1,035
Views
11
CrossRef citations to date
0
Altmetric
Review Article

Evolution and Evaluation of GC Columns

, , ORCID Icon, & ORCID Icon
Pages 150-173 | Published online: 10 Dec 2019

References

  • Engelhardt, H. One Century of Liquid Chromatography: From Tswett’s Columns to Modern High Speed and High Performance Separations. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 800, 3–6. doi:10.1016/j.jchromb.2003.09.064.
  • Wang, Z.; Jocelyn Paré, J. R. Chapter 3 Gas Chromatography (GC): Principles and Applications. Tech. Instrum. Anal. Chem. 1997, 18, 61–91. doi:10.1016/S0167-9244(9780012-1.
  • Liang, X.; Hou, X.; Chan, J. H. M.; Guo, Y.; Hilder, E. F. The Application of Graphene-Based Materials as Chromatographic Stationary Phases. TrAC - Trends Anal. Chem. 2018, 98, 149–160. doi:10.1016/j.trac.2017.11.008.
  • Larson, P. Column Technology in Gas Chromatography. Encycl. Anal. Chem. 2006, 1–10. doi: https://doi.org/10.1002/9780470027318.a5502.
  • Palmer, L. S. Carotinoids and Related Pigments; Chemical Catalog Co.: New York, 1922.
  • Kuhn, R.; Winterstein, A.; Lederer, E. Zur Kenntnis Der Xanthophylle. Hoppe. Seylers. Z. Physiol. Chem. 1931, 197, 141–160. doi:10.1515/bchm2.1931.197.1-4.141.
  • Ettre, L. S. The Development of Chromatography. Anal. Chem. 1971, 43, 20A–31A. doi:10.1021/ac60308a022.
  • Cremer, E. The Story of Adsorption Chromatography. J. High Resol. Chromatogr. 1979, 2, 7. doi:10.1002/jhrc.1240020105.
  • Martin, A. J. P.; Synge, R. L. M. A New Form of Chromatogram Employing Two Liquid Phases: A Theory of Chromatography. Biochem. J. 1941, 35, 1358–1368. doi:10.1042/bj0351358.
  • A. T.; James; Martin, A. J. P. Gas-Liquid Partition Chromatography: The Separation and Micro-Estimation of Volatile Fatty Acids from Formic Acid to. Dodecanoic Acid. Biochem. J. 1952, 50, 679–690. doi:10.1042/bj0500679.
  • Zechmeister, L. Early History of Chromatography. Nature 1951, 168, 1039–1040. doi:10.1038/167405a0.
  • Zechmeister, L.; Cholnoky, L. v. Dreit3ig Jahre Chromatographie. Monat. Chem. - Chem. Mon. 1936, 68, 68–80.
  • Wu, N.; Tang, Q.; Shen, Y.; Lee, M. L. Porous and Nonporous Particles in Packed Capillary Column Solvating Gas Chromatography. Anal. Chem. 1999, 71, 5084–5092. doi:10.1021/ac990650p.
  • Ettre, L. S. M. J. E. Golay and the Invention of Open-Tubular (Capillary) Columns. J. High Resol. Chromatogr. 1987, 10, 221–230. doi:10.1002/jhrc.1240100503.
  • Ross, W. D.; Jefferson, R. T. In Situ-Formed Open-Pore Polyurethane as Chromatography Supports. J. Chromatogr. Sci. 1970, 8, 386–389. doi:10.1093/chromsci/8.7.386.
  • Sykora, D.; Peters, E. C.; Svec, F.; Fréchet, J. M. Molded Porous Polymer Monoliths: A Novel Format for Capillary Gas Chromatography Stationary Phases. Macromol. Mater. Eng. 2000, 47, 42–47. doi:10.1002/(SICI)1439-2054(20000201)275:1<42::AID-MAME42>3.0.CO;2-X.
  • Kurganov, A. Monolithic Column in Gas Chromatography. Anal. Chim. Acta 2013, 775, 25–40. doi:10.1016/j.aca.2013.02.039.
  • Ettre, L. S.; Engineering, C.; Haven, N. Three Early Symposia Showing the Direction for the Evolution of Gas Chromatography. LC GC Eur. 2003, 16, 346–353.
  • Ettre, L. S. Evolution of Capillary Columns for Gas Chromatography. LC GC N. Am. 2001, 19, 48–59.
  • Packwood, S. Resolution-Definition and Nomenclature. J. High Resolut. Chromatogr 1989, 12, 82–86.
  • Alexander, G. Preparation of Glass Capillary Columns. Chromatographia 1980, 13, 651–660. doi:10.1007/BF02302470.
  • Desty, D. H.; Haresnape, J. N.; Whyman, B. H. F. Construction of Long Lengths of Coiled Glass Capillary. Anal. Chem. 1960, 32, 302–304. doi:10.1021/ac60158a057.
  • Alexander, G.; Rutten, G. A. F. M. Surface Characteristics of Treated Glasses for the Preparation of Glass Capillary Columns in Gas-Liquid Chromatography. J. Chromatogr. 1974, 7, 122–127. doi: 10.1007/BF02269822.
  • Halász, T.; Horváth, C. Thin- Layer Graphited Carbon Black as the Stationary Phase for Capillary Columns in Gas Chromatography. Nature 1963, 197, 71. doi:10.1038/197071a0.
  • Samsonov, Y. N. Potentiality of Optical Diffraction Grating Technology in the Fabrication of Miniaturized Multicapillary Chromatographic and Electrophoresis Columns. J. Chromatogr. Sci. 2001, 39, 445–449. doi:10.1093/chromsci/39.10.445.
  • Golay, M. J. E. Opening Address. Chromatographia 1975, 8, 421–428. doi:10.1007/BF02267576.
  • Janik, A. Multicapillary Columns. J. Chromatogr. Sci. 1976, 14, 589–589. doi:10.1093/chromsci/14.12.589.
  • Łobiński, R.; Sidelnikov, V.; Patrushev, Y.; Rodriguez, I.; Wasik, A. Multicapillary Column Gas Chromatography with Element-Selective Detection. Trends Anal. Chem. 1999, 18, 449–460.
  • Dandeneau, R. D.; Zerenner, E. H. An Investigation of Glasses for Capillary Chromatography. J. High Resol. Chromatogr. 1979, 2, 351–356. doi:10.1002/jhrc.1240020617.
  • Lee, M. L.; Kong, R. C.; Woolley, C. L.; Bradshaw, J. S. Fused Silica Capillary Column Technology for Gas Chromatography. J. Chromatogr. Sci. 1984, 22, 136–142. doi:10.1093/chromsci/22.4.136.
  • Lipsky (Deceased), S. R.; Duffy, M. L. High Temperature Gas Chromatography: The Development of New Aluminum Clad Flexible Fused Silica Glass Capillary Columns Coated with Thermostable Nonpolar Phases: Part 2. J. High Resol. Chromatogr. 1986, 9, 725–730. doi:10.1002/jhrc.1240091203.
  • Dorman, F. L.; Dawes, P. Column Technology: Open Tubular Columns; Elsevier Inc.: New York, 2012. doi: https://doi.org/10.1016/B978-0-12-385540-4.00003-1.
  • Markides, K. E.; Tarbet, J.; Schregenberger, C. M.; Bradshaw, J. S.; Lee, M. L.; Bartle, K. D. Deactivation of Fused Silica Capillary Columns with Cyanopropylhydrosiloxanes. J. High Resol. Chromatogr. 1985, 8, 741–747. doi:10.1002/jhrc.1240081109.
  • Woolley, C. L.; Kong, R. C.; Richter, B. E.; Lee, M. L. Deactivation of Fused Silica Capillary Columns with Polymethylhydrosiloxaness. J. High Resol. Chromatogr. 1984, 7, 329–332. doi:10.1002/jhrc.1240070608.
  • Lipsky, S. R.; McMurray, W. J.; Hernandez, M.; Purcell, J. E.; Billeb, K. A. Fused Silica Glass Capillary Columns for Gas Chromatographic Analyses. J. Chromatogr. Sci. 1980, 18, 1–9. doi:10.1093/chromsci/18.1.1.
  • Bouche, J.; Verzele, M. A Static Coating Procedure for Glass Capillary Columns. J. Chromatogr. Sci. 1968, 6, 501. doi:10.1093/chromsci/6.10.501.
  • Grob, K. Film Thickness Required of the Stationary Phase in the Separation Column When Using Large Retention Gaps in Capillary Gas Chromatography. J. Chromatogr. A 1985, 328, 55–61. doi:10.1016/S0021-9673(01)87376-3.
  • Nikelly, J. G. Preparation of Porous Layer Open Tubular Columns by the Dynamic Method. Anal. Chem. 1972, 44, 623–625. doi:10.1021/ac60311a041.
  • Dorman, F. L.; Dawes, P. Column Technology: Open Tubular Columns. In Gas Chromatography; Poole, C.F., Ed.; Elsevier: New York, 2012, pp 79–96. doi: https://doi.org/10.1016/B978-0-12-385540-4.00003-1.
  • Poole, C. F. Gas Chromatography. Column Technology. Elsevier: Amsterdam, 2013. doi: https://doi.org/10.1016/B978-0-12-409547-2.00206-7.
  • Grob, K.; Grob, G. New Approach to Capillary Columns for Gas Chromatography? Condensation of Hydroxyl-Terminated Stationary Phases. J. Chromatogr. 1985, 347, 351–356. doi:10.1016/S0021-9673(01)95504-9.
  • Madani, C.; Chambaz, E. M.; Rigaud, M.; Durand, J.; Chebroux, P. New Method for the Preparation of Highly Stable Polysiloxane-Coated Glass Open-Tubular Capillary Columns and Application to the Analysis of Hormonal Steroids. J. Chromatogr. 1976, 126, 161–169.
  • Lipsky, S. R.; Mcmurray, W. J. Role of Surface Groups in Affecting the Chromatographic Performance of Certain Types of Fused-Silica Glass Capillary Column. J. Chromatogr. 1984, 289, 129–142. doi:10.1016/S0021-9673(00)95082-9.
  • Grushka, E.; Kikta, E. J. Chemically Bonded Stationary Phases in Chromatography. Anal. Chem. 1977, 49, 1004A–10044. doi:10.1021/ac50020a727.
  • Holm, T. Aspects of the Mechanism of the Flame Ionization Detector. J. Chromatogr. A 1999, 842, 221–227. doi:10.1016/S0021-9673(98)00706-7.
  • Wu, Y. E.; Chen, K.; Chen, C. W.; Hsu, K. H. Fabrication and Characterization of Thermal Conductivity Detectors (TCDs) of Different Flow Channel and Heater Designs. Sensors Actuators A Phys. 2002, 100, 37–45. doi:10.1016/S0924-4247(02)00144-9.
  • Bocos-Bintintan, V.; Smolenschi, A.; Ratiu, I.-A. Rapid Determination of Indoor Air Contaminants in Shoe Shops Using Photoionization Detectors. Stud. Univ. Babes-Bolyai Chem. 2016, 61, 203–212.
  • Bocos-Bintintan, V.; Ratiu, I. A.; Al-Suod, H. Real Time Monitoring of Soil Contamination with Diesel Fuel Using Photoionization Detectors. Arab J. Basic Appl. Sci. 2019, 26, 446–452. doi:10.1080/25765299.2019.1670464.
  • Dettmer-Wilde, K.; Engewald, W. Practical Gas Chromatography: A Comprehensive Reference; Springer: Berlin, 2014, doi: 10.1007/978-3-642-54640-2.
  • Ghira, G. B.; Raţiu, I. A.; Bocoş-Binţinţan, V. Fast Characterization of Pyridine Using Ion Mobility Spectrometry and Photoionization Detection. Environ. Eng. Manag. J. 2013, 12, 251–256. doi:10.30638/eemj.2013.029.
  • Moll, V.; Bocoş-Binţinţan, V.; Raţiu, I. A.; Ruszkiewicz, D.; Thomas, C. L. P. Control of Dopants/Modifiers in Differential Mobility Spectrometry Using a Piezoelectric Injector. Analyst 2012, 137, 1458–1465. doi:10.1039/c2an16109e.
  • Ratiu, I.-A.; Bocos-Bintintan, V.; Monedeiro, F.; Milanowski, M.; Ligor, T.; Buszewski, B. An Optimistic Vision of Future: Diagnosis of Bacterial Infections by Sensing Their Associated Volatile Organic Compounds. Crit. Rev. Anal. Chem. 2019, 0, 1–12. doi:10.1080/10408347.2019.1663147.
  • Bocos-Bintintan, V.; Thomas, C. L. P.; Ratiu, I. A. Sensors’ Array of Aspiration Ion Mobility Spectrometer as a Tool for Bacteria Discrimination. Talanta 2020, 206, 120233. doi:10.1016/j.talanta.2019.120233.
  • Gohlke, R. S. Time-of-Flight Mass Spectrometry and Gas-Liquid Partition Chromatography. Anal. Chem. 1959, 31, 535–541. doi:10.1021/ac50164a024.
  • Ryhage, R. Use of a Mass Spectrometer as a Detector and Analyzer for Effluents Emerging from High Temperature Gas Liquid Chromatography Columns. Anal. Chem. 1964, 36, 759–764. doi:10.1021/ac60210a019.
  • Hites, R. A. Development of Gas Chromatographic Mass Spectrometry. Anal. Chem. 2016, 88, 6955–6961. doi:10.1021/acs.analchem.6b01628.
  • Sandra, P. Resolution Column Efficiency. J. High Resol. Chromatogr. 1989, 281, 273–277. doi:10.1002/jhrc.1240120503.
  • Rahman, M. M.; Abd El-Aty, A. M.; Choi, J.-H.; Shin, H.-C.; Shin, S. C.; Shim, J.-H. Basic Overview on Gas Chromatography Columns. In Analytical Separation Science; Wiley: Berlin, 2015, pp 823–834. doi: https://doi.org/10.1002/9783527678129.assep024.
  • Grob, K.; Grob, G. Practical Capillary Gas Chromatography—A Systematic Approach. J. High Resol. Chromatogr. 1979, 2, 109–117. doi:10.1002/jhrc.1240020303.
  • Carev, N. I.; Carev, V. I.; Katrakov, I. B. Практическая Газовая Хроматография 2000.
  • van Deemter, J. J.; Zuiderweg, F. J.; Klinkenberg, A. Longitudinal Diffusion and Resistance to Mass Transfer Nonideality in Chromatography. Chem. Eng. Sci. 1956, 5, 271–289. doi:10.1016/0009-2509(56)80003-1.
  • Golay, M. J. E. Theory of Chromatography in Open and Coated Tubular Columns with Round and Rectangular Cross-Sections. In Gas Chromatography, Amsterdam symposium Proc. 1958, Butterworths: London, 1958.
  • Kaiser, R. Neuere Ergebnisse Zur Anwendung Der Gras-Chromatographie. Z. Anal. Chem. 1962, 189, 1–14. doi:10.1007/BF00489684.
  • Abraham, M. H.; Poole, C. F.; Poole, S. K. Classification of Stationary Phases and Other Materials by Gas Chromatography. J. Chromatogr. A 1999, 842, 79–114. doi:10.1016/S0021-9673(98)00930-3.
  • Rajkó, R.; Körtvélyesi, T.; Sebők-Nagy, K.; Görgényi, M. Theoretical Characterization of McReynolds’ Constants. Anal. Chim. Acta 2005, 554, 163–171. doi:10.1016/j.aca.2005.08.024.
  • Körtvélyesi, T.; Görgényi, M.; Héberger, K. Correlation between Retention Indices and Quantum-Chemical Descriptors of Ketones and Aldehydes on Stationary Phases of Different Polarity. Anal. Chim. Acta 2001, 428, 73–82. doi:10.1016/S0003-2670(00)01220-4.
  • Castello, G.; D'Amato, G.; Vezzani, S. Evaluation of the Polarity of Packed and Capillary Columns by Different Classification Methods. J. Chromatogr. A 1993, 646, 361–368. doi:10.1016/0021-9673(93)83349-W.
  • Snyder, L. R. Classification of the Solvent Properties of Common Liquids. J. Chromatogr. