629
Views
20
CrossRef citations to date
0
Altmetric
Review Article

Potentiometric Sensors for the Determination of Anionic Surfactants – A Review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 115-137 | Published online: 06 Nov 2019

References

  • Research and Markets. Surfactants Market by Type (Anionic, Non-Ionic, Cationic, and Amphoteric), Substrate (Synthetic, and Bio-based), Application (Detergents, Personal Care, Textile, Elastomers & Plastics, Crop Protection, Food & Beverage) - Global Forecast to 2021, 2016, MarketsandMarkets™ Research Private Ltd., Pune, India.
  • Cuartero, M.; Crespo, G. A. All-Solid-State Potentiometric Sensors: A New Wave for in Situ Aquatic Research. Curr. Opin. Electrochem. 2018, 10, 98–106. DOI: 10.1016/j.coelec.2018.04.004.
  • Calvo-Flores, F. G.; Isac-Garcia, J.; Dobado, J. A. Emerging Pollutants: Origin, Structure and Properties; Wiley-VCH: Weinheim, 2009; Vol. 81.
  • Hampel, M.; Mauffret, A.; Pazdro, K.; Blasco, J. Anionic Surfactant Linear Alkylbenzene Sulfonates (LAS) in Sediments from the Gulf of Gdansk (Southern Baltic Sea, Poland) and Its Environmental Implications. Environ. Monit. Assess. 2012, 184, 6013–6023. DOI: 10.1007/s10661-011-2399-6.
  • Lavorante, A. F.; Morales-Rubio, Á.; de la Guardia, M.; Reis, B. F. A Multicommuted Stop-Flow System Employing LEDs-Based Photometer for the Sequential Determination of Anionic and Cationic Surfactants in Water. Anal. Chim. Acta 2007, 600, 58–65. DOI: 10.1016/j.aca.2006.12.035.
  • Stepanets, O. V.; Solov, G. Y.; Mikhailova, A. M.; Kulapin, A. I. Rapid Determination of Anionic Surfactants in Seawater under Shipboard Conditions. J. Anal. Chem. 2001, 56, 290–293. DOI: 10.1023/A:1009470926575.
  • Ying, G. G. Fate, Behavior and Effects of Surfactants and Their Degradation Products in the Environment. Environ. Int. 2006, 32, 417–431. DOI: 10.1016/j.envint.2005.07.004.
  • Olkowska, E.; Ruman, M.; Polkowska, Z. Occurrence of Surface Active Agents in the Environment Occurrence of Surface Active Agents in the Environment. J. Anal. Methods Chem. 2014, 2014, 1. DOI: 10.1155/2014/769708.
  • Cserhati, T.; Forgacs, E.; Oros, G.; Forga, E.; Cserha, T. Biological Activity and Environmental Impact of Anionic Surfactants. Environ. Int. 2002, 28, 337–348. DOI: 10.1016/S0160-4120(02)00032-6.
  • Regulation (EC) No 648/2004. Regulation (EC) No 648/2004 of the European Parliament and of the Council of 31 March 2004 on Detergents. Off. J. (L 104) 2004, 648, 1–54.
  • McWilliams, P. Bioaccumulation Potential of Surfactants: A Review; European Oilfield Speciality Chemicals Association (EOSCA): Aberdeen, 2000.
  • Olkowska, E.; Polkowska, Z.; Namieśnik, J. Analytical Procedures for the Determination of Surfactants in Environmental Samples. Talanta 2012, 88, 1–13. DOI: 10.1016/j.talanta.2011.10.034.
  • Yamamoto, K.; Oka, M.; Murakami, H. Spectrophotometric Determination of Trace Ionic and Non-Ionic Surfactants Based on a Collection on a Membrane Filter as the Ion Associate of the Surfactant with Erythrosine B. Anal. Chim. Acta 2002, 455, 83–92. DOI: 10.1016/S0003-2670(01)01560-4.
  • Ródenas-Torralba, E.; Reis, B. F.; Morales-Rubio, Á.; De La Guardia, M. An Environmentally Friendly Multicommutated Alternative to the Reference Method for Anionic Surfactant Determination in Water. Talanta 2005, 66, 591–599. DOI: 10.1016/j.talanta.2004.12.006.
  • Wangkarn, S.; Soisungnoen, P.; Rayanakorn, M.; Grudpan, K. Determination of Linear Alkylbenzene Sulfonates in Water Samples by Liquid Chromatography-UV Detection and Confirmation by Liquid Chromatography-Mass Spectrometry. Talanta 2005, 67, 686–695. DOI: 10.1016/j.talanta.2005.03.011.
  • Levine, L. H.; Garland, J. L.; Johnson, J. V. Simultaneous Quantification of Poly-Dispersed Anionic, Amphoteric and Nonionic Surfactants in Simulated Wastewater Samples Using C 18 High-Performance Liquid Chromatography-Quadrupole Ion-Trap Mass Spectrometry. J. Chromatogr. A 2005, 1062, 217–225. DOI: 10.1016/j.chroma.2004.11.038.
  • Lara-Martín, P. A.; Gómez-Parra, A.; González-Mazo, E. Simultaneous Extraction and Determination of Anionic Surfactants in Waters and Sediments. J. Chromatogr. A 2006, 1114, 205–210. DOI: 10.1016/j.chroma.2006.03.014.
  • Kruse, P. Review on Water Quality Sensors. J. Phys. D: Appl. Phys. 2018, 51, 203002. DOI: 10.1088/1361-6463/aabb93.
  • ISO 7875-1:1996. Water quality – Determination of surfactants – Part 1: Determination of anionic surfactants by measurement of the methylene blue index (MBAS). https://www.iso.org/standard/24784.html (accessed Aug 7, 2018).
  • Wyrwas, B.; Zgoła-Grześkowiak, A. Continuous Flow Methylene Blue Active Substances Method for the Determination of Anionic Surfactants in River Water and Biodegradation Test Samples. J. Surfactants Deterg. 2014, 17, 191–198. DOI: 10.1007/s11743-013-1469-x.
  • Chitikela, S.; Dentel, S. K.; Allen, H. E. Modified Method for the Analysis of Anionic Surfactants as Methylene Blue Active Substances. Analyst 1995, 120, 2001–2004. DOI: 10.1039/an9952002001.
  • Koga, M.; Yamamichi, Y.; Nomoto, Y.; Irie, M.; Tanimura, T.; Yoshinaga, T. Rapid Determination of Anionic Surfactants by Improved Spectrophotometric Method Using Methylene Blue. Anal. Sci. 1999, 15, 563–568. DOI: 10.2116/analsci.15.563.
  • Yokoyama, Y.; Tai, E.; Sato, H. Spectrometric Determination of Anionic Surfactants in Environmental Waters Based on Anisole Extraction of Their Ion Pairs. Anal. Sci. 2011, 27, 845–849. DOI: 10.2116/analsci.27.845.
  • McCrady, M. H. Standard Methods for the Examination of Water and Waste-Water (12th Ed.). Am. J. Public Health Nations Health 1966, 56, 684–684. DOI: 10.2105/AJPH.56.4.684-a.
  • Volkov, A.; Gorbova, E.; Vylkov, A.; Medvedev, D.; Demin, A.; Tsiakaras, P. Design and Applications of Potentiometric Sensors Based on Proton-Conducting Ceramic Materials. A Brief Review. Sens. Actuators B Chem. 2017, 244, 1004–1015. DOI: 10.1016/j.snb.2017.01.097.
  • Bakker, E.; Pretsch, E. Nanoscale Potentiometry. TrAC - Trends Anal. Chem. 2008, 27, 612–618. DOI: 10.1016/j.trac.2008.04.007.
  • Makarova, N. M.; Kulapina, E. G. New Potentiometric Screen-Printed Sensors for Determination of Homologous Sodium Alkylsulfates. Sens. Actuators B Chem. 2015, 210, 817–824. DOI: 10.1016/j.snb.2014.12.128.
  • Álvarez-Romero, G. A.; Morales-Pérez, A.; Rojas-Hernández, A.; Palomar-Pardavé, M.; Ramírez-Silva, M. T. Development of a Tubular Sensor Based on a Polypyrrole-Doped Membrane for the Potentiometric Determination of the Dodecylsulfate Anion in a FIA System. Electroanalysis 2004, 16, 1236–1243. DOI: 10.1002/elan.200302935.
  • Martínez-Barrachina, S.; del Valle, M. Use of a Solid-Phase Extraction Disk Module in a FI System for the Automated Preconcentration and Determination of Surfactants Using Potentiometric Detection. Microchem. J. 2006, 83, 48–54. DOI: 10.1016/j.microc.2006.01.022.
  • Hassan, S. S. M.; Badr, I. H. A.; Abd-Rabboh, H. S. M. Potentiometric Flow Injection Analysis of Anionic Surfactants in Industrial Products and Wastes. Microchim. Acta 2004, 144, 263–269. DOI: 10.1007/s00604-003-0115-0.
  • Masadome, T.; Kugoh, S.; Ishikawa, M.; Kawano, E.; Wakida, S. I. Polymer Chip Incorporated with Anionic Surfactant-ISFET for Microflow Analysis of Anionic Surfactants. Sensors Actuators B Chem. 2005, 108, 888–892. (1–2 SPEC. ISS.), DOI: 10.1016/j.snb.2004.11.062.
  • El-Nemma, E. M.; Badawi, N. M.; Hassan, S. S. M. Cobalt Phthalocyanine as a Novel Molecular Recognition Reagent for Batch and Flow Injection Potentiometric and Spectrophotometric Determination of Anionic Surfactants. Talanta 2009, 78, 723–729. DOI: 10.1016/j.talanta.2008.12.029.
  • Li, G.; Ma, H.; Hao, J. Surfactant Ion-Selective Electrodes: A Promising Approach to the Study of the Aggregation of Ionic Surfactants in Solution. Soft Matter 2012, 8, 896–909. DOI: 10.1039/C1SM05834G.
  • Moretto, L. M., Kalcher, K., Eds.; Environmental Analysis by Electrochemical Sensors and Biosensors; Nanostructure Science and Technology; Springer New York: New York, NY, 2014.
  • Ghaedi, M.; Naderi, S.; Montazerozohori, M.; Taghizadeh, F.; Asghari, A. Chemically Modified Multiwalled Carbon Nanotube Carbon Paste Electrode for Copper Determination. Arab. J. Chem. 2017, 10, S2934–S2943. DOI: 10.1016/j.arabjc.2013.11.029.
  • Bazel, Y. R.; Antal, I. P.; Lavra, V. M.; Kormosh, Z. A. Methods for the Determination of Anionic Surfactants. J. Anal. Chem. 2014, 69, 211–236. DOI: 10.1134/S1061934814010043.
  • Kulapina, E. G.; Chernova, R. K.; Makarova, N. M.; Pogorelova, E. S. Methods for Determining Synthetic Surfactants. Rev. J. Chem. 2013, 3, 323–362. DOI: 10.1134/S2079978013030035.
  • Makarova, N. M. Potentiometric Sensor Arrays in the Separate Determination of Synthetic Surfactant Homologs. Rev. J. Chem. 2014, 4, 21–32. DOI: 10.1134/S2079978014010026.
  • Sánchez, J.; del Valle, M. Determination of Anionic Surfactants Employing Potentiometric Sensors - A Review. Crit. Rev. Anal. Chem. 2005, 35, 15–29. DOI: 10.1080/10408340590947899.
  • Coetzee, C. J.; Freiser, H. Liquid-Liquid Membrane Electrodes Based on Ion Association Extraction Systems. Anal. Chem. 1969, 41, 1128–1130. DOI: 10.1021/ac60277a017.
  • Gavach, C.; Seta, P. Dosage Potentiometrique Des Ions Alkyl-Trimethyl-Ammonium a Longue Chaine et Tetrabutyl-Ammonium. Anal. Chim. Acta 1970, 50, 407–412. DOI: 10.1016/0003-2670(70)80037-X.
  • Gavach, C.; Bertrand, C. Electrodes Specifiques D’anions a Longue Chaine Hydro-Carbonee: Application Au Dosage Potentiométriqué de Détergents Anioniques. Anal. Chim. Acta 1971, 55, 385–393. DOI: 10.1016/S0003-2670(01)82391-6.
