503
Views
2
CrossRef citations to date
0
Altmetric
Review Article

In situ Analysis of Cancer Cells Based on DNA Signal Amplification and DNA Nanodevices

, , , , & ORCID Icon
Pages 8-19 | Published online: 15 Oct 2019

References

  • Jemal, A.; Bray, F.; Center, M.; Ferlay, J.; Ward, E.; Forman, D. Global Cancer Statistics. CA Cancer J. Clin. 2011, 61, 69–90. DOI: 10.3322/caac.20115.
  • Jemal, A.; Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. DOI: 10.3322/caac.21492.
  • Li, J.; Macdonald, J. Advances in Isothermal Amplification: Novel Strategies Inspired by Biological Processes. Biosens. Bioelectron. 2015, 64, 196–211. DOI: 10.1016/j.bios.2014.08.069.
  • Zhao, Y. X.; Chen, F.; Li, Q.; Wang, L. H.; Fan, C. H. Isothermal Amplification of Nucleic Acids. Chem. Rev. 2015, 115, 12491–12545. DOI: 10.1021/acs.chemrev.5b00428.
  • Liang, H.; Zhang, X. B.; Lv, Y. F.; Gong, L.; Wang, R. W.; Zhu, X. Y.; Yang, R. H.; Tan, W. H. Functional DNA-Containing Nanomaterials: Cellular Applications in Biosensing, Imaging, and Targeted Therapy. Acc. Chem. Res. 2014, 47, 1891–1901. DOI: 10.1021/ar500078f.
  • Chai, H.; Miao, P. Bipedal DNA Walker Based Electrochemical Genosensing Strategy. Anal. Chem. 2019, 91, 4953–4957. DOI: 10.1021/acs.analchem.9b01118.
  • Mu, Q. H.; Liu, G. X.; Yang, D. W.; Kou, X. Y.; Cao, N.; Tang, Y. G.; Miao, P. Ultrasensitive Detection of DNA Based on Exonuclease III-Assisted Recycling Amplification and DNAzyme Motor. Bioconjugate Chem. 2018, 29, 3527–3531. DOI: 10.1021/acs.bioconjchem.8b00774.
  • Sacca, B.; Niemeyer, C. M. DNA Origami: The Art of Folding DNA. Angew. Chem. Int. Ed. 2012, 51, 58–66. DOI: 10.1002/anie.201105846.
  • McLaughlin, C. K.; Hamblin, G. D.; Sleiman, H. F. Supramolecular DNA Assembly. Chem. Soc. Rev. 2011, 40, 5647–5656. DOI: 10.1039/c1cs15253j.
  • Chen, X. F.; Chen, W.; Tang, L. H.; Hu, W.; Wang, M. Y.; Miao, P. Electrochemical Impedance Spectroscopic Analysis of Nucleic Acids through DNA Tetrahedron Self-Walking Machine. Electrochem. Commun. 2019, 101, 1–5. DOI: 10.1016/j.elecom.2019.02.006.
  • Wu, G. Q.; Lu, H. Progress in Biomedical Applications of Functionalized Nucleic Acid Nanodevices (NANDs). ChemNanoMat. 2016, 2, 354–363. DOI: 10.1002/cnma.201600036.
  • Chen, T. S.; Ren, L. J.; Liu, X. H.; Zhou, M. R.; Li, L. L.; Xu, J. J.; Zhu, X. L. DNA Nanotechnology for Cancer Diagnosis and Therapy. Int. J. Mol. Sci. 2018, 19, 1671. DOI: 10.3390/ijms19061671.
  • Silverman, A. P.; Kool, E. T. Oligonucleotide Probes for RNA-Targeted Fluorescence in Situ Hybridization. Adv. Clin. Chem. 2007, 43, 79–115. DOI: 10.1016/S0065-2423(06)43003-1.
  • Wu, L.; Qu, X. G. Cancer Biomarker Detection: Recent Achievements and Challenges. Chem. Soc. Rev. 2015, 44, 2963–2997. DOI: 10.1039/C4CS00370E.
