarambath, A.; Mohanta, J.; Samantaray, K.; Bhat, S. K.; Panda, S. K.; Mohanty, P. S.; Si, S. Thermo-Responsive PNIPAM-Metal Hybrids: An Efficient Nanocatalyst for the Reduction of 4-Nitrophenol. Appl. Surf. Sci. 2017, 420, 753–763. DOI: 10.1016/j.apsusc.2017.05.172.
  • Khan, S. R.; Jamil, S.; Li, S.; Sultan, A. Acrylic Acid and Methacrylic Acid Based Microgel Catalysts for Reduction of 4-Nitrophenol. J. Phys. Chem. A. 2018, 92, 2656–2664. https://doi.org/10.1134/S003602441901014X
  • Shahid, M.; Farooqi, Z. H.; Begum, R.; Naseem, K.; Ajmal, M.; Irfan, A. Designed Synthesis of Silver Nanoparticles in Responsive Polymeric System for Their Thermally Tailored Catalytic Activity towards Hydrogenation Reaction. Korean J. Chem. Eng. 2018, 35, 1099–1107. DOI: 10.1007/s11814-018-0016-x.
  • Hou, L.; Wu, P. Microgels with Linear Thermosensitivity in a Wide Temperature Range. Macromolecules. 2016, 49, 6095–6100. DOI: 10.1021/acs.macromol.6b01359.
  • Wang, L.; Chen, S.; Zhou, J.; Yang, J.; Chen, X.; Ji, Y.; Liu, X.; Zha, L. Silver Nanoparticles Loaded Thermoresponsive Hybrid Nanofibrous Hydrogel as a Recyclable Dip‐Catalyst with Temperature‐Tunable Catalytic Activity. Macromol. Mater. Eng. 2017, 302, 1700181. DOI: 10.1002/mame.201700181.
  • Chen, L.-Y.; Ou, C.-M.; Chen, W.-Y.; Huang, C.-C.; Chang, H.-T. Synthesis of Photoluminescent Au ND–PNIPAM Hybrid Microgel for the Detection of Hg2+. ACS Appl. Mater. Interfaces. 2013, 5, 4383–4388. DOI: 10.1021/am400628p.
  • Ma, M.; Ma, Y.; Zhang, B.; Zhang, H.; Geng, W.; Zhang, Q. Fabrication and Characterization of 1D Fe3O4/P (NIPAM–MAA–MBA) Nanochains with Thermo-and pH-Responsive Shell for Controlled Release for Phenolphthalein. J. Mater. Sci. 2015, 50, 3083–3090. DOI: 10.1007/s10853-015-8868-5.
  • Wu, Y.; Yang, H.; Lin, Y.; Zheng, Z.; Ding, X.; ( Poly, N. Isopropylacrylamide) Modified Fe3O4@Au Nanoparticles with Magnetic and Temperature Responsive Properties. Mater. Lett. 2016, 169, 218–222. DOI: 10.1016/j.matlet.2016.01.127.
  • Lü, J.; Yang, Y.; Gao, J.; Duan, H.; Lü, C. Thermoresponsive Amphiphilic Block Copolymer-Stablilized Gold Nanoparticles: Synthesis and High Catalytic Properties. Langmuir. 2018, 34, 8205–8214. DOI: 10.1021/acs.langmuir.8b00414.
  • Yang, D.; Viitasuo, M.; Pooch, F.; Tenhu, H.; Hietala, S. Poly(N-Acryloylglycinamide) Microgels as Nanocatalyst Platform. Polym. Chem. 2018, 9, 517–524. DOI: 10.1039/C7PY01950E.
  • Begum, R.; Farooqi, Z. H.; Butt, Z.; Wu, Q.; Wu, W.; Irfan, A. Engineering of Responsive Polymer Based Nano-Reactors for Facile Mass Transport and Enhanced Catalytic Degradation of 4-Nitrophenol. J. Environ. Sci. 2018, 72, 43–52. DOI: 10.1016/j.jes.2017.12.003.
  • Cui, K.; Yan, B.; Xie, Y.; Qian, H.; Wang, X.; Huang, Q.; He, Y.; Jin, S.; Zeng, H. Regenerable Urchin-like Fe3O4@PDA-Ag Hollow Microspheres as Catalyst and Adsorbent for Enhanced Removal of Organic Dyes. J. Hazard. Mater. 2018, 350, 66–75. DOI: 10.1016/j.jhazmat.2018.02.011.
  • Farooqi, Z. H.; Naseem, K.; Begum, R.; Ijaz, A. Catalytic Reduction of 2-Nitroaniline in Aqueous Medium Using Silver Nanoparticles Functionalized Polymer Microgels. J. Inorg. Organomet. Polym. Mater. 2015, 25, 1554–1568. DOI: 10.1007/s10904-015-0275-5.
  • Li, K.; Chen, X.; Wang, Z.; Xu, L.; Fu, W.; Zhao, L.; Chen, L. Temperature‐Responsive Catalytic Performance of Ag Nanoparticles Endowed by Poly(N‐Isopropylacrylamide‐co‐Acrylic Acid) Microgels. Polym. Compos. 2017, 38, 708–718. DOI: 10.1002/pc.23630.
  • Tafesh, A. M.; Weiguny, J. A Review of the Selective Catalytic Reduction of Aromatic Nitro Compounds into Aromatic Amines, Isocyanates, Carbamates, and Ureas Using CO. Chem. Rev. 1996, 96, 2035–2052. DOI: 10.1021/cr950083f.
  • Iqbal, Z.; Shah, L. A.; Sayed, M.; Haleem, A.; Siddiq, M. Responsive Polymer Hybrid Gel Cross-Linked by n, n-(1, 2-Dihydroxyethylene) Bisacrylamide for Catalytic Application. J. Chil. Chem. Soc. 2016, 61, 3061–3065. DOI: 10.4067/S0717-97072016000300011.
  • Shah, L. A.; Ambreen, J.; Bibi, I.; Sayed, M.; Siddiq, M. Silver Nanoparticles Fabricated Hybrid Microgels for Optical and Catalytic Study. J. Chem. Soc. Pak 2016, 38, 850–858.
  • Yang, L.-Q.; Hao, M.-M.; Wang, H.-Y.; Zhang, Y. Amphiphilic polymer-Ag Composite Microgels with Tunable Catalytic Activity and Selectivity. Colloid Polym. Sci. 2015, 293, 2405–2417. DOI: 10.1007/s00396-015-3642-4.
  • Zhang, C.; Li, C.; Chen, Y.; Zhang, Y. Synthesis and Catalysis of Ag Nanoparticles Trapped into Temperature-Sensitive and Conductive Polymers. J. Mater. Sci. 2014, 49, 6872–6882. DOI: 10.1007/s10853-014-8389-7.
  • Li, L.; Niu, R.; Zhang, Y. Ag–Au Bimetallic Nanocomposites Stabilized with Organic–Inorganic Hybrid Microgels: synthesis and Their Regulated Optical and Catalytic Properties. RSC Adv. 2018, 8, 12428–12438. DOI: 10.1039/C8RA01343H.
  • Jia, H.; Schmitz, D.; Ott, A.; Pich, A.; Lu, Y. Cyclodextrin Modified Microgels as “Nanoreactor” for the Generation of Au Nanoparticles with Enhanced Catalytic Activity. J. Mater. Chem. A. 2015, 3, 6187–6195. DOI: 10.1039/C5TA00197H.
  • Zhang, W.; Sun, Y.; Zhang, L. In Situ Synthesis of Monodisperse Silver Nanoparticles on Sulfhydryl-Functionalized Poly (Glycidyl Methacrylate) Microspheres for Catalytic Reduction of 4-Nitrophenol. Ind. Eng. Chem. Res. 2015, 54, 6480–6488. DOI: 10.1021/acs.iecr.5b01010.
  • Begum, R.; Farooqi, Z. H.; Aboo, A. H.; Ahmed, E.; Sharif, A.; Xiao, J. Reduction of Nitroarenes Catalyzed by Microgel-Stabilized Ag Nanoparticles. J. Hazard. Mater. 2019, 377, 399–408. DOI: 10.1016/j.jhazmat.2019.05.080.
  • Ramírez-Rave, S.; Hernández-Gordillo, A.; Calderón, H. A.; Galano, A.; García-Mendoza, C.; Gómez, R. Synthesis of New ZnS–Bipy Based Hybrid Organic–Inorganic Materials for Photocatalytic Reduction of 4-Nitrophenol. New J. Chem. 2015, 39, 2188–2194. DOI: 10.1039/C4NJ01891E.
  • Walker, G.; Weatherley, L. Textile Wastewater Treatment Using Granular Activated Carbon Adsorption in Fixed Beds. Sep. Sci. Technol. 2000, 35, 1329–1341. DOI: 10.1081/SS-100100227.
  • Liu, J. Papermaking Technology Evolution: Its Impact on Wet-End Retention. Pap. Technol. 2005, 46, 31–36.
  • Tünay, O.; Kabdaşli, I.; Orhon, D.; Cansever, G. Use and Minimization of Water in Leather Tanning Processes. Water Sci. Technol. 1999, 40, 237–244. DOI: 10.2166/wst.1999.0051.
  • Gupta, V. K.; Jain, R.; Varshney, S. Removal of Reactofix Golden Yellow 3 RFN from Aqueous Solution Using Wheat Husk—An Agricultural Waste. J. Hazard. Mater. 2007, 142, 443–448. DOI: 10.1016/j.jhazmat.2006.08.048.
  • Turesky, R. J.; Freeman, J. P.; Holland, R. D.; Nestorick, D. M.; Miller, D. W.; Ratnasinghe, D. L.; Kadlubar, F. F. Identification of Aminobiphenyl Derivatives in Commercial Hair Dyes. Chem. Res. Toxicol. 2003, 16, 1162–1173. DOI: 10.1021/tx030029r.
  • Wróbel, D.; Boguta, A.; Ion, R. M. Mixtures of Synthetic Organic Dyes in a Photoelectrochemical Cell. J. Photochem. Photobiol. A. 2001, 138, 7–22. DOI: 10.1016/S1010-6030(00)00377-4.
  • Forgacs, E.; Cserhati, T.; Oros, G. Removal of Synthetic Dyes from Wastewaters: A Review. Environ. Int. 2004, 30, 953–971. DOI: 10.1016/j.envint.2004.02.001.
  • Rajeshwar, K.; Osugi, M.; Chanmanee, W.; Chenthamarakshan, C.; Zanoni, M. V. B.; Kajitvichyanukul, P.; Krishnan-Ayer, R. Heterogeneous Photocatalytic Treatment of Organic Dyes in Air and Aqueous Media. J. Photochem. Photobiol. C. 2008, 9, 171–192. DOI: 10.1016/j.jphotochemrev.2008.09.001.
  • Zhao, X.; Liu, S.; Tang, Z.; Niu, H.; Cai, Y.; Meng, W.; Wu, F.; Giesy, J. P. Synthesis of Magnetic Metal-Organic Framework (MOF) for Efficient Removal of Organic Dyes from Water. Sci. Rep. 2015, 5, 11849. https://doi.org/10.1038/srep11849
  • Zhang, Y.-R.; Shen, S.-L.; Wang, S.-Q.; Huang, J.; Su, P.; Wang, Q.-R.; Zhao, B.-X. A Dual Function Magnetic Nanomaterial Modified with Lysine for Removal of Organic Dyes from Water Solution. Chem. Eng 2014, 239, 250–256. DOI: 10.1016/j.cej.2013.11.022.
  • Mohan, D.; Sarswat, A.; Ok, Y. S.; Pittman, C. U. Jr, Organic and Inorganic Contaminants Removal from Water with Biochar, a Renewable, Low Cost and Sustainable Adsorbent–a Critical Review. Bioresour. Technol. 2014, 160, 191–202. DOI: 10.1016/j.biortech.2014.01.120.
  • Labiadh, L.; Oturan, M. A.; Panizza, M.; Hamadi, N. B.; Ammar, S. Complete Removal of AHPS Synthetic Dye from Water Using New Electro-Fenton Oxidation Catalyzed by Natural Pyrite as Heterogeneous Catalyst. J. Hazard. Mater. 2015, 297, 34–41. DOI: 10.1016/j.jhazmat.2015.04.062.
  • Nidheesh, P.; Zhou, M.; Oturan, M. A. An Overview on the Removal of Synthetic Dyes from Water by Electrochemical Advanced Oxidation Processes. Chemosphere. 2018, 197, 210–227. DOI: 10.1016/j.chemosphere.2017.12.195.
  • Mohamed, A.; El-Sayed, R.; Osman, T.; Toprak, M.; Muhammed, M.; Uheida, A. Composite Nanofibers for Highly Efficient Photocatalytic Degradation of Organic Dyes from Contaminated Water. Environ. Res. 2016, 145, 18–25. DOI: 10.1016/j.envres.2015.09.024.
  • Ucar, A.; Findik, M.; Gubbuk, I. H.; Kocak, N.; Bingol, H. Catalytic Degradation of Organic Dye Using Reduced Graphene Oxide–Polyoxometalate Nanocomposite. Mater. Chem. Phys. 2017, 196, 21–28. DOI: 10.1016/j.matchemphys.2017.04.047.
  • Ebrahiem, E. E.; Al-Maghrabi, M. N.; Mobarki, A. R. Removal of Organic Pollutants from Industrial Wastewater by Applying photo-Fenton Oxidation Technology. Arabian J. Chem. 2017, 10, S1674–S1679. DOI: 10.1016/j.arabjc.2013.06.012.
  • Popli, S.; Patel, U. D. Destruction of Azo Dyes by Anaerobic–Aerobic Sequential Biological Treatment: A Review. Int. J. Environ. Sci. Technol. 2015, 12, 405–420. DOI: 10.1007/s13762-014-0499-x.
  • He, J.; Zhang, Y.; Zhang, X.; Huang, Y. Highly Efficient Fenton and Enzyme-Mimetic Activities of NH2-MIL-88B (Fe) Metal Organic Framework for Methylene Blue Degradation. Sci. Rep. 2018, 8, 5159. https://doi.org/10.1038/s41598-018-23557-2
  • Cotillas, S.; Llanos, J.; Cañizares, P.; Clematis, D.; Cerisola, G.; Rodrigo, M. A.; Panizza, M. Removal of Procion Red MX-5B Dye from Wastewater by Conductive-Diamond Electrochemical Oxidation. Electrochim. Acta. 2018, 263, 1–7. DOI: 10.1016/j.electacta.2018.01.052.
  • Vidhu, V.; Philip, D. Catalytic Degradation of Organic Dyes Using Biosynthesized Silver Nanoparticles. Micron. 2014, 56, 54–62. 2013.10.006 DOI: 10.1016/j.micron.2013.10.006.
  • Ismail, M.; Khan, M.; Khan, S. B.; Khan, M. A.; Akhtar, K.; Asiri, A. M. Green Synthesis of Plant Supported CuAg and CuNi Bimetallic Nanoparticles in the Reduction of Nitrophenols and Organic Dyes for Water Treatment. J. Mol. Liq. 2018, 260, 78–91. DOI: 10.1016/j.molliq.2018.03.058.
  • Magdalane, C. M.; Kaviyarasu, K.; Vijaya, J. J.; Siddhardha, B.; Jeyaraj, B.; Kennedy, J.; Maaza, M. Evaluation on the Heterostructured CeO2/Y2O3 Binary Metal Oxide Nanocomposites for UV/Vis Light Induced Photocatalytic Degradation of Rhodamine-B Dye for Textile Engineering Application. J. Alloys Compd. 2017, 727, 1324–1337. DOI: 10.1016/j.jallcom.2017.08.209.
  • Ahmad, I.; Kamal, T.; Khan, S. B.; Asiri, A. M. An Efficient and Easily Retrievable Dip Catalyst Based on Silver Nanoparticles/Chitosan-Coated Cellulose Filter Paper. Cellulose. 2016, 23, 3577–3588. DOI: 10.1007/s10570-016-1053-4.
  • Ur Rehman, S.; Siddiq, M.; Al-Lohedan, H.; Sahiner, N. Cationic Microgels Embedding Metal Nanoparticles in the Reduction of Dyes and Nitro-Phenols. Chem. Eng. J. 2015, 265, 201–209. DOI: 10.1016/j.cej.2014.12.061.
  • Ilunga, A. K.; Meijboom, R. Catalytic Oxidation of Methylene Blue by Dendrimer Encapsulated Silver and Gold Nanoparticles. J. Mol. Catal. A: Chem. 2016, 411, 48–60. DOI: 10.1016/j.molcata.2015.10.009.
  • Naseem, K.; Farooqi, Z. H.; Begum, R.; Irfan, A. Removal of Congo Red Dye from Aqueous Medium by Its Catalytic Reduction Using Sodium Borohydride in the Presence of Various Inorganic Nano-Catalysts: A Review. J. Cleaner Prod. 2018, 187, 296–307. DOI: 10.1016/j.jclepro.2018.03.209.
  • Tang, Y.; Wu, T.; Hu, B.; Yang, Q.; Liu, L.; Yu, B.; Ding, Y.; Ye, S. Synthesis of Thermo-and pH-Responsive Ag Nanoparticle-Embedded Hybrid Microgels and Their Catalytic Activity in Methylene Blue Reduction. Mater. Chem. Phys. 2015, 149, 460–466. DOI: 10.1016/j.matchemphys.2014.10.045.
  • Shah, L. A.; Haleem, A.; Sayed, M.; Siddiq, M. Synthesis of Sensitive Hybrid Polymer Microgels for Catalytic Reduction of Organic Pollutants. J. Environ. Chem. Eng. 2016, 4, 3492–3497. DOI: 10.1016/j.jece.2016.07.029.
  • Naseem, K.; Farooqi, Z. H.; Begum, R.; Wu, W.; Irfan, A.; Al‐Sehemi, A. G. Silver Nanoparticles Engineered Polystyrene‐Poly (N‐Isopropylmethacrylamide‐Acrylic Acid) Core Shell Hybrid Polymer Microgels for Catalytic Reduction of Congo Red. Macromol. Chem. Phys. 2018, 219, 1800211. DOI: 10.1002/macp.201800211.
  • Zhang, X.; Yang, Y.; Huang, W.; Yang, Y.; Wang, Y.; He, C.; Liu, N.; Wu, M.; Tang, L. g-C3N4/UiO-66 Nanohybrids with Enhanced Photocatalytic Activities for the Oxidation of Dye under Visible Light Irradiation. Mater. Res. Bull. 2018, 99, 349–358. DOI: 10.1016/j.materresbull.2017.11.028.
  • Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Prabukumar, S.; Sivaramakrishnan, S. Multifunctional Properties of Microwave Assisted CdO–NiO–ZnO Mixed Metal Oxide Nanocomposite: enhanced Photocatalytic and Antibacterial Activities. J. Mater. Sci: Mater. Electron. 2018, 29, 5459–5471. DOI: 10.1007/s10854-017-8513-y.
  • Lin, Y.; Wan, H.; Chen, F.; Liu, X.; Ma, R.; Sasaki, T. Two-Dimensional Porous Cuprous Oxide Nanoplatelets Derived from Metal–Organic Frameworks (MOFs) for Efficient Photocatalytic Dye Degradation under Visible Light. Dalton Trans. 2018, 47, 7694–7700. DOI: 10.1039/C8DT01117F.
  • Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic Degradation Pathway of Methylene Blue in Water. Appl. Catal., B. 2001, 31, 145–157. DOI: 10.1016/S0926-3373(00)00276-9.
  • Bhatkhande, D. S.; Pangarkar, V. G.; Beenackers, A. A. Photocatalytic Degradation for Environmental Applications–A Review. J. Chem. Technol. Biotechnol. 2002, 77, 102–116. DOI: 10.1002/jctb.532.
  • Konstantinou, I. K.; Albanis, T. A. TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: kinetic and Mechanistic Investigations. A Review. Appl. Catal., B. 2004, 49, 1–14. DOI: 10.1016/j.apcatb.2003.11.010.
  • Zhang, F.; Zhao, J.; Shen, T.; Hidaka, H.; Pelizzetti, E.; Serpone, N. TiO2-Assisted Photodegradation of Dye Pollutants II. Adsorption and Degradation Kinetics of Eosin in TiO2 Dispersions under Visible Light Irradiation. Appl. Catal., B. 1998, 15, 147–156. DOI: 10.1016/S0926-3373(97)00043-X.
  • Krieger, A.; Fuenzalida Werner, J. P.; Mariani, G.; Gröhn, F. Functional Supramolecular Porphyrin–Dendrimer Assemblies for Light Harvesting and Photocatalysis. Macromolecules. 2017, 50, 3464–3475. DOI: 10.1021/acs.macromol.6b02435.
  • Wang, H. L.; Liu, L. Y.; Kou, W. Q.; Jiang, W. F. Preparation of Thermosensitive and Visible‐Light Responsible Composites Based on Hydrogels of N‐Isopropylacrylamide/Maleic Anhydride‐Modified β‐Cyclodextrin Copolymer and TiO2/Multiwalled Carbon Nanotubes Particles for Degradation of Methyl Orange. Polym. Compos. 2013, 34, 681–689. DOI: 10.1002/pc.22471.
  • Wen, X.; Tang, L. One-Dimensional Copolymer Nanostructures Loaded with Silver Nanoparticles Fabricated via Metallogel Template Copolymerization and Their pH Dependent Photocatalytic Degradation of Methylene Blue. J. Mol. Catal. A: Chem. 2015, 399, 86–96. DOI: 10.1016/j.molcata.2015.01.025.
  • Yu, Z.; Tang, D.; Lv, H.; Feng, Q.; Zhang, Q.; Jiang, E.; Wang, Q. Fabrication of Thermo Responsive Fibrous ZnO/PNIPAM Nanocomposites with Switchable Photocatalytic Activity. Colloids Surf., A. 2015, 471, 117–123. DOI: 10.1016/j.colsurfa.2015.02.023.
  • Zou, Y.; Huang, H.; Li, S.; Wang, J.; Zhang, Y. Synthesis of Supported Ag/AgCl Composite Materials and Their Photocatalytic Activity. J. Photochem. Photobiol., A. 2019, 376, 43–53. DOI: 10.1016/j.jphotochem.2019.03.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.