558
Views
15
CrossRef citations to date
0
Altmetric
Review Article

The toxicological effects of lead and its analytical trends: an update from 2000 to 2018

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 87-102 | Published online: 25 Oct 2019

References

  • ICH-3D-Quality 0013-Guideline for Elemental Impurities Q3D. ICH 2014, (December), 1–75.
  • Tchounwou, P. B.; Yedjou, C. G.; Patlolla, A. K.; Sutton, D. J. Heavy Metal Toxicity and the Environment. Mol. Clin. Environ. Toxicol. 2012, 3, 133–164. DOI: 10.1007/978-3-7643-8340-4.
  • Assi, M. A.; Hezmee, M. N. M.; Haron, A. W.; Sabri, M. Y.; Rajion, M. A. The Detrimental Effects of Lead on Human and Animal Health. Vet. World 2016, 9, 660–671. DOI: 10.14202/vetworld.2016.660-671.
  • Cok, I.; Emerce, E. Overview of Impurities in Pharmaceuticals : Toxicological Aspects. Asian Chem. Lett. 2012, 16, 87–97.
  • EMA ICH guideline Q3D on elemental impurities. 2016, 44(December), 1–84.
  • Wani, A. L.; Ara, A.; Usmani, J. A. Lead Toxicity: A Review. Interdiscip. Toxicol. 2015, 8, 55–64. DOI: 10.1515/intox-2015-0009.
  • Flora, G.; Gupta, D.; Tiwari, A. Toxicity of Lead: A Review with Recent Updates. Interdiscip. Toxicol. 2012, 5, 47–58. DOI: 10.2478/v10102-012-0009-2.
  • Srivastava, D.; Singh, A.; Baunthiyal, M. Lead Toxicity and Tolerance in Plants. J. Plant Sci. Res. Mamta Baunthiyal Cit. J. Plant Sci. Res. 2015, 2, 1–5.
  • Pourrut, B.; Shahid, M.; Dumat, C.; Winterton, P.; Pinelli, E. Lead, Uptake, Toxicity and Detoxification in Plants. Rev. nviron. Contam. Toxicol. 2011, 213, 113–136. DOI: 10.1007/978-1-4419-9860-6.
  • Chibuike, G. U.; Obiora, S. C.; Chibuike, G. U.; Obiora, S. C. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Appl. Environ. Soil Sci. 2014, 2014, 1–12. DOI: 10.1155/2014/752708.
  • California Department of Food and Agriculture Lead Toxicity and its Effects on Animals and Animal Products. 2016, (July), 9350.
  • Mager, E. M. L. 4-Lead. Fish Physiol. 2011, 31, (PART B), 185–236. DOI: 10.1016/S1546-5098(11)31026-6.
  • Grade, T. J.; Pokras, M. A.; Laflamme, E. M.; Vogel, H. S. Population-Level Effects of Lead Fishing Tackle on Common Loons. J. Wild. Manag. 2018, 82, 155–164. DOI: 10.1002/jwmg.21348.
  • Solomon, F. Impacts of Metals on Aquatic Ecosystems and Human Health. Environ. Commun. 2008, (April), 14–19.
  • Liba, A.; Mccurdy, E. Proposed New USP General Chapters and for Elemental Impurities : The Application of ICP-MS for Pharmaceutical Analysis; Agilent Technologies 2011, (January 2015), 1–8.
  • Who, W. H. O.; Haefliger, P.; Tempowski, J. Brief Guide to Analytical Methods for Measuring Lead in Blood. WHO Libr. Cat. Data Br2011, 14.
  • Kaiser, J.; Novotny, K. Utilization of Laser-Assisted Analytical Methods for Monitoring of Lead and Nutrition Elements Distribution in Fresh and Dried Capsicum Annuum L. Leaves 2011, 852, 845–852. DOI: 10.1002/jemt.20967.
  • Arduini, F.; Calvo, J. Q.; Palleschi, G.; Moscone, D.; Amine, A. Bismuth-Modified Electrodes for Lead Detection. TrAC - Trends Anal. Chem. Elsevier Ltd 2010, 29, 1295–1304. DOI: 10.1016/j.trac.2010.08.003.
  • Grandjean, P.; Lyngbye, T.; Hansen, O. N.; Hansen, O. N. Lead Concentration in Deciduous Teeth: Variation Related to Tooth Type and Analytical Technique. J. Toxicol. Environ Health. 2015, 19, 437–444. DOI: 10.1080/15287398609530941.
  • Rose, M.; Knaggs, M.; Owen, L.; Baxter, M. A Review of Analytical Methods for Lead, Cadmium, Mercury, Arsenic and Tin Determination Used in Proficiency Testing. J. Anal. At. Spectrom. 2001, 16, 1101–1106. DOI: 10.1039/b102839c.
  • Mataveli, L. R. V.; Buzzo, M. L.; Arauz, L. J. d.; Carvalho, M. d. F. H.; Arakaki, E. E. K.; Matsuzaki, R.; Total Arsenic, T.,P. Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS. J. Anal Methods Che. 2016, 1–9. http://dx.doi.org/10.1155/2016/3968786.
  • Quintana, J. C.; Arduini, F.; Amine, A.; van Velzen, K.; Palleschi, G.; Moscone, D. Part Two: Analytical Optimisation of a Procedure for Lead Detection in Milk by Means of Bismuth-Modified Screen-Printed Electrodes. Anal. Chim. Acta 2012, 736, 92–99. DOI: 10.1016/j.aca.2012.05.042.
  • Laville, S.; Goueguel, C.; Loudyi, H.; Vidal, F.; Chaker, M.; Sabsabi, M. Laser-Induced Fluorescence Detection of Lead Atoms in a Laser-Induced Plasma: An Experimental Analytical Optimization Study. Spectrochim. Acta Part B 2009, 64, 347–353. DOI:doi.org/10.1016/j.sab.2009.03.021.
  • Pereiro, I. R.; Díaz, A. C. Speciation of Mercury, Tin, and Lead Compounds by Gas Chromatography with Microwave-Induced Plasma and Atomic-Emission Detection (GC – MIP – AED). Anal Bioanal Chem. 2001, 372, 74–90. DOI: 10.1007/s00216-001-1139-0.
  • Kadara, R. O.; Tothill, I. E. Stripping Chronopotentiometric Measurements of Lead (II) and Cadmium (II) in Soils Extracts and Wastewaters Using a Bismuth Film Screen-Printed Electrode Assembly. Anal. Bioanal. Chem. 2003, 5000, 770–775. DOI: 10.1007/s00216-003-2351-x.
  • Yusuf, A. J.; Galadima, A.; Nasir, I. Determination of Some Heavy Metals in Soil Sample from Illela Garage in Sokoto State, Nigeria. Res. J. Chem. Sci. 2015, 5, 8–10. DOI: 10.18551/rjoas.2013-09.02.
  • Locatelli, C.; Melucci, D.; Torsi, G. Determination of Platinum-Group Metals and Lead in Vegetable Environmental Bio-Monitors by Voltammetric and Spectroscopic Techniques: Critical Comparison. Anal. Bioanal. Chem. 2005, 382, 1567–1573. DOI: 10.1007/s00216-005-3356-4.
  • Vidhi, R.; Patel, V. Pulsatile Drug Delivery System-A Review. Int. J. Med. Pharm. Res. 2015, 6(9): 3676–3688.
  • Chelarescu, E. D. Determination of Heavy Metal Levels in Water and Therapeutic Mud by Atomic Absorption Spectrometry. Rom. J. Phys. 2014, 59, 1057–1066.
  • Zhang, W.; Xu, Y.; Tahir, H. E.; Zou, X. Determinations of Trace Lead in Various Natural Samples by a Novel Active Microband-Electrode Probe. Chem. Eng. J. 2017, 309, 305–312. DOI: 10.1016/j.cej.2016.10.081.
  • Mo, J.; Zhou, L.; Li, X.; Li, Q.; Wang, L.; Wang, Z. On-Line Separation and Pre-Concentration on a Mesoporous Silica-Grafted Graphene Oxide Adsorbent Coupled with Solution Cathode Glow Discharge-Atomic Emission Spectrometry for the Determination of Lead. Microchem. J. 2017, 130, 353–359. DOI: 10.1016/j.microc.2016.10.008.
  • Mishra, K.; Arun, M.; Amrita, P.; Chattopadhyay, P. Quantitative Estimation of Lead (Pb) and Cadmium (Cd) Content in Commonly Used Cosmeceuticals Using Atomic Absorption Spectroscopy. Curr. Pharm. Anal. 2016, 12, 214–219.
  • Aleluia, A. C. M.; de Santana, F. A.; Brandao, G. C.; Ferreira, S. L. C. Sequential Determination of Cadmium and Lead in Organic Pharmaceutical Formulations Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Microchem. J. 2017, 130, 157–161. DOI: 10.1016/j.microc.2016.09.001.
  • Zhong, W.; Ren, T.; Zhao, L. ScienceDirect Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese Tea with High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. J. Food Drug Anal. 2015, 100, 1–10. DOI: 10.1016/j.jfda.2015.04.010.
  • Ong, K.; PerkinElmer, I.; Shelton, C. Determination of Lead and Cadmium in Foods by Graphite Furnace Atomic Absorption Spectroscopy.
  • Siriangkhawut, W.; Sittichan, P.; Ponhong, K. ScienceDirect Quality Assessment of Trace Cd and Pb Contaminants in Thai Herbal Medicines Using Ultrasound-Assisted Digestion Prior to Flame Atomic Absorption Spectrometry. J. Food Drug Anal. 2016, 2017, 1–8. DOI: 10.1016/j.jfda.2016.12.011.
  • Wei, H.; Li, B.; Li, J.; Dong, S.; Wang, E. DNAzyme-Based Colorimetric Sensing of Lead (Pb 2 +) Using Unmodified Gold Nanoparticle Probes. Nanotechnology 2008, 19, 095501. DOI: 10.1088/0957-4484/19/9/095501.
  • Li, X.; Qian, P. Identification of an Exposure Risk to Heavy Metals from Pharmaceutical-Grade Rubber Stoppers. J. Food Drug Anal. 2016, 25, 723–730. DOI: 10.1016/j.jfda.2016.07.008.
  • Duarte, K.; Justino, C. I. L.; Freitas, A. C.; Gomes, A. M. P.; Duarte, A. C.; Rocha-Santos, T. A. P. Disposable Sensors for Environmental Monitoring of Lead, Cadmium and Mercury. Trends Anal. Chem. 2015, 64, 183–190. DOI: 10.1016/j.trac.2014.07.006.
  • Massadeh, A. M.; Al-Massaedh, A. A. T. Determination of Heavy Metals in Canned Fruits and Vegetables Sold in Jordan Market Determination of Heavy Metals in Canned Fruits and Vegetables Sold in Jordan Market. Environ. Sci. Pollut. Res. 2017, 25(2), 1914–1920. DOI: 10.1007/s11356-017-0611-0.
  • Park, M.; Ha, H. D.; Kim, Y. T.; Jung, J. H.; Kim, S.-H.; Kim, D. H.; Seo, T. S. Combination of a Sample Pretreatment Microfluidic Device with a Photoluminescent Graphene Oxide Quantum Dot Sensor for Trace Lead Detection. Anal. Chem. 2015, 87, 10969–10975. DOI: 10.1021/acs.analchem.5b02907.
  • Ogbonda, G. Determination of the levels of heavy metal (Cu, Fe, Ni, Pb and Cd) up take of pumpkin (Telfairia occidentalis) leaves cultivated on contaminated soil. Journal of Applied Sciences and Environmental Management, 2014, 18(1), 71–77.
  • Shan-Shan, L.; Wen-Juan, L.; Tian-Jia, J.; Zhong-Gang, L.; Xing, C.; Huai-Ping, C.; Jin-Huai, L.; Yu-Ying, H.; Li-Na, L.; X. J. H. Iron Oxide with Different Crystal Phases (α- and γ-Fe2O3) in Electroanalysis and Ultrasensitive and Selective Detection of Lead(II): An Advancing Approach Using XPS and EXAFS. Anal. Chem. 2016, 88(1), 906–914. DOI: 10.1021/acs.analchem.5b03570.
  • Saghali, M.; Baqraf, R.; Patimar, R.; Hosseini, S. A.; Baniemam, M. Determination of heavy metal (Cr, Zn, Cd and Pb) Concentrations in Water, Sediment and Benthos of the Gorgan Bay (Golestan province, Iran). Iran. J. Fish. Sci. 2014, 13, 449–455.
  • Farid, G.; Sarwar, N.; Saifullah, A. A.; Ghafoor, A.; Rehman, M. Heavy Metals (Cd, Ni and Pb) Contamination of Soils, Plants and Waters in Madina Town of Faisalabad Metropolitan and Preparation of Gis Based Maps. Adv. Crop Sci. Tech. 2015, 4(1), 1–7. DOI: 10.4172/2329-8863.1000199.
  • Application, F. O. F. Determination of Heavy Metals (Arsenic Cadmium, Lead and Mercury) in Cosmetic Products 1. Scope and Field of Application Determination of Heavy Metals (Arsenic Cadmium, Lead and Mercury) in Cosmetic. System n.d., 1–5.
  • Sani, A.; Gaya, M. B.; Abubakar, F. A. Determination of Some Heavy Metals in Selected Cosmetic Products Sold in Kano Metropolis, Nigeria. Toxicol. Reports 2016, 3, 866–869. DOI: 10.1016/j.toxrep.2016.11.001.
  • Murty, A. S. R.; Kulshresta, U. C.; Rao, T. N.; Talluri, M. V. N. Determination of Heavy Metals in Selected Drug Substances by Inductively Coupled plasma–mass spectrometry. Indian J. Chem. Technol. 2005, 12, 229–231.
  • Hashim, R.; Song, T. H.; Muslim, N. Z. M.; Yen, T. P. Determination of Heavy Metal Levels in Fishes from the Lower Reach of the Kelantan River, Kelantan, Malaysia. Trop. Life Sci. Res. 2014, 25, 21–39.
  • Yang, G.; Hu, Q.; Huang, Z.; Yin, J. Study on the determination of lead, cadmium, mercury, nickel and zinc by a rapid column high-performance liquid chromatography. J. Braz. Chem. Soc. 16, 1154–1159. DOI: 10.1590/S0103-50532005000700011.
  • Raj, J.; Raina, A.; Dogra, T. D. Direct Determination of Zinc, Cadmium, Lead, Copper Metal in Tap Water of Delhi (India) by Anodic Stripping Voltammetry Technique. EDP Sci. 2013, 09009, 3–6. DOI: 10.1051/e3sconf/20130109009.
  • Tsade, H. K. Atomic Absorption Spectroscopic Determination of Heavy Metal Concentrations in Kulufo River, Arbaminch, Gamo Gofa, Ethiopia. J. Environ. Anal. Chem. 2016, 3, 2380–2391. DOI: 10.4172/2380-2391.1000177.
  • Bakırdere, S.; Yaroğlu, T.; Tırık, N.; Demiröz, M.; Fidan, A. K.; Maruldalı, O.; Karaca, A. Determination of As, Cd, and Pb in Tap Water and Bottled Water Samples by Using Optimized GFAAS System with Pd-Mg and Ni as Matrix Modifiers. J. Spectrosc. 2013, 1–7. DOI: 10.1155/2013/824817.
  • Lemos, V. A.; De Carvalho, A. L. Determination of Cadmium and Lead in Human Biological Samples by Spectrometric Techniques: A Review. Environ. Monit. Assess. 2010, 171, 255–265. DOI: 10.1007/s10661-009-1276-z.
  • Hw1, S.; Xh, W.; Liang, S. X. Direct Determination of Lead and Cadmium in Soil by Slurry-Sampling Graphite Furnace Atomic Absorption Spectrometry using Matrix Modification Technique. Guang pu xue yu guang pu fen xi = Guang pu 2006, 26(5), 950–954.
  • Song, G. Direct Determination of Trace Lead in Chestnut by Graphite Furnace Atomic Absorption Spectrometry with Slurry Sampling. Guang pu xue yu guang pu fen xi = Guang pu 2005, 25, 570–572.
  • Ajtony, Z.; Szoboszlai, N.; Suskó, E. K.; Mezei, P.; György, K.; Bencs, L. Direct Sample Introduction of Wines in Graphite Furnace Atomic Absorption Spectrometry for the Simultaneous Determination of Arsenic, Cadmium, Copper and Lead Content. Talanta 2008, 76, 627–634. DOI: 10.1016/j.talanta.2008.04.014.
  • Zacharia, A.; Gucer, S.; Izgi, B.; Chebotarev, A.; Karaaslan, H. Direct atomic absorption spectrometry determination of tin, lead, cadmium and zinc in high-purity graphite with flame furnace atomizer. Talanta 2008, 72, 825–830. DOI: 10.1016/j.talanta.2006.10.040.
  • Yang, G.; Fen, W.; Lei, C.; Xiao, W., Sun, H. Study on Solid Phase Extraction and Graphite Furnace Atomic Absorption Spectrometry for the Determination of Nickel, Silver, Cobalt, Copper, Cadmium and Lead with MCI GEL CHP 20Y as Sorbent. J. of Hazard Mater. 2009, 162, 44–49. DOI: 10.1016/j.jhazmat.2008.05.007.
  • Cao, J.; Liang, P.; Liu, R. Determination of Trace Lead in Water Samples by Continuous Flow Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry. J. of Hazard Mater. 2008, 152, 910–914. DOI: 10.1016/j.jhazmat.2007.07.064.
  • Niu, F. L.; Xie, W. B.; Li, C. X.; Dong, W. Y. Determination of Pb and Al in Blood and Hair of Child Using Transverse Heated Graphite Furnace Atomic Absorption Spectroscopy. Guang pu xue yu guang pu fen xi = Guang pu 2005, 25, 573–575.
  • Ueda, M.; Teshima, N.; Sakai, T.; Joichi, Y.; Motomizu, S. Highly Sensitive Determination of Cadmium and Lead in Leached Solutions from Ceramic Ware by Graphite Furnace Atomic Absorption Spectrometry Coupled with Sequential Injection-Based Solid Phase Extraction Method. Analytical Sciences: The International Journal of the Japan Society for Anal Chem. 2010, 26, 597–602.
  • Parham, H.; Pourreza, N.; Rahbar, N. Solid Phase Extraction of Lead and Cadmium using Solid Sulfur as a New Metal Extractor Prior to Determination by Flame Atomic Absorption Spectrometry. J. of Hazard Mater. 2009, 163, 588–592. DOI: 10.1016/j.jhazmat.2008.07.007.
  • Dessuy, M. B. 1.; Vale, M. G.; Welz, B.; Borges, A. R.; Silva, M. M.; Martelli, P. B. Determination of Cadmium and Lead in Beverages after Leaching from Pewter Cups Using Graphite Furnace Atomic Absorption Spectrometry. Talanta 2011, 85, 681–685. DOI: 10.1016/j.talanta.2011.04.050.
  • Li, Y.; Xu, X. J.; Liu, J. X.; Zheng, L. K.; Chen, G. J.; Chen, S.; Huo, X. Determination of Meconium Lead Level of Newborn by Graphite Furnace Atomic Absorption Spectrometry. Guang pu xue yu guang pu fen xi = Guang pu 2008, 28, 447–449.
  • Khajeh, M.; Sanchooli, E. Silver Nanoparticles as a New Solid-Phase Adsorbent and Its Application to Preconcentration and Determination of Lead from Biological Samples. Biological Trace Element Research. 2011, 143, 1856–1864. DOI: 10.1007/s12011-011-9013-1.
  • Amorim, F.; Ferreira, S. Determination of Cadmium and Lead in Table Salt by Sequential Multi-Element Flame Atomic Absorption Spectrometry. Talanta 2005, 65, 960–964. DOI: 10.1016/j.talanta.2004.08.027.
  • Ali, E. M.; Zheng, Y.; Yu, H.; Ying, J. Y. Ultrasensitive Pb 2 + Detection by Glutathione-Capped Quantum Dots. Anal. Chem. 2007, 79, 9452–9458. DOI: 10.1021/ac071074x.
  • Yang, C.; Liu, L.; Zeng, T.; Yang, D.; Yao, Z.; Zhao, Y.; Wu, H.-C. Highly Sensitive Simultaneous Detection of Lead(II) and Barium(II) with G ‑ Quadruplex DNA in α- Hemolysin Nanopore. Anal. Chem. 2013, 85(15), 7302–7307.
  • Tan, M. G.; Zhang, G. L.; Li, X. L.; Zhang, Y. X.; Yue, W. S.; Chen, J. M.; Wang, Y. S.; Li, A. G.; Li, Y.; Zhang, Y. M.; Shan, Z. C. Comprehensive Study of Lead Pollution in Shanghai by Multiple Techniques. Anal. Chem. 2006, 78, 8044–8050. DOI: 10.1021/ac061365q.
  • Mikkelsen, Ø.; Nordhei, C.; Silje, M. Detection of Zinc and Lead in Wine by Potentiometric Stripping on Novel Dental Amalgam Electrodes. Anal. Lett. 2013, 37, 2925–2936.
  • Zhao, X.-H.; Kong, R.-M.; Zhang, X.-B.; Meng, H.-M.; Liu, W.-N.; Tan, W.; Shen, G.-L.; Yu, R.-Q. Graphene-DNAzyme Based Biosensor for Amplified Fluorescence “Turn-On” detection of Pb2+ with a high selectivity. Anal. Chem. 2011, 83, 5062–5066. DOI: 10.1021/ac200843x.
  • Wang, F.; Wu, Z.; Lu, Y.; Wang, J.; Jiang, J.; Yu, R. A Label-Free DNAzyme Sensor for Lead (II) Detection by Quantitative Polymerase Chain Reaction. Anal. Biochem. 2010, 405, 168–173. Elsevier Inc.: DOI: 10.1016/j.ab.2010.06.026.
  • Laville, S.; Goueguel, C.; Loudyi, H.; Vidal, F.; Chaker, M.; Sabsabi, M. Spectrochimica Acta Part B Laser-Induced Fluorescence Detection of Lead Atoms in a Laser-Induced Plasma : An Experimental Analytical Optimization Study. Spectrochim. Acta Part B at. Spectrosc. 2009, 64, 347–353. DOI: 10.1016/j.sab.2009.03.021.
  • Ferreira, S. L. C.; Dos Santos, W. N. L.; Bezerra, M. A.; Lemos, V. A.; Bosque-Sendra, J. M. Use of Factorial Design and Doehlert Matrix for Multivariate Optimisation of an on-Line Preconcentration System for Lead Determination by Flame Atomic Absorption Spectrometry. Anal. Bioanal. Chem. 2003, 375, 443–449. DOI: 10.1007/s00216-002-1695-y.
  • Ho, S. K.; Cheung, N. H. Sub-Part-per-Billion Analysis of Aqueous Lead Colloids by ArF Laser Induced Atomic Fluorescence. Anal. Chem. 2005, 77, 193–199. DOI: 10.1021/ac048764a.
  • Kuo, S.; Li, H.; Wu, P.; Chen, C.; Huang, Y.; Chan, Y. Dual Colorimetric and Fluorescent Sensor Based on Semiconducting Polymer Dots for Ratiometric Detection of Lead Ions in Living Cells. Anal. Chem. 2015, 87, 4765–4771. DOI: 10.1021/ac504845t.
  • Komárek, M.; Chrastný, V.; Mihaljevi, M. Lead Isotopes in Environmental Sciences : A Review. Environ. Int. 2008, 34, 562–577. DOI: 10.1016/j.envint.2007.10.005.
  • Pan, D.; Wang, Y.; Chen, Z.; Lou, T.; Qin, W. Nanomaterial/Ionophore-Based Electrode for Anodic Stripping Voltammetric Determination of Lead: An Electrochemical Sensing Platform toward Heavy Metals. Anal. Chem. 2009, 81, 5088–5094. DOI: 10.1021/ac900417e.
  • Noh, M. F. M.; Tothill, I. E. Development and characterisation of disposable gold electrodes, and their use for lead(II) analysis. Anal Bioanal Chem. 2006, 386, 2095–2106. DOI: https://doi.org/10.1007/s00216-006-0904-5.
  • Yi, X.; Rowe, A. A.; Plaxco, K. W. Electrochemical Detection of Parts-Per-Billion Lead via an Electrode-Bound DNAzyme Assembly. J Am Chem Soc. 2007, 129(2), 262–263. DOI: 10.1021/ja067278x.
  • Noh, M. F. M.; Tothill, I. E. Development and Characterisation of Disposable Gold Electrodes, and Their Use for Lead(II) Analysis. Anal. Bioanal. Chem. 2006, 386, 2095–2106. DOI: 10.1007/s00216-006-0904-5.
  • Yan, D.; Yang, L.; Wang, Q. Alternative Thermodiffusion Interface for Simultaneous Speciation of Organic and Inorganic Lead and Mercury Species by Capillary GC-ICPMS Using Tri-n-Propyl-Lead Chloride as an Internal Standard. Anal. Chem. 2008, 80, 6104–6109. DOI: 10.1021/ac800347j.
  • Ferhan, A. R.; Guo, L.; Zhou, X.; Chen, P.; Hong, S.; Kim, D.-H. Solid-Phase Colorimetric Sensor Based on Gold Nanoparticle-Loaded Polymer Brushes: Lead Detection as a Case Study. Anal. Chem. 2013, 85, 4094–4099. DOI: 10.1021/ac4001817.
  • Li, T.; Wang, E.; Dong, S. Lead(II)-Induced Allosteric G-Quadruplex DNAzyme as a Colorimetric and Chemiluminescence Sensor for Highly Sensitive and Selective Pb2+ Detection. Anal. Chem. 2010, 82, 1515–1520. DOI: 10.1021/ac902638v.
  • José, E.; Herrmann, A. B. Determination of Lead in Sediments and Sewage Sludge by On-Line Hydride-Generation Axial-View Inductively-Coupled Plasma Optical-Emission Spectrometry Using Slurry Sampling. Anal. Bioanal. Chem. 2007, 388, 863–868. DOI: 10.1007/s00216-006-1081-2.
  • Yaman, M. The Improvement of Sensitivity in Lead and Cadmium Determinations Using Flame Atomic Absorption Spectrometry. Anal. Biochem. 2005, 339, 1–8. DOI: 10.1016/j.ab.2005.01.009.
  • Liang, P.; Sang, H. Determination of Trace Lead in Biological and Water Samples with Dispersive Liquid – Liquid Microextraction Preconcentration. Anal. Biochem. 2008, 380, 21–25. DOI: 10.1016/j.ab.2008.05.008.
  • Lui, S. L.; Godwal, Y.; Taschuk, M. T.; Tsui, Y. Y.; Fedosejevs, R. Detection of Lead in Water Using Laser-Induced Breakdown Spectroscopy and Laser-Induced Fluorescence. Anal. Chem. 2008, 80, 1995–2000. DOI: 10.1021/ac071573y.
  • Chang, M. J. Slurry Sampling for the Determination of Arsenic, Cadmium, and Lead in Mainstream Cigarette Smoke Condensate by Graphite Furnace – Atomic Absorption Spectrometry and Inductively Coupled Plasma – Mass Spectrometry. Anal. Bioanal. Chem. 2002, 372, 723–731. DOI: 10.1007/s00216-001-1226-2.
  • El, L. Determination of Heavy Metals and Their Speciation in Lake Sediments by Flame Atomic Absorption Spectrometry after a Four-Stage Sequential Extraction Procedure. Anal. Chim. Acta. 2000, 413, 33–40.
  • Li, C.; Liu, K.; Lin, Y.; Chang, H. Fluorescence Detection of Lead (II) Ions through Their Induced Catalytic Activity of DNAzymes. Anal. Chim. 2011, 83, 2013–2018.
  • Bonnefoy, C.; Menudier, A.; Moesch, C.; Lachâtre, G.; Mermet, J.-M. Validation of the Determination of lead in Whole Blood by ICP-MS. J. Anal. Atomic Spectrom. 2002, 17, 1161–1165. DOI: 10.1039/B201889F.
  • Hu, Q.; Yang, G.; Zhao, Y.; Yin, J. Determination of Copper, Nickel, Cobalt, Silver, Lead, Cadmium, and Mercury Ions in Water by Solid-Phase Extraction and the RP-HPLC with UV-Vis Detection. Anal. Bioanal. Chem. 2003, 375, 831–835. DOI: 10.1007/s00216-003-1828-y.
  • Hu, Q.; Yang, G.; Zhao, Y.; Yin, J. Determination of Copper, Nickel, Cobalt, Silver, Lead, Cadmium, and Mercury Ions in Water by Solid-Phase Extraction and the RP-HPLC with UV-Vis Detection. Anal. Bioanal. Chem. 2003, 375, 831–835. DOI: 10.1007/s00216-003-1828-y.
  • García-Otero, N.; Teijeiro-Valiño, C.; Otero-Romaní, J.; Peña-Vázquez, E.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. On-Line Ionic Imprinted Polymer Selective Solid-Phase Extraction of Nickel and Lead from Seawater and Their Determination by Inductively Coupled Plasma-Optical Emission Spectrometry. Anal. Bioanal. Chem. 2009, 395, 1107–1115. DOI: 10.1007/s00216-009-3044-x.
  • States, U. Determination of Lead (Pb) Concentration Level in Solder Finished Product Using Laser Induced Breakdown Spectroscopy (LIBS). Small 2010, 456–461.
  • Liu, Y.; Zhang, Y.; Jiang, L.; Wang, H. Determination of Lead (Pb) Content in Vetiver Grass Roots by Raman Spectroscopy. International Conference on Computer and Computing Technologies in Agriculture. Springer, Cham, 2016, 292–299. DOI: 10.1007/978-3-319-48357-3.
  • Gemeiner, H.; de Araujo Dourado, T.; Sulato, E. T.; Galhardi, J. A.; Gomes, A. C. F.; de Almeida, E.; Menegário, A. A.; Gastmans, D.; Kiang, C. H. Elemental and Isotopic Determination of Lead (Pb) in Particulate Matter in the Brazilian City of Goiânia (GO) Using ICP-MS Technique. Environ. Sci. Pollut. Res. 2017, 24, 20616. DOI: 10.1007/s11356-017-9687-9.
  • Álvarez, S. I.; Ruata, M. L. C.; López, J. M. G.; de Jalón Comet, Á. G.; Marcén, J. F. E. Validation of Determination of Lead (Pb) in Blood by Electrothermal Atomic Absorption Spectrometry (ETAAS) on the Basis of Interlaboratory Comparison Data. J. Trace Elem. Med. Biol. 2007, 21, 26–28. DOI: 10.1016/j.jtemb.2007.09.020.
  • Quang, D. T.; Kim, J. S. Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens. Chem. Rev. 2010, 110, 6280–6301. DOI: 10.1021/cr100154p.
  • Khan, H.; Ahmed, M. J.; Bhanger, M. I. A Simple Spectrophotometric Method for the Determination of Trace Level Lead in Biological Samples in the Presence of Aqueous Micellar Solutions. Spectroscopy 2006, 20, 285–297. DOI: 10.1155/2006/269568.
  • Yılmaz, V. Determination of Lead and Cadmium in Food Samples by the Coprecipitation Method. Food Chem. 2009, 113, 1314–1317. DOI: 10.1016/j.foodchem.2008.08.064.
  • Promphet, N.; Rattanarat, P.; Chailapakul, O.; Rangkupan, R.; Rodthongkum, N. An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sensors Actuators B. Chem. 2014, 207, 526–534. DOI: 10.1016/j.snb.2014.10.126.
  • González-Ruiz, V.; Olives, A. I.; Martín, M. A. Core-Shell Particles Lead the Way to Renewing High- Performance Liquid Chromatography. Trends Anal. Chem. 2014, 64(21), 17–28. DOI: 10.1016/j.trac.2014.08.008.
  • Behbahani, M.; Ghareh Hassanlou, P.; Amini, M. M.; Omidi, F.; Esrafili, A.; Farzadkia, M.; Bagheri, A. Application of Solvent-Assisted Dispersive Solid Phase Extraction as a New, Fast, Simple and Reliable Preconcentration and Trace Detection of Lead and Cadmium Ions in Fruit and Water Samples. Food Chem. 2015, 187, 82–88. DOI: 10.1016/j.foodchem.2015.04.061.
  • Zone, E. G.; Region, A. Determination of Heavy Metal Concentration in Soils Used for Cultivation of Allium Sativum L. (Garlic) in East Gojjam Zone, Amhara Region, Ethiopia. Cogent Chem. 2018, 2, 1–12. DOI: 10.1080/23312009.2017.1419422.
  • Helaluddin, A. B. M.; Khalid, R. S.; Alaama, M.; Abbas, S. A. Main Analytical Techniques Used for Elemental Analysis in Various Matrix. Trop. J. Pharma. Res. 2016, 15, 427–434. DOI: 10.4314/tjpr.v15i2.29.
  • Rashid, H.; Fardous, Z.; Chowdhury, M. A. Z.; Alam, K. Determination of Heavy Metals in the Soils of Tea Plantations and in Fresh and Processed Tea Leaves : An Evaluation of Six Digestion Methods. Chem. Cent. J. 2016, 10, 7. DOI: 10.1186/s13065-016-0154-3.
  • He, X.; Chen, L.; Chen, X.; Yu, H.; Peng, L.; B, H. Analysis of Four Toxic Metals in a Single Rice Seed by Matrix Solid Phase Dispersion -Inductively Coupled Plasma Mass Spectrometry. Sci. Rep. 2016, 6, 1–8. DOI: 10.1038/srep38472.
  • Locatelli, C. Heavy Metals in Matrices of Food Interest: Sequential Voltammetric Determination at Trace and Ultratrace Level of Copper, Lead, Cadmium, Zinc, Arsenic, Selenium, Manganese and Iron in Meals. Electroanalysis 2004, 16, 1478–1486. DOI: 10.1002/elan.200302986.
  • Shi, Y.; Wang, H.; Jiang, X.; Sun, B.; Song, B.; Su, Y. Ultrasensitive, Specific, Recyclable, and Reproducible Detection of Lead Ions in Real Systems through a Polyadenine-Assisted, Surface-Enhanced Raman Scattering Silicon Chip. Anal. Chem. 2016, 88, 3723–3729. DOI: 10.1021/acs.analchem.5b04551.
  • Wang, N.; Kanhere, E.; Miao, J.; Triantafyllou, M. S. Miniaturized Chemical Sensor with Bio-Inspired Micropillar Working Electrode Array for Lead Detection. Sensors Actuators, B Chem. 2016, 233, 249–256. DOI: 10.1016/j.snb.2016.04.048.
  • Wang, C.; Cui, X.; Li, Y.; Li, H.; Huang, L.; Bi, J.; Luo, J.; Ma, L.Q.; Zhou, W.; Cao, Y.; Wang, B.; Miao, F. A Label-Free and Portable Graphene FET Aptasensor for Children Blood Lead Detection. Sci. Reports 2016, 6, 21711. DOI: 10.1038/srep21711.
  • Choudhary, R.; Patra, S.; Madhuri, R.; Sharma, P. K. Equipment-Free, Single-Step, Rapid, “on-Site” Kit for Visual Detection of Lead Ions in Soil, Water, Bacteria, Live Cells, and Solid Fruits Using Fluorescent Cube-Shaped Nitrogen-Doped Carbon Dots. ACS Sustain. Chem. Eng. 2016, 4, 5606–5617. DOI: 10.1021/acssuschemeng.6b01463.
  • Thatai, S.; Khurana, P.; Prasad, S.; Soni, S. K.; Kumar, D. Trace Colorimetric Detection of Pb2+ Using Plasmonic Gold Nanoparticles and Silica–Gold Nanocomposites. Microchem. J. 2015, 124, 104–110. DOI: 10.1016/j.microc.2015.07.006.
  • Satnami, M. L.; Vaishanav, S. K.; Nagwanshi, R.; Ghosh, K. K. Spectrofluorometric Determination of Mercury and Lead by Colloidal CdS Nanomaterial Spectrofluorometric Determination of Mercury and Lead by Colloidal CdS Nanomaterial. J. Dispers. Sci. Technol. 2016, 37, 196–204. DOI: 10.1080/01932691.2015.1039020.
  • Nascimento, A. S. do; Marchini, L. C.; Carvalho, C. A. L. de; Araújo, D. F. D.; Silveira, T. A. da; Olinda, R. A. de. Determining the Levels of Trace Elements Cd, Cu, Pb and Zn in Honey of Stingless Bee (Hymenoptera: Apidae) Using Voltammetry. Food Nutr. Sci. 2015, 6, 591–596. DOI: 10.4236/fns.2015.67062.
  • Al-Hossainy, A. F.; Allah, M. M. A. Determination of Cadmium and Lead in Perch Fish Samples by Differential Pulse Anodic Stripping Voltammetry and Furnace Atomic Absorption Spectrometry. Arab. J. Chem. 2012, 10(21), S347–S354. DOI: 10.1016/j.arabjc.2012.09.005.
  • Alhemiary, N.; Ali, M.; Duais, A. Anodic Stripping Voltammetry Determination of Pb, Cd. Zn, and Cu in Blood Samples of Children in Some Areas of Ibb Governorate. J. Iran. Chem. Res. 2011, 4, 9–16.
  • Lawal, A. O.; Audu, A. A. Analysis of Heavy Metals Found in Vegetables from Some Cultivated Irrigated Gardens in the Kano Metropolis, Nigeria. J. Environ. Chem. Ecotoxicol. 2011, 3, 142–148.
  • Miśkowiec Pawełand Łaptaś, A.; Zięba, K. Soil Pollution with Heavy Metals in Industrial and Agricultural Areas: A Case Study of Olkusz District. J. Elem. 2015, 20(2): 353–362. DOI: 10.5601/jelem.2014.19.3.691.
  • Lara, J.; Torres, J. F.; Beltrán, O. G.; Nagles, E.; Hurtado, J. Simultaneous Determination of Lead and Cadmium by Stripping Voltammetry Using in-Situ Mercury Film Glassy Carbon Electrode Coated with Nafion-Macrocyclic Ester. Int. J. Electrochem. Sci. 2017, 12, 6920–6929. DOI: 10.20964/2017.08.65.
  • Kang, W.; Pei, X.; Rusinek, C. A.; Bange, A.; Haynes, E. N.; Heineman, W. R.; Papautsky, I. Determination of Lead with a Copper-Based Electrochemical Sensor. Anal. Chem. 2017, 89, 3345–3352. DOI: 10.1021/acs.analchem.6b03894.
  • Allafchian, A. R.; Mirahmadi-Zare, S. Z.; Gholamian, M. Determination of trace lead detection in a sample solution by Liquid 3-Phase Microextraction – Anodic Stripping Voltammetry. IEEE Sens. J. 2017, 17, 2856–2862. DOI: 10.1109/JSEN.2017.2680450.
  • Sadeghi, M.; Rostami, E.; Kordestani, D.; Veisi, H.; Shamsipur, M. RSC Advances Lead and Cadmium in Food and Environmental Solidi fi Cation of Floating Organic Drop (UAEME-SFO) Followed by GFAAS. RSC Adv. 2017, 7, 27656–27667. DOI: 10.1039/C6RA26025J.
  • Alieva, R.A.; Abilova, U. M.; Guseinova, N. S.; Chyragov, F. M. Adsorption – Photometric Determination of Lead in Cattle Liver. J. Anal. Chem. 2017, 72, 1161–1166. DOI: 10.1134/S1061934817110028.
  • Xie, N.; Ma, W.; Gao, H.; Sun, D. Simultaneous Determination of Lead and Copper by Anodic Stripping Voltammetry using a Poly (L-glutamic acid) Modified Electrode. Indian J. Chem. Sci. 2017, 56, 238–242.
  • Erarpat, S.; Chormey, D. S.; Bak, S. Chemosphere Determination of Lead at Trace Levels in Mussel and Sea Water Samples using Vortex Assisted Dispersive Liquid-Liquid Microextraction-Slotted Quartz Tube-Flame Atomic Absorption Spectrometry. Chemosphere 2017, 189, 180–185. DOI: 10.1016/j.chemosphere.2017.09.072.
  • Tinas, H.; Ozbek, N.; Akman, S. Direct Solid Sampling Determination of Lead in Cheese Varieties by High Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Anal. Methods Royal 2017, 9, 6365–6370. DOI: 10.1039/C7AY02029E.
  • Valera, D.; Sánchez, M.; Domínguez, J. R.; Alvarado, J.; Espinoza-Montero, P. J.; Carrera, P.; Bonilla, P.; Manciati, C.; González, G.; Fernández, L. Electrochemical Determination of Lead in Human Blood Serum and Urine by Anodic Stripping Voltammetry Using Glassy Carbon Electrodes Covered with Ag–Hg and Ag–Bi Bimetallic Nanoparticles. Anal. Methods 2018, 10, 4114–4121. DOI: 10.1039/C8AY01314D
  • Latif, A.; Bilal, M.; Asghar, W.; Azeem, M.; Ahmad, M. I.; Abbas, A. Heavy Metal Accumulation in Vegetables and Assessment of Their Potential Health Risk. J. Environ. Anal. Chem. 2018, 5, 1–7. DOI: 10.4172/2380-2391.1000234.
  • Yang, P.; Zhou, R.; Zhang, W.; Yi, R.; Tang, S.; Guo, L.; Hao, Z.; Li, X.; Lu, Y.; Zeng, X. High-Sensitivity Determination of Cadmium and Lead in Rice Using Laser-Induced Breakdown Spectroscopy. Food Chem. 2019, 272, 323–328. DOI: 10.1016/j.foodchem.2018.07.214.
  • Town, K. Determination of Cadmium. Chromium and Lead from Industrial Wastewater in Kombolcha Town, Ethiopia Using FAAS. J. Environ. Anal. 2018, 5, 8–12. DOI: 10.4172/2380-2391.1000243.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.