  • Zhao, J.; Chen, H. N.; Tang, Y. Y.; Chen, H.; Chen, G. F.; Yin, Y. M.; Li, G. X. Research Progresses on the Functional Polypeptides in the Detection and Imaging of Breast Cancer. J. Mater. Chem. B 2018, 6, 2510–2523. DOI: 10.1039/C7TB02541F.
  • Tyagi, S. Imaging Intracellular RNA Distribution and Dynamics in Living Cells. Nat. Methods 2009, 6, 331–338. DOI: 10.1038/nmeth.1321.
  • Qian, X.; Jin, L.; Lloyd, R. V. In Situ Hybridization: Basic Approaches and Recent Development. J. Histotechnol. 2004, 27, 53–67. DOI: 10.1179/his.2004.27.1.53.
  • Lin, L. S.; Cong, Z. X.; Cao, J. B.; Ke, K. M.; Peng, Q. L.; Gao, J. H.; Yang, H. H.; Liu, G.; Chen, X. Y. Multifunctional Fe3O4@ Polydopamine Core–Shell Nanocomposites for Intracellular mRNA Detection and Imaging-Guided Photothermal Therapy. ACS Nano. 2014, 8, 3876–3883. DOI: 10.1021/nn500722y.
  • Chen, T.; Wu, C. S.; Jimenez, E.; Zhu, Z.; Dajac, J. G.; You, M. X.; Han, D.; Zhang, X. B.; Tan, W. H. DNA Micelle Flares for Intracellular mRNA Imaging and Gene Therapy. Angew. Chem. Int. Ed. 2013, 52, 2012–2016. DOI: 10.1002/anie.201209440.
  • Qing, Z. H.; Xu, J. Y.; Hu, J. L.; Zheng, J.; He, L.; Zou, Z.; Yang, S.; Tan, W. H.; Yang, R. H. In Situ Amplification-Based Imaging of RNA in Living Cells. Angew. Chem. Int. Ed. Engl. 2019, 58, 11574–11585. DOI: 10.1002/anie.201812449.
  • Ambros, V. The Functions of Animal microRNAs. Nature 2004, 431, 350–355. DOI: 10.1038/nature02871.
  • Bartel, D. P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. DOI: 10.1016/S0092-8674(04)00045-5.
  • Peng, Y.; Croce, C. M. The Role of MicroRNAs in Human Cancer. Signal Transduct. Target. Ther. 2016, 1, 15004. DOI: 10.1038/sigtrans.2015.4.
  • Pritchard, C. C.; Cheng, H. H.; Tewari, M. MicroRNA Profiling: Approaches and Considerations. Nat. Rev. Genet. 2012, 13, 358. DOI: 10.1038/nrg3198.
  • Tian, T.; Wang, J. Q.; Zhou, X. A Review: microRNA Detection Methods. Org. Biomol. Chem. 2015, 13, 2226–2238. DOI: 10.1039/C4OB02104E.
  • He, D. G.; Wong, K. W.; Dong, Z. Z.; Li, H. W. Recent Progress in Live Cell mRNA/microRNA Imaging Probes Based on Smart and Versatile Nanomaterials. J. Mater. Chem. B 2018, 6, 7773–7793. DOI: 10.1039/C8TB02285B.
  • Silahtaroglu, A. N.; Nolting, D.; Dyrskjot, L.; Berezikov, E.; Moller, M.; Tommerup, N.; Kauppinen, S. Detection of microRNAs in Frozen Tissue Sections by Fluorescence in Situ Hybridization Using Locked Nucleic Acid Probes and Tyramide Signal Amplification. Nat. Protoc. 2007, 2, 2520–2528. DOI: 10.1038/nprot.2007.313.
  • Bohlander, P. R.; Abb, M. L.; Bestvater, F.; Allgayer, H.; Wagenknecht, H. A. Two Wavelength-Shifting Molecular Beacons for Simultaneous and Selective Imaging of Vesicular miRNA-21 and miRNA-31 in Living Cancer Cells. Org. Biomol. Chem. 2016, 14, 5001–5006. DOI: 10.1039/C6OB00691D.
  • Sadhu, K. K.; Winssinger, N. Detection of miRNA in Live Cells by Using Templated RuII‐Catalyzed Unmasking of a Fluorophore. Chem. Eur. J. 2013, 19, 8182–8189. DOI: 10.1002/chem.201300060.9.
  • Wang, H. M.; Li, C. X.; Liu, X. Q.; Zhou, X.; Wang, F. Construction of an Enzyme-Free Concatenated DNA Circuit for Signal Amplification and Intracellular Imaging. Chem. Sci. 2018, 9, 5842–5849. DOI: 10.1002/chem.201300060.
  • Min, X. H.; Zhang, M. S.; Huang, F. J.; Lou, X. D.; Xia, F. Live Cell microRNA Imaging Using Exonuclease III-Aided Recycling Amplification Based on Aggregation-Induced Emission Luminogens. ACS Appl. Mater. Interfaces 2016, 8, 8998–9003. DOI: 10.1021/acsami.6b01581.
  • Bai, S.; Xiu, B.; Ye, J. Y.; Dong, Y. Target-Catalyzed DNA Four-Way Junctions for CRET Imaging of MicroRNA, Concatenated Logic Operations, and Self-Assembly of DNA Nanohydrogels for Targeted Drug Delivery. ACS Appl. Mater. Interfaces 2015, 7, 23310–23319. DOI: 10.1021/acsami.5b07827.
  • Huang, D. J.; Huang, Z. M.; Xiao, H. Y.; Wu, Z. K.; Tang, L. J.; Jiang, J. H. Protein Scaffolded DNA Tetrads Enable Efficient Delivery and Ultrasensitive Imaging of miRNA through Crosslinking Hybridization Chain Reaction. Chem. Sci. 2018, 9, 4892–4897. DOI: 10.1039/C8SC01001C.
  • Deng, R. J.; Tang, L. H.; Tian, Q. Q.; Wang, Y.; Lin, L.; Li, J. H. Toehold‐Initiated Rolling Circle Amplification for Visualizing Individual Micrornas in Situ in Single Cells. Angew. Chem. Int. Ed. 2014, 53, 2389–2393. DOI: 10.1002/anie.201309388.
  • Wickham, S.; Bath, J.; Katsuda, Y.; Endo, M.; Hidaka, K.; Sugiyama, H.; Turberfield, A. J. A DNA-Based Molecular Motor That Can Navigate a Network of Tracks. Nat. Nanotech. 2012, 7, 169–173. DOI: 10.1038/nnano.2011.253.
  • Pan, J.; Li, F. R.; Cha, T. G.; Chen, H. R.; Choi, J. H. Recent Progress on DNA Based Walkers. Curr. Opin. Biotechnol. 2015, 34, 56–64. DOI: 10.1016/j.copbio.2014.11.017.
  • Peng, H. Y.; Li, X. F.; Zhang, H. Q.; Le, X. C. A MicroRNA-Initiated DNAzyme Motor Operating in Living Cells. Nat. Commun. 2017, 8, 14378. DOI: 10.1038/ncomms14378.
  • Cheglakov, Z.; Cronin, T. M.; He, C.; Weizmann, Y. Live Cell microRNA Imaging Using Cascade Hybridization Reaction. J. Am. Chem. Soc. 2015, 137, 6116–6119. DOI: 10.1021/jacs.5b01451.
  • Wang, Z. J.; Liu, W. H.; Fan, C. H.; Chen, N. Visualizing mRNA in Live Mammalian Cells. Methods 2019, 161, 16–23. DOI: 10.1016/j.ymeth.2019.03.008.
  • Paik, J. H.; Choe, G.; Kim, H.; Choe, J. Y.; Lee, H. J.; Lee, C. T.; Lee, J. S.; Jheon, S.; Chung, J. H. Screening of Anaplastic Lymphoma Kinase Rearrangement by Immunohistochemistry in Non-Small Cell Lung Cancer: Correlation with Fluorescence in Situ Hybridization. J. Thorac. Oncol. 2011, 6, 466–472. DOI: 10.1097/JTO.0b013e31820b82e8.
  • Long, X.; Colonell, J.; Wong, A. M.; Singer, R. H.; Lionnet, T. Quantitative mRNA Imaging throughout the Entire Drosophila Brain. Nat. Methods 2017, 14, 703. DOI: 10.1038/nmeth.4309.
  • Wu, Y. R.; Yang, C. J.; Moroz, L. L.; Tan, W. H. Nucleic Acid Beacons for Long-Term Real-Time Intracellular Monitoring. Anal. Chem. 2008, 80, 3025–3028. DOI: 10.1021/ac702637w.
  • Liu, L.; Liu, J.; Wu, H.; Wang, X. N.; Yu, R. Q.; Jiang, J. H. Branched Hybridization Chain Reaction Circuit for Ultrasensitive Localizable Imaging of mRNA in Living Cells. Anal. Chem. 2018, 90, 1502–1505. DOI: 10.1021/acs.analchem.7b04848.
  • Ren, K. W.; Xu, Y. F.; Liu, Y.; Yang, M.; Ju, H. X. A Responsive “Nano String Light” for Highly Efficient mRNA Imaging in Living Cells via Accelerated DNA Cascade Reaction. ACS Nano. 2018, 12, 263–271. DOI: 10.1021/acsnano.7b06200.
  • Tay, C. Y.; Yuan, L.; Leong, D. T. Nature-Inspired DNA Nanosensor for Real-Time in Situ Detection of mRNA in Living Cells. ACS Nano. 2015, 9, 5609–5617. DOI: 10.1021/acsnano.5b01954.
  • Wu, C. C.; (Wu, C.; ).; Cansiz, S.; Zhang, L. Q.; Teng, I. T.; Qiu, L. P.; Li, J.; Liu, Y.; Zhou, C. S.; Hu, R.; et al. A Nonenzymatic Hairpin DNA Cascade Reaction Provides High Signal Gain of mRNA Imaging inside Live Cells. J. Am. Chem. Soc. 2015, 137, 4900–4903. DOI: 10.1021/jacs.5b00542.
  • Shi, C. A.; Zhang, X.; Yin, H. J.; Fang, H.; Zhao, Y. M.; Liu, L.; Wu, Z. L.; Xu, H. J. A Novel ATP Quantification Method Combining Glucose Phosphorylation with Surface-Enhanced Raman Scattering. Sens. Actuators B Chem. 2017, 241, 855–859. DOI: 10.1016/j.snb.2016.10.151.
  • Knowles, J. R. Enzyme-Catalyzed Phosphoryl Transfer Reactions. Annu. Rev. Biochem. 1980, 49, 877–919. DOI: 10.1146/annurev.bi.49.070180.004305.
  • Dong, J. T.; Zhao, M. P. In-Vivo Fluorescence Imaging of Adenosine 5′-Triphosphate. Trends Analyt. Chem. 2016, 80, 190–203. DOI: 10.1016/j.trac.2016.03.020.
  • Röthlisberger, P.; Hollenstein, M. Aptamer Chemistry. Adv. Drug Deliv. Rev. 2018, 134, 3–21. DOI: 10.1016/j.addr.2018.04.007.
  • Iliuk, A. B.; Hu, L. H.; Tao, W. A. Aptamer in Bioanalytical Applications. Anal. Chem. 2011, 83, 4440–4452. DOI: 10.1021/ac201057w.
  • Huizenga, D. E.; Szostak, J. W. A DNA Aptamer That Binds Adenosine and ATP. Biochemistry 1995, 34, 656–665. DOI: 10.1021/bi00002a033.
  • Nielsen, L. J.; Olsen, L. F.; Ozalp, V. C. Aptamers Embedded in Polyacrylamide Nanoparticles: A Tool for in Vivo Metabolite Sensing. ACS Nano 2010, 4, 4361–4370. DOI: 10.1021/nn100635j.
  • Zheng, D.; Seferos, D. S.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Aptamer Nano-Flares for Molecular Detection in Living Cells. Nano Lett. 2009, 9, 3258–3261. DOI: 10.1021/nl901517b.
  • Wu, C.; Chen, T.; Han, D.; You, M.; Peng, L.; Cansiz, S.; Zhu, G.; Li, C.; Xiong, X.; Jimenez, E.; et al. Engineering of Switchable Aptamer Micelle Flares for Molecular Imaging in Living Cells. ACS Nano 2013, 7, 5724–5731. DOI: 10.1021/nn402517v.
  • Gao, F. L.; Wu, J.; Yao, Y.; Zhang, Y.; Liao, X. J.; Geng, D. Q.; Tang, D. Q. Proximity Hybridization Triggered Strand Displacement and DNAzyme Assisted Strand Recycling for ATP Fluorescence Detection in Vitro and Imaging in Living Cells. RSC Adv. 2018, 8, 28161–28171. DOI: 10.1039/C8RA05193C.
  • Geim, A. K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. DOI: 10.1126/science.1158877.
  • Lee, J.; Kim, J.; Kim, S.; Min, D. H. Biosensors Based on Graphene Oxide and Its Biomedical Application. Adv. Drug Deliv. Rev. 2016, 105, 275–287. DOI: 10.1016/j.addr.2016.06.001.
  • Wang, Y.; Tang, L. H.; Li, Z. H.; Lin, Y. H.; Li, J. H. In Situ Simultaneous Monitoring of ATP and GTP Using a Graphene Oxide Nanosheet–Based Sensing Platform in Living Cells. Nat. Protoc. 2014, 9, 1944–1955. DOI: 10.1038/nprot.2014.126.
  • Holm, R. H.; Kennepohl, P.; Solomon, E. I. Structural and Functional Aspects of Metal Sites in Biology. Chem. Rev. 1996, 96, 2239–2314. DOI: 10.1021/cr9500390.
  • Carol, P.; Sreejith, S.; Ajayaghosh, A. Ratiometric and near-Infrared Molecular Probes for the Detection and Imaging of Zinc Ions. Chem. Asian J. 2007, 2, 338–348. DOI: 10.1002/asia.200600370.
  • Wu, Z. K.; Fan, H. H.; Satyavolu, N.; Wang, W. J.; Lake, R.; Jiang, J. H.; Lu, Y. Imaging Endogenous Metal Ions in Living Cells Using a DNAzyme–Catalytic Hairpin Assembly Probe. Angew. Chem. Int. Ed. 2017, 56, 8721–8725. DOI: 10.1002/anie.201703540.
  • Si, H. B.; Sheng, R. J.; Li, Q. L.; Feng, J.; Li, L.; Tang, B. Highly Sensitive Fluorescence Imaging of Zn2+ and Cu2+ in Living Cells with Signal Amplification Based on Functional DNA Self-Assembly. Anal. Chem. 2018, 90, 8785–8792. DOI: 10.1021/acs.analchem.7b05268.
  • Lou, X. D.; Hong, Y. N.; Chen, S. J.; Leung, C.; Zhao, N.; Situ, B.; Lam, J.; Tang, B. Z. A Selective Glutathione Probe Based on AIE Fluorogen and Its Application in Enzymatic Activity Assay. Sci. Rep. 2015, 4, 4272. DOI: 10.1038/srep04272.
  • He, D. G.; Yang, X. X.; He, X. X.; Wang, K. M.; Yang, X.; He, X.; Zou, Z. A Sensitive Turn-on Fluorescent Probe for Intracellular Imaging of Glutathione Using Single-Layer MnO2 Nanosheet-Quenched Fluorescent Carbon Quantum Dots. Chem. Commun. 2015, 51, 14764–14767. DOI: 10.1039/C5CC05416H.
  • Huang, G. G.; Hossain, M. K.; Han, X. X.; Ozaki, Y. A Novel Reversed Reporting Agent Method for Surface-Enhanced Raman Scattering; Highly Sensitive Detection of Glutathione in Aqueous Solutions. Analyst 2009, 134, 2468–2474. DOI: 10.1039/b914976g.
  • Ni, P. J.; Sun, Y. J.; Dai, H. C.; Hu, J. T.; Jiang, S.; Wang, Y. L.; Li, Z. Highly Sensitive and Selective Colorimetric Detection of Glutathione Based on Ag [I] Ion–3, 3′, 5, 5′-Tetramethylbenzidine (TMB). Biosens. Bioelectron. 2015, 63, 47–52. DOI: 10.1016/j.bios.2014.07.021.
  • Wawegama, N. K.; Browning, G. F.; Kanci, A.; Marenda, M. S.; Markham, P. F. Development of a Recombinant Protein-Based Enzyme-Linked Immunosorbent Assay for Diagnosis of Mycoplasma Bovis Infection in Cattle. Clin. Vaccine Immunol. 2014, 21, 196–202. DOI: 10.1128/CVI.00670-13.
  • Tang, Q.; Wang, N. N.; Zhou, F. L.; Deng, T.; Zhang, S. B.; Li, J. S.; Yang, R. H.; Zhong, W. W.; Tan, W. H. A Novel AgNP/DNA/TPdye Conjugate-Based Two-Photon Nanoprobe for GSH Imaging in Cell Apoptosis of Cancer Tissue. Chem. Commun. 2015, 51, 16810–16812. DOI: 10.1039/C5CC06471F.
  • Zhao, Z. L.; Fan, H. H.; Zhou, G. F.; Bai, H. R.; Liang, H.; Wang, R. W.; Zhang, X. B.; Tan, W. H. Activatable Fluorescence/MRI Bimodal Platform for Tumor Cell Imaging via MnO2 Nanosheet–Aptamer Nanoprobe. J. Am. Chem. Soc. 2014, 136, 11220–11223. DOI: 10.1021/ja5029364.
  • Yuan, D. D.; Ding, L. R.; Sun, Z. M.; Li, X. M. MRI/Fluorescence Bimodal Amplification System for Cellular GSH Detection and Tumor Cell Imaging Based on Manganese Dioxide Nanosheet. Sci. Rep. 2018, 8, 1747. DOI: 10.1038/s41598-018-20110-z.
  • Laird, P. W. The Power and the Promise of DNA Methylation Markers. Nat. Rev. Cancer 2003, 3, 253–266. DOI: 10.1038/nrc1045.
  • Shay, J. W.; Bacchetti, S. A Survey of Telomerase Activity in Human Cancer. Eur. J. Cancer 1997, 33, 787–791. DOI: 10.1016/S0959-8049(97)00062-2.
  • Lorente, J. A.; Valenzuela, H.; Morote, J.; Gelabert, A. Serum Bone Alkaline Phosphatase Levels Enhance the Clinical Utility of Prostate Specific Antigen in the Staging of Newly Diagnosed Prostate Cancer Patients. Eur. J. Nucl. Med. 1999, 26, 625–632. DOI: 10.1007/s002590050430.
  • Freschauf, G. K.; Karimi-Busheri, F.; Ulaczyk-Lesanko, A.; Mereniuk, T. R.; Ahrens, A.; Koshy, J. M.; Rasouli-Nia, A.; Pasarj, P.; Holmes, C.; Rininsland, F.; et al. Identification of a Small Molecule Inhibitor of the Human DNA Repair Enzyme Polynucleotide Kinase/Phosphatase. Cancer Res. 2009, 69, 7739–7746. DOI: 10.1158/0008-5472.CAN-09-1805.
  • Harley, C. B. Telomerase and Cancer Therapeutics. Nat. Rev. Cancer 2008, 8, 167–179. DOI: 10.1038/nrc2275.
  • Luo, S. H.; Zhang, Y.; Bo, S. T.; Zheng, L. Fluorescence Sensing Telomerase Activity: From Extracellular Detection to in Situ Imaging. Sens. Actuators B Chem. 2018, 273, 853–861. DOI: 10.1016/j.snb.2018.06.088.
  • Wang, C. L.; Yang, H. T.; Wu, S. S.; Liu, Y. J.; Wei, W.; Zhang, Y. J.; Wei, M.; Liu, S. Q. Manifold Methods for Telomerase Activity Detection Based on Various Unique Probes. TrAC Trends Anal. Chem. 2018, 105, 404–412. DOI: 10.1016/j.trac.2018.06.002.
  • Wang, L. J.; Ma, F.; Tang, B.; Zhang, C. Y. Sensing Telomerase: From in Vitro Detection to in Vivo Imaging. Chem. Sci. 2017, 8, 2495–2502. DOI: 10.1039/C6SC04801C.
  • Nakamura, T. M.; Morin, G. B.; Chapman, K. B.; Weinrich, S. L.; Andrews, W. H.; Lingner, J.; Harley, C. B..; Cech, T. R. Telomerase Catalytic Subunit Homologs from Fission Yeast and Human. Science 1997, 277, 955–959. DOI: 10.1126/science.277.5328.955.
  • Niu, D. C.; Ma, Z.; Li, Y. S.; Shi, J. L. Synthesis of Core − Shell Structured Dual-Mesoporous Silica Spheres with Tunable Pore Size and Controllable Shell Thickness. J. Am. Chem. Soc. 2010, 132, 15144–15147. DOI: 10.1021/ja1070653.
  • Qian, R. C.; Ding, L.; Ju, H. X. Switchable Fluorescent Imaging of Intracellular Telomerase Activity Using Telomerase-Responsive Mesoporous Silica Nanoparticle. J. Am. Chem. Soc. 2013, 135, 13282–13285. DOI: 10.1021/ja406532e.
  • Yang, X. J.; Zhang, K.; Zhang, T. T.; Xu, J. J.; Chen, H. Y. Reliable Förster Resonance Energy Transfer Probe Based on Structure-Switching DNA for Ratiometric Sensing of Telomerase in Living Cells. Anal. Chem. 2017, 89, 4216–4222. DOI: 10.1021/acs.analchem.7b00267.
  • Qian, R. C.; Ding, L.; Yan, L. W.; Lin, M. F.; Ju, H. X. A Robust Probe for Lighting up Intracellular Telomerase via Primer Extension to Open a Nicked Molecular Beacon. J. Am. Chem. Soc. 2014, 136, 8205–8208. DOI: 10.1021/ja5042995.
  • Hong, M.; Xu, L. D.; Xue, Q. W.; Li, L.; Tang, B. Fluorescence Imaging of Intracellular Telomerase Activity Using Enzyme-Free Signal Amplification. Anal. Chem. 2016, 88, 12177–12182. DOI: 10.1021/acs.analchem.6b03108.
  • Boonstra, M. C.; de Geus, S. W. L.; Prevoo, H. A. J. M.; Hawinkels, L. J. A. C.; van de Velde, C. J. H.; Kuppen, P. J. K.; Vahrmeijer, A. L.; Sier, C. F. M. Selecting Targets for Tumor Imaging: An Overview of Cancer-Associated Membrane Proteins. Biomark. Cancer 2016, 8, 119–133. DOI: 10.4137/BIC.S38542.
  • Donaldson, J. G.; Jackson, C. L. ARF Family G Proteins and Their Regulators: Roles in Membrane Transport, Development and Disease. Nat. Rev. Mol. Cell Biol. 2011, 12, 362–375. DOI: 10.1038/nrm3159.
  • White, S. H.; Wimley, W. C. Membrane Protein Folding and Stability: Physical Principles. Annu. Rev. Biophys. Biomol. Struct. 1999, 28, 319–365. DOI: 10.1146/annurev.biophys.28.1.319.
  • Ford, S. A.; Russell, P. J.; Jelbart, M.; Raghavan, D. Detection of Tumor-associated membrane proteins in Prostate and Bladder Carcinomas by Means of Protein Blotting. Urol. Res. 1989, 17, 305–310.
  • Wagner, S.; Bader, M. L.; Drew, D.; de Gier, J. W. Rationalizing Membrane Protein Overexpression. Trends Biotechnol. 2006, 24, 364–371. DOI: 10.1016/j.tibtech.2006.06.008.
  • Wollscheid, B.; Bausch-Fluck, D.; Henderson, C.; O’Brien, R.; Bibel, M.; Schiess, R.; Aebersold, R.; Watts, J. D. Mass-Spectrometric Identification and Relative Quantification of N-Linked Cell Surface Glycoproteins. Nat. Biotechnol. 2009, 27, 864–864. DOI: 10.1038/nbt0909-864a.
  • Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. DOI: 10.1126/science.2200121.
  • Shi, H.; He, X. X.; Wang, K. M.; Wu, X.; Ye, X. S.; Guo, Q. P.; Tan, W. H.; Qing, Z. H.; Yang, X. H.; Zhou, B. Activatable Aptamer Probe for Contrast-Enhanced in Vivo Cancer Imaging Based on Cell Membrane Protein-Triggered Conformation Alteration. Proc. Natl. Acad. Sci. USA 2011, 108, 3900–3905. DOI: 10.1073/pnas.1016197108.
  • Yin, J. J.; He, X. X.; Wang, K. M.; Xu, F. Z.; Shangguan, J. F.; He, D. G.; Shi, H. Label-Free and Turn-on Aptamer Strategy for Cancer Cells Detection Based on a DNA–Silver Nanocluster Fluorescence upon Recognition-Induced Hybridization. Anal. Chem. 2013, 85, 12011–12019. DOI: 10.1021/ac402989u.
  • Li, L.; Wang, Q.; Feng, J.; Tong, L. L.; Tang, B. Highly Sensitive and Homogeneous Detection of Membrane Protein on a Single Living Cell by Aptamer and Nicking Enzyme Assisted Signal Amplification Based on Microfluidic Droplets. Anal. Chem. 2014, 86, 5101–5107. DOI: 10.1021/ac500881p.
  • Song, Y. L.; Zhu, Z.; An, Y.; Zhang, W. T.; Zhang, H. M.; Liu, D.; Yu, C. D.; Duan, W.; Yang, C. J. Selection of DNA Aptamers against Epithelial Cell Adhesion Molecule for Cancer Cell Imaging and Circulating Tumor Cell Capture. Anal. Chem. 2013, 85, 4141–4149. DOI: 10.1021/ac400366b.
  • Agasti, S. S.; Liong, M.; Peterson, V. M.; Lee, H.; Weissleder, R. Photocleavable DNA Barcode–Antibody Conjugates Allow Sensitive and Multiplexed Protein Analysis in Single Cells. J. Am. Chem. Soc. 2012, 134, 18499–18502. DOI: 10.1021/ja307689w.
  • Chen, X. X.; Zhao, J.; Chen, T. S.; Gao, T.; Zhu, X. L.; Li, G. X. Nondestructive Analysis of Tumor-Associated Membrane Protein Integrating Imaging and Amplified Detection in Situ Based on Dual-Labeled DNAzyme. Theranostics 2018, 8, 1075–5107. DOI: 10.7150/thno.22794.
  • Gao, T.; Wang, B.; Shi, L.; Zhu, X. L.; Xiang, Y.; Anza, J.; Li, G. X. Ultrasensitive Quantitation of Plasma Membrane Proteins via isRTA. Anal. Chem. 2017, 89, 10776–10782. DOI: 10.1021/acs.analchem.7b02025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.