  • Birch, B. J.; Clarke, D. E. An Electrode Selective to the Dodecyl Sulphate Anion. Anal. Chim. Acta 1972, 61, 159–162. DOI: 10.1016/S0003-2670(01)81941-3.
  • Ciocan, N.; Anghel, D. F. An Ion-Extractive Liquid-Membrane Anionic Surfactant Sensitive Electrode and Its Analytical Applications. Z. Anal. Chem. 1978, 290, 237–240. DOI: 10.1007/BF00487567.
  • Szczepaniak, W.; Ren, M. Selectivity of Liquid Membrane Electrode Based on Mercurated Polystyrene as Ion-Exchanger to Anionic Surfactants and Soaps. Electroanalvsis 1994, 6, 341–347. DOI: 10.1002/elan.1140060412.
  • Kresheck, G. C.; Constantinidis, I. Ion-Selective Electrodes for Octyl and Decyl Sulfate Surfactants. Anal. Chem. 1984, 56, 152–156. DOI: 10.1021/ac00266a008.
  • Campanella, L.; Mazzei, F.; Tomassetti, M. Determinazione Di Tensioattivi Anionici Nelle Acque Mediante l’uso Di Un Elettrodo Iono-Selettivo. Inquinamento 1987, 6, 44–46.
  • Arvand-Barmchi, M.; Mousavi, M. F.; Zanjanchi, M. A.; Shamsipur, M. A.; New Dodecylsulfate-Selective Supported Liquid Membrane Electrode Based on Its N-Cetylpyridinium Ion-Pair. Microchem. J. 2003, 74, 149–156. DOI: 10.1016/S0026-265X(02)00182-0.
  • Pungor, E. The New Theory of Ion-Selective Electrodes. Anal. Sci. 1998, 14, 249–256. DOI: 10.2116/analsci.14.249.
  • Moody, G. J.; Oke, R. B.; Thomas, J. D. R. A Calcium-Sensitive Electrode Based on a Liquid Ion Exchanger in a Poly(Viny1 Chloride). Analyst 1970, 95, 910–918. DOI: 10.1039/an9709500910.
  • Craggs, A.; Moody, G.; Thomas, J. PVC Matrix Membrane Ion-Selective Electrodes. J. Chem. Educ. 1974, 51, 541–544. DOI: 10.1021/ed051p541.
  • Mihali, C.; Vaum, N. Use of Plasticizers for Electrochemical Sensors. In Recent Advances in Plasticizers; Luqman, M., Ed.; InTech: Rijeka, 2012; pp 125–140. DOI: 10.5772/37006.
  • Karnaš, M.; Sakač, N.; Jozanović, M.; Tsakiri, M.; Kopriva, M.; Andrić, E. K.; Sak-Bosnar, M. The Influence of Plasticisers on Response Characteristics of Anionic Surfactant Potentiometric Sensor. Int. J. Electrochem. Sci. 2017, 12, 5921–5933. DOI: 10.20964/2017.07.16.
  • Zahran, E. M.; New, A.; Gavalas, V.; Bachas, L. G. Polymeric Plasticizer Extends the Lifetime of PVC-Membrane Ion-Selective Electrodes. Analyst 2014, 139, 757–763. DOI: 10.1039/C3AN01963B.
  • Issa, Y. M.; Mohamed, S. H.; Baset, M. A. E. Chemically Modified Carbon Paste and Membrane Sensors for the Determination of Benzethonium Chloride and Some Anionic Surfactants (SLES, SDS, and LABSA): Characterization Using SEM and AFM. Talanta 2016, 155, 158–167. DOI: 10.1016/j.talanta.2016.04.043.
  • Masadome, T.; Yang, J. G.; Imato, T. Effect of Plasticizer on the Performance of the Surfactant-Selective Electrode Based on a Poly(Vinyl Chloride) Membrane with No Added Ion-Exchanger. Microchim. Acta 2004, 144, 217–220. DOI: 10.1007/s00604-003-0112-3.
  • Mihali, C.; Oprea, G.; Cical, E. PVC Matrix Ionic – Surfactant Selective Electrodes Based on the Ionic Pair Tetraalkyl-Ammonium-Laurylsulphate. Stud. Univ. Babes-Bolyai – Chem. Ser. 2009, LIV, 141–150.
  • Xu, R.; Bloor, D. M. Preparation and Properties of Coated-Wire Ion-Selective Electrodes for Anionic and Cationic Surfactants. Langmuir 2000, 16, 9555–9558. DOI: 10.1021/la000953a.
  • Hajduković, M.; Samardžić, M.; Galović, O.; Széchenyi, A.; Sak-Bosnar, M. A Functionalized Nanomaterial Based, New, Solid State Cationic-Surfactant-Selective Sensor with Fast Response and Low Noise. Sens. Actuators B Chem. 2017, 251, 795–803. DOI: 10.1016/j.snb.2017.05.067.
  • Nobuhiko, I.; Akinori, J.; Koichiro, M. Some Ion Selective Electrodes Based on Ion Associate Impregnated in Plastics Matrix. Chem. Lett. 1973, 2, 1297–1298. https://doi.org/10.1246/cl.1973.1297.
  • Tanaka, T.; Hiiro, K.; Kawahara, A. Alkylbenzenesulfonate Ion Selective Electrode Using Ferroin Salt in Polyvinyl Chloride Matrix. Anal. Lett. 1974, 7, 173–176. DOI: 10.1080/00032717408058753.
  • Tanaka, T.; Hiiro, K.; Kawahara, A. Determining Activities of Ions of Alkylbenzene Sulfonic Acids in Wastewaters or Rivers. Japanese Patent No. 50051397, 1975.
  • Cutler, S. G.; Meares, P.; Hall, D. G. Surfactant-Sensitive Polymeric Membrane Electrodes. J. Electroanal. Chem. 1977, 85, 145–161. DOI: 10.1016/S0022-0728(77)80160-5.
  • Vytřas, K. Potentiometric Titrations Based on Ion-Pair Formation. Ion-Select. Electrode Rev. 1985, 7, 77–164. DOI: 10.1016/B978-0-08-034150-7.50007-3.
  • Ishibashi, N.; Masadome, T.; Imato, T. Surfactant-Selective Electrode Based on Poly(Vinyl Chloride) Membrane Plasticized with o-Nitrophenyl Octyl Ether. Anal. Sci. 1986, 2, 487–488. DOI: 10.2116/analsci.2.487.
  • Campanella, L.; Mazzei, F.; Tomassetti, M.; Sbrilli, R. Polymeric Membrane Cholate-Selective Electrode. Analyst 1988, 113, 325–328. DOI: 10.1039/an9881300325.
  • Baró-Romà, J.; Sánchez, J.; del Valle, M.; Alonso, J.; Bartrolí, J. Construction and Development of Ion-Selective Electrodes Responsive to Anionic Surfactants. Sens. Actuators B. Chem 1993, 15, 179–183. DOI: 10.1016/0925-4005(93)85046-D.
  • Alegret, S.; Alonso, J.; Bartrolí, J.; Baró-Romà, J.; Sànchez, J.; del Valle, M. Application of an All-Solid-State Ion-Selective Electrode for the Automated Titration of Anionic Surfactants. Analyst 1994, 119, 2319–2322. DOI: 10.1039/AN9941902319.
  • Seguí, M. J.; Lizondo-Sabater, J.; Martínez-Máñez, R.; Pardo, T.; Sancenón, F.; Soto, J. Ion-Selective Electrodes for Anionic Surfactants Using a New Aza-Oxa-Cycloalkane as Active Ionophore. Anal. Chim. Acta 2004, 525, 83–90. DOI: 10.1016/j.aca.2004.07.032.
  • Seguí, M. J.; Lizondo-Sabater, J.; Benito, A.; Martínez-Máñez, R.; Pardo, T.; Sancenón, F.; Soto, J. A New Ion-Selective Electrode for Anionic Surfactants. Talanta 2007, 71, 333–338. DOI: 10.1016/j.talanta.2006.04.005.
  • Lizondo-Sabater, J.; Martínez-Máñez, R.; Sancenón, F.; Seguí, M. J.; Soto, J. Ion-Selective Electrodes for Anionic Surfactants Using a Cyclam Derivative as Ionophore. Talanta 2008, 75, 317–325. DOI: 10.1016/j.talanta.2006.04.005.
  • Sak-Bosnar, M.; Matešić-Puač, R.; Madunić-Čačić, D.; Grabarić, Z.; Matesic-Puac, R.; Madunic-Cacic, D.; Gmbaric, Z. New Potentiometric Sensor for Determination of Low Levels of Anionic Surfactants in Industrial Effluents. Tenside Surfactants Deterg. 2006, 43, 82–87. DOI: 10.3139/113.100289.
  • Madunić-Čačić, D.; Sak-Bosnar, M.; Matešić-Puač, R. A.; Grabarić, Z. Determination of Anionic Surfactants in Real Systems Using 1,3-Didecyl-2-Methyl-Imidazolium-Tetraphenylborate as Sensing Material. Sens. Lett. 2008, 6, 339–346. DOI: 10.1166/sl.2008.040.
  • Madunić-Čačić, D.; Sak-Bosnar, M.; Samardžić, M.; Grabarić, Z. Determination of Anionic Surfactants in Industrial Effluents Using a New Highly Sensitive Surfactant-Selective Sensor. Sens. Lett. 2009, 7, 50–56. DOI: 10.1166/sl.2009.1009.
  • Sak-Bosnar, M.; Samardžić, M.; Galović, O. The Influence of Ethoxylated Nonionic Surfactants on the Potentiometric Determination of Anionic Surfactants. Int. J. Electrochem. Sci. 2011, 6, 561–572.
  • Galović, O.; Samardžić, M.; Derežić, D.; Madunić-Čačić, D.; Sak-Bosnar, M. Potentiometric Titration of Micromolar Levels of Anionic Surfactants in Model Effluents Using a Sensitive Potentiometric Sensor. Int. J. Electrochem. Sci. 2012, 7, 1522–1531.
  • Madunič-Čačić, D.; Sak-Bosnar, M.; Matešić-Puač, R. A New Anionic Surfactant-Sensitive Potentiometric Sensor with a Highly Lipophilic Electroactive Material. Int. J. Electrochem. Sci. 2011, 6, 240–253.
  • Madunić-Čačić, D.; Sak-Bosnar, M.; Matešić-Puač, R.; Samardžić, M. Potentiometric Determination of Anionic Surfactants in Formulations Containing Cocoamidopropyl Betaine. Int. J. Electrochem. Sci. 2012, 7, 875–885.
  • Galović, O.; Samardžić, M.; Petrušić, S.; Sak-Bosnar, M. A New Sensing Material for the Potentiometric Determination of Anionic Surfactants in Commercial Products. Int. J. Electrochem. Sci. 2014, 9, 3802–3818.
  • Samardžić, M.; Galović, O.; Petrušić, S.; Sak-Bosnar, M. The Analysis of Anionic Surfactants in Effluents Using a DDA- TPB Potentiometric Sensor. Int. J. Electrochem. Sci. 2014, 9, 6166–6181.
  • Samardžić, M.; Petrušić, S.; Hajduković, M.; Škobić, M. Optimization and Applicability of a Novel Sensor for Potentiometric Determination of Anionic Surfactants. J. Surfactants Deterg. 2019, 22, 339–348. DOI: 10.1002/jsde.12222.
  • Mostafa, G. A. E. PVC Matrix Membrane Sensor for Potentiometric Determination of Dodecylsulfate. Int. J. Environ. Anal. Chem. 2008, 88, 435–446. DOI: 10.1080/03067310701717735.
  • Mahajan, R. K.; Shaheen, A. Effect of Various Additives on the Performance of a Newly Developed PVC Based Potentiometric Sensor for Anionic Surfactants. J. Colloid Interface Sci. 2008, 326, 191–195. DOI: 10.1016/j.jcis.2008.07.043.
  • Wang, J.; Du, Z.; Wang, W.; Xue, W. Ion-Selective Electrode for Anionic Surfactants Using Hexadecyl Trimethyl Ammonium Bromide-Sodium Dodecylsulfate as an Active Ionophore. Int. J. Electrochem. 2011, 2011, 1–7. DOI: 10.4061/2011/958647.
  • Wang, J.; Du, Z.; Wang, W.; Xue, W. Titrimetric Determination of Anionic Surfactant Content in Anionic/Nonionic Surfactant Mixture Solution by Anionic Surfactant Selective Electrode. Turkish J. Chem. 2012, 36, 545–555. DOI: 10.3906/kim-1109-42.
  • Devi, S.; Chattopadhyaya, M. C. Determination of Sodium Dodecyl Sulfate in Toothpastes by a PVC Matrix Membrane Sensor. J. Surfactants Deterg. 2013, 16, 391–396. DOI: 10.1007/s11743-012-1419-z.
  • Abounassif, M. A.; Hefnawy, M. M.; Al-Robian, H.; Mostafa, G. A. E. Dodecanthiol as Novel Sensing Material for Potentiometric Determination of Sodium Dodecyl Sulphate Anionic Surfactant. Int. J. Electrochem. Sci. 2015, 10, 8668–8679.
  • Asefa, T.; Duncan, C. T.; Sharma, K. K. Recent Advances in Nanostructured Chemosensors and Biosensors. Analyst 2009, 134, 1980–1990. DOI: 10.1039/b911965p.
  • Crespo, G. A.; Macho, S.; Rius, F. X. Ion-Selective Electrodes Using Carbon Nanotubes as Ion-to-Electron Transducers. Anal. Chem. 2008, 80, 1316–1322. DOI: 10.1021/ac071156l.
  • Fouskaki, M.; Chaniotakis, N. Fullerene-Based Electrochemical Buffer Layer for Ion-Selective Electrodes. Analyst 2008, 133, 1072–1075. DOI: 10.1039/b719759d.
  • Düzgün, A.; Zelada-Guillén, G. A.; Crespo, G. A.; Macho, S.; Riu, J.; Rius, F. X. Nanostructured Materials in Potentiometry. Anal. Bioanal. Chem. 2011, 399, 171–181. DOI: 10.1007/s00216-010-3974-3.
  • Andrade, F. J.; Blondeau, P.; Macho, S.; Riu, J.; Rius, F. X. Review - Potentiometric Nanostructured Sensors. In Encyclopedia of Analytical Chemistry, 2014; pp. 1–17. DOI: 10.1002/9780470027318.a9393.
  • Yin, T.; Qin, W. Applications of Nanomaterials in Potentiometric Sensors. TrAC - Trends Anal. Chem. 2013, 51, 79–86. DOI: 10.1016/j.trac.2013.06.009.
  • Galović, O.; Samardžić, M.; Hajduković, M.; Sak-Bosnar, M. A New Graphene-Based Surfactant Sensor for the Determination of Anionic Surfactants in Real Samples. Sens. Actuators B Chem. 2016, 236, 257–267. DOI: 10.1016/j.snb.2016.05.166.
  • Najafi, M.; Maleki, L.; Rafati, A. A. Novel Surfactant Selective Electrochemical Sensors Based on Single Walled Carbon Nanotubes. J. Mol. Liq. 2011, 159, 226–229. DOI: 10.1016/j.molliq.2011.01.013.
  • Samardžić, M.; Galović, O.; Hajduković, M.; Sak-Bosnar, M. A Novel, Fast Responding, Low Noise Potentiometric Sensor Containing a Carbon-Based Polymeric Membrane for Measuring Surfactants in Industrial and Environmental Applications. Talanta 2017, 162, 316–323. DOI: 10.1016/j.talanta.2016.10.041.
  • Petrušić, S.; Samardžić, M.; Széchenyi, A.; Sak-Bosnar, M. Application of a New Functionalized MWCNTs for the Construction of Surfactant Potentiometric Sensors. Croat. Chem. Acta 2017, 90, 241–250. DOI: 10.5562/cca3164.
  • Bratov, A.; Abramova, N.; Ipatov, A. Recent Trends in Potentiometric Sensor Arrays-A Review. Anal. Chim. Acta 2010, 678, 149–159. DOI: 10.1016/j.aca.2010.08.035.
  • Růžička, J.; Lamm, C. G. SelectrodeTM - The Universal Ion-Selective Solid-State Electrode Part I. Halides. Anal. Chim. Acta 1971, 54, 1–12. DOI: 10.1016/S0003-2670(01)81849-3.
  • Fujinaga, T.; Okazaki, S.; Freiser, H. Ion Selective Electrodes Responsive to Anionic Detergents. Anal. Chem. 1974, 46, 1842–1844. DOI: 10.1021/ac60348a063.
  • Kulapin, A. I.; Arinushkina, T. V. Solid-Contact Potentiometric Sensors Based on Ion Pairs of Cetylpyridinium with Dodecylsulfate and Tetraphenylborate for Various Surfactants. J. Anal. Chem. 2000, 55, 1096–1101. DOI: 10.1007/BF02757340.
  • Matešić-Puač, R.; Sak-Bosnar, M.; Bilić, M. Potentiometric Determination of Soaps and Mixtures of Soaps with Anionic Sufactants Using a New Surfactant Sensor. Tenside Surfactants Deterg. 2002, 39, 72–76.
  • Matešić-Puač, R.; Sak-Bosnar, M.; Bilić, M.; Grabarić, B. S. Potentiometric Determination of Anionic Surfactants Using a New Ion-Pair-Based All-Solid-State Surfactant Sensitive Electrode. Sens. Actuators B Chem. 2005, 106, 221–228. DOI: 10.1016/j.snb.2004.08.001.
  • Devi, S.; Ankit, P.; Chattopadhyaya, M. C. Coated Wire Ion Selective Electrodes for Determination of Cationic and Anionic Surfactants. J. Indian Chem. Soc. 2009, 86, 1332.
  • Sakač, N.; Jozanović, M.; Karnaš, M.; Sak-Bosnar, M. A New Sensor for Determination of Anionic Surfactants in Detergent Products with Carbon Nanotubes as Solid Contact. J. Surfactants Deterg. 2017, 20, 881–889. DOI: 10.1007/s11743-017-1978-0.
  • Kariuki, J.; Ervin, E.; Olafson, C. Development of a Novel, Low-Cost, Disposable Wooden Pencil Graphite Electrode for Use in the Determination of Antioxidants and Other Biological Compounds. Sensors 2015, 15, 18887–18900. DOI: 10.3390/s150818887.
  • Torrinha, Á.; Amorim, C. G.; Montenegro, M. C. B. S. M.; Araújo, A. N. Biosensing Based on Pencil Graphite Electrodes. Talanta 2018, 190, 235–247. DOI: 10.1016/j.talanta.2018.07.086.
  • Sakač, N.; Karnaš, M.; Jozanović, M.; Medvidović-Kosanović, M.; Martinez, S.; Macan, J.; Sak-Bosnar, M; Sak-Bosnar, M. Determination of Anionic Surfactants in Real Samples Using a Low-Cost and High Sensitive Solid Contact Surfactant Sensor with MWCNTs as the Ion-to-Electron Transducer. Anal. Methods 2017, 9, 2305–2314. DOI: 10.1039/C7AY00099E.
  • Ali, T. A.; Mohamed, G. G. Modified Screen-Printed Ion Selective Electrodes for Potentiometric Determination of Sodium Dodecylsulfate in Different Samples. J. AOAC Int. 2015, 98, 116–123. DOI: 10.5740/jaoacint.12-388.
  • Galović, O.; Samardžić, M.; Sak-Bosnar, M. A New Microsensor for the Determination of Anionic Surfactants in Commercial Products. Int. J. Electrochem. Sci. 2015, 10, 5176–5193.
  • Khaled, E.; Mohamed, G. G.; Awad, T. Disposal Screen-Printed Carbon Paste Electrodes for the Potentiometric Titration of Surfactants. Sens. Actuators B Chem. 2008, 135, 74–80. DOI: 10.1016/j.snb.2008.07.027.
  • Chernyshov, D. V.; Khrenova, M. G.; Pletnev, I. V.; Shvedene, N. V. Screen-Printed Ion-Selective Electrodes Covered with Membranes Containing Ionic Liquids. Mendeleev Commun. 2008, 18, 88–89. DOI: 10.1016/j.mencom.2008.03.012.
  • Makarova, N. M.; Kulapina, E. G. Planar Potentiometric Sensors Based on Carbon Materials for Determination of Sodium Dodecyl Sulfate. Russ. J. Electrochem. 2015, 51, 672–678. DOI: 10.1134/S1023193515070034.
  • Makarova, N. M.; Kulapina, E. G. Planar Electrodes Based on Carbon Nanotubes for the Potentiometric Determination of Homologous Sodium Alkyl Sulfates. J. Anal. Chem. 2015, 70, 879–884. DOI: 10.1134/S1061934815070096.
  • Masadome, T.; Wakida, S.; Kawabata, Y.; Imato, T.; Ishibashi, N. Contribution of Plasticizer to Response of Surfactant-Selective Plasticized Poly(Vinyl Chloride) Membrane Electrode by Using Ion-Sensitive Field-Effect Transistor. Anal. Sci. 1992, 8, 89–91. DOI: 10.2116/analsci.8.89.
  • Sànchez, J.; Beltran, A.; Alonso, J.; Jiménez, C.; del Valle, M. Development of a New Ion-Selective Field-Effect Transistor Sensor for Anionic Surfactants: Application to Potentiometric Titrations. Anal. Chim. Acta 1999, 382, 157–164. DOI: 10.1016/S0003-2670(98)00762-4.
  • ISO 16265:2009. Water Quality – Determination of the Methylene Blue Active Substances (MBAS) Index – Method Using Continuous Flow Analysis (CFA). https://www.iso.org/standard/52130.html (accessed Aug 9, 2018).
  • Frend, A. J.; Moody, G. J.; Thomas, R.; Birch, B. J. Flow Injection Analysis with Tubular Membrane Ion-Selective Electrodes in the Presence of Anionic Surfactants. Analyst 1983, 108, 1357–1364. DOI: 10.1039/an9830801357.
  • Alonso, J.; Baró, J.; Bartrolí, J.; Sànchez, J.; del Valle, M. Flow-through Tubular Ion-Selective Electrodes Responsive to Anionic Surfactants for Flow-Injection Analysis. Anal. Chim. Acta 1995, 308, 115–121. DOI: 10.1016/0003-2670(94)00601-H.
  • Martínez-Barrachina, S.; Alonso, J.; Matia, L.; Prats, R.; del Valle, M. Determination of Trace Levels of Anionic Surfactants in River Water and Wastewater by a Flow Injection Analysis System with on-Line Preconcentration and Potentiometric Detection. Anal. Chem. 1999, 71, 3684–3691. DOI: 10.1021/ac980977a.
  • Wang, Y.; Guan, S.; Hao, D.; Dan, D. Determination of Anionic Surfactants in Environmental Waters by Flow Injection Potentiometric Analysis. Fenxi Huaxue 2002, 30, 1455–1458.
  • Cortina, M.; Ecker, C.; Calvo, D.; del Valle, M. Automated Electronic Tongue Based on Potentiometric Sensors for the Determination of a Trinary Anionic Surfactant Mixture. J. Pharm. Biomed. Anal. 2008, 46, 213–218. DOI: 10.1016/j.jpba.2007.09.013.
  • Sorvin, M.; Belyakova, S.; Stoikov, I.; Shamagsumova, R.; Evtugyn, G. Solid-Contact Potentiometric Sensors and Multisensors Based on Polyaniline and Thiacalixarene Receptors for the Analysis of Some Beverages and Alcoholic Drinks. Front. Chem. 2018, 6, 1–16. DOI: 10.3389/fchem.2018.00134.
  • Mimendia, A.; Gutiérrez, J. M.; Leija, L.; Hernández, P. R.; Favari, L.; Muñoz, R.; del Valle, M. A Review of the Use of the Potentiometric Electronic Tongue in the Monitoring of Environmental Systems. Environ. Model. Softw. 2010, 25, 1023–1030. DOI: 10.1016/j.envsoft.2009.12.003.
  • Legin, A. V.; Vlasov, Y. G.; Rudnitskaya, A. M.; Bychkov, E. A. Cross-Sensitivity of Chalcogenide Glass Sensors in Solutions of Heavy Metal Ions. Sens. Actuators B Chem. 1996, 34, 456–461. DOI: 10.1016/S0925-4005(96)01852-7.
  • Mikhaleva, N. M.; Kulapina, E. G.; Kolotvin, A. A.; Lobachev, A. L. Determination of the Homologous Distribution of Sodium Alkylbenzenesulfonates in Commercial Sulfonol Preparations. J. Anal. Chem. 2007, 62, 1088–1092. DOI: 10.1134/S1061934807110147.
  • Kulapina, E. G.; Mikhaleva, N. M.; Shmakov, S. L. Separate Determination of Homologous Sodium Alkyl Sulfates with Ion-Selective Electrodes. J. Anal. Chem. 2004, 59, 487–490. DOI: 10.1023/B:JANC.0000026243.39964.44.
  • Mikhaleva, N. M.; Kulapina, E. G. Arrays of Nonselective Nonionic-Surfactant Sensors for the Separate Determination of the Homologues of Polyoxyethylated Nonylphenols. J. Anal. Chem. 2005, 60, 573–580. DOI: 10.1007/s10809-005-0141-7.
  • Kulapin, A. I.; Chernova, R. K.; Kulapina, E. G.; Mikhaleva, N. M. Separate Detection of homologous surfactants by Means of Solid-Contact Unmodified and Modified with Molecular Sieves Potentiometric Sensors. Talanta 2005, 66, 619–626. DOI: 10.1016/j.talanta.2004.12.017.
  • Kulapina, E. G.; Mikhaleva, N. M. The Analysis of Multicomponent Solutions Containing Homologous Ionic Surfactant with Sensor Arrays. Sens. Actuators B Chem. 2005, 106, 271–277. DOI: 10.1016/j.snb.2004.08.007.
  • Mikhaleva, N. M.; Kulapina, E. G. Multisensor Systems for Separate Determination of Homologous Anionic and Non-Ionic Surfactants. Electroanalysis 2006, 18, 1389–1395. DOI: 10.1002/elan.200603550.
  • Kulapina, E. G.; Ovchinskii, V. A. New Modified Electrodes for the Separate Determination of Anionic Surfactants. J. Anal. Chem. 2000, 55, 169–174. DOI: 10.1007/BF02757745.
  • Makarova, N. M.; Kulapina, E. G. New Potentiometric Sensors Based on Ionic Associates of Sodium Dodecylsulfate and Cationic Complexes of Copper(II) with Some Organic Reagents. Electroanalysis 2015, 27, 621–628. DOI: 10.1002/elan.201400491.
  • Fogg, A. G.; Pathan, A. S.; Thorburn Burns, D. A Silicone-Rubber Surfacant Electrode. Anal. Chim. Acta 1974, 69, 238–242. DOI: 10.1016/0003-2670(74)80034-6.
  • Fukui, H.; Kaminaga, A.; Maeda, T.; Hayakawa, K. Preparation of Surfactant Anion-Selective Electrodes with Different Selectivity Coefficients and a Trial to Determine Each Component in Binary Surfactant Mixtures. Anal. Chim. Acta 2003, 481, 221–228. DOI: 10.1016/S0003-2670(03)00118-1.
  • Varga, I.; Mészáros, R.; Szakács, Z.; Tibor, G. Novel Method for the Preparation of Anionic Surfactant-Selective Electrodes Novel Method for the Preparation of Anionic Surfactant-Selective Electrodes. Langmuir 2005, 21, 6154–6156. DOI: 10.1021/la050639m.
  • Alizadeh, N.; Mahmodian, M. A New Dodecylsulfate Ion-Selective Sensor Based on Electrochemically Prepared Polypyrrole and PVC. Electroanalysis 2000, 12, 509–512. DOI: 10.1002/(SICI)1521-4109(200005)12:7 < 509::AID-ELAN509 > 3.0.CO;2-U.
  • Alizadeh, N.; Khodaei-Tazekendi, H. Linear Alkylbenzenesulfonate (LAS) Ion-Selective Electrode Based on Electrochemically Prepared Polypyrrole and PVC. Sens. Actuators B Chem. 2001, 75, 5–10. DOI: 10.1016/S0925-4005(00)00684-5.
  • Shafiee-Dastjerdi, L.; Alizadeh, N. Coated Wire Linear Alkylbenzenesulfonate Sensor Based on Polypyrrole and Improvement of the Selectivity Behavior. Anal. Chim. Acta 2004, 505, 195–200. DOI: 10.1016/j.aca.2003.10.062.
  • Kovács, B.; Csóka, B.; Nagy, G.; Ivaska, A. All-Solid-State Surfactant Sensing Electrode Using Conductive Polymer as Internal Electric Contact. Anal. Chim. Acta 2001, 437, 67–76. DOI: 10.1016/S0003-2670(01)00987-4.
  • Matysik, S.; Matysik, F. M.; Einicke, W. D. A Disposable Electrode Based on Zeolite-Polymer Membranes for Potentiometric Titrations of Ionic Surfactants. Sens. Actuators B Chem. 2002, 85, 104–108. DOI: 10.1016/S0925-4005(02)00060-6.
  • Rodríguez-Bravo, L. A.; Pardavé-Palomar, M.; Corona-Avendaño, S.; Romero-Romo, M.; Herrera-Hernández, H.; Ramírez-Silva, M. T.; Escarela-Pérez, R. Electrochemical and SPR Characterization of a Polypyrrole-Modified Carbon Paste Electrode Useful for the Potentiostatic Quantification of Surfactants. Int. J. Electrochem. Sci. 2011, 6, 2730–2745.
  • Mousavi, M. F.; Shamsipur, M.; Riahi, S.; Rahmanifar, M. S. Design of a New Dodecyl Sulfate-Selective Electrode Based on Conductive Polyaniline. Anal. Sci. 2002, 18, 137–140. DOI: 10.2116/analsci.18.137.
  • Karami, H.; Mousavi, M. F. Dodecyl Benzene Sulfonate Anion-Selective Electrode Based on Polyaniline-Coated Electrode. Talanta 2004, 63, 743–749. DOI: 10.1016/j.talanta.2003.12.025.
  • Sànchez, J.; del Valle, M. A New Potentiometric Photocurable Membrane Selective to Anionic Surfactants. Electroanalysis 2001, 13, 471–476. DOI: 10.1002/1521-4109(200104)13:6 < 471::AID-ELAN471 > 3.0.CO;2-1.
  • Sànchez, J.; del Valle, M. Photocurable ISFET for Anionic Surfactants. Monitoring of Photodegradation Processes. Talanta 2001, 54, 893–902. https://doi.org/10.1016/S0039-9140(01)00348-4. DOI: 10.1016/S0039-9140(01)00348-4.
  • Tam, K. C.; Wyn-Jones, E. Insights on Polymer Surfactant Complex Structures during the Binding of Surfactants to Polymers as Measured by Equilibrium and Structural Techniques. Chem. Soc. Rev. 2006, 35, 693–709. DOI: 10.1039/b415140m.
  • Khan, N.; Brettmann, B. Intermolecular Interactions in Polyelectrolyte and Surfactant Complexes in Solution. Polymers (Basel) 2018, 11, 51. DOI: 10.3390/polym11010051.
  • Sun, W.; Shen, Y.; Hao, J. Phase Behavior and Rheological Properties of Salt-Free Catanionic TTAOH/DA/H2O System in the Presence of Hydrophilic and Hydrophobic Salts. Langmuir 2011, 27, 1675–1682. DOI: 10.1021/la104181b.
  • Rizzatti, I. M.; Zanette, D. R.; Zanette, D. Construction of Surfactant-Membrane Electrodes Selective for Sodium Dodecyl Sulfate in Poly(Ethylene Oxide)-Surfactant Mixtures. J. Braz. Chem. Soc. 2004, 15, 491–495. DOI: 10.1590/S0103-50532004000400008.
  • Bixin, L.; Wanxu, W.; Yonghai, L. Quantitative Analysis of Nonionic/Anionic Surfactants Solution with Ion-Selective Electrode Method. China Surfactant Deterg. Cosmet. 2008, 38, 267–269.
  • Wang, R.; Yan, H.; Hu, W.; Li, Y.; Mei, Z. Micellization of Anionic Sulfonate Gemini Surfactants and Their Interactions with Anionic Polyacrylamide. J. Surfactants Deterg. 2018, 21, 81–90. DOI: 10.1002/jsde.12003.
  • Li, Y.; Xu, R.; Bloor, D. M.; Holzwarth, J. F.; Wyn-Jones, E. Binding of Sodium Dodecyl Sulfate to the ABA Block Copolymer Pluronic F127 (EO 97 PO 69 EO 97): An Electromotive Force, Microcalorimetry, and Light Scattering Investigation. Langmuir 2000, 16, 10515–10520. DOI: 10.1021/la000899y.
  • Thurn, T.; Couderc, S.; Sidhu, J.; Bloor, D. M.; Penfold, J.; Holzwarth, J. F.; Wyn-Jones, E. Study of Mixed Micelles and Interaction Parameters for ABA Triblock Copolymers of the Type EOm-POn-EOm and Ionic Surfactants: Equilibrium and Structure. Langmuir 2002, 18, 9267–9275. DOI: 10.1021/la020629a.
  • Mészáros, R.; Varga, I.; Gilányi, T. Effect of Polymer Molecular Weight on the Polymer/Surfactant Interaction. J. Phys. Chem. B 2005, 109, 13538–13544. DOI: 10.1021/jp051272x.
  • Li, Y.; Xu, R.; Couderc, S.; Ghoreishi, S. M.; Warr, J.; Bloor, D. M.; Holzwarth, J. F.; Wyn-Jones, E. Interactions between Sodium Dodecyl Sulfate and Six Nonionic Copolymers Containing 10 Mol % of Different Covalently Bonded Derivatives of Vinyl Acrylic Acid: Electromotive Force and Microcalorimetry Studies. Langmuir 2003, 19, 2026–2033. DOI: 10.1021/la0206155.
  • Dai, S.; Tam, K. C.; Wyn-Jones, E.; Jenkins, R. D. Isothermal Titration Calorimetric and Electromotive Force Studies on Binding Interactions of Hydrophobic Ethoxylated Urethane and Sodium Dodecyl Sulfate of Different Molecular Masses. J. Phys. Chem. B 2004, 108, 4979–4988. DOI: 10.1021/jp037144v.
  • Lee, J.; Moroi, Y. Solubilization of N-Alkylbenzenes in Aggregates of Sodium Dodecyl Sulfate and a Cationic Polymer of High Charge Density (II). Langmuir 2004, 20, 6116–6119. DOI: 10.1021/la030443r.
  • Nizri, G.; Lagerge, S.; Kamyshny, A.; Major, D. T.; Magdassi, S. Polymer-Surfactant Interactions: Binding Mechanism of Sodium Dodecyl Sulfate to Poly(Diallyldimethylammonium Chloride). J. Colloid Interface Sci. 2008, 320, 74–81. DOI: 10.1016/j.jcis.2008.01.016.
  • Thongngam, M.; McClements, D. J. Influence of PH, Ionic Strength, and Temperature on Self-Association and Interactions of Sodium Dodecyl Sulfate in the Absence and Presence of Chitosan. Langmuir 2005, 21, 79–86. DOI: 10.1021/la048711o.
  • Onesippe, C.; Lagerge, S. Study of the Complex Formation between Sodium Dodecyl Sulfate and Chitosan. Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 100–108. DOI: 10.1016/j.colsurfa.2007.10.002.
  • Mokus, M.; Kragh-Hansen, U.; Letellier, P.; Le Maire, M.; Møller, J. V. Construction and Use of a Detergent-Sensitive Electrode to Measure Dodecyl Sulfate Activity and Binding. Anal. Biochem. 1998, 264, 34–40. DOI: 10.1006/abio.1998.2810.
  • Onesippe, C.; Lagerge, S. Study of the Complex Formation between Sodium Dodecyl Sulphate and Gelatin. Colloids Surf. A Physicochem. Eng. Asp. 2009, 337, 61–66. DOI: 10.1016/j.colsurfa.2008.11.057.
  • López-López, M.; Bernal, E.; Moyá, M. L.; Sanchez, F.; López-Cornejo, P. Study of Ionic Surfactants Interactions with Carboxylated Single-Walled Carbon Nanotubes by Using Ion-Selective Electrodes. Electrochem. Commun. 2016, 67, 31–34. DOI: 10.1016/j.elecom.2016.03.010.
  • Khaled, E.; Hassan, H. N. A.; Abdelaziz, M. A.; El-Attar, R. O. Novel Enzymatic Potentiometric Approaches for Surfactant Analysis. Electroanalysis 2017, 29, 716–721. DOI: 10.1002/elan.201600565.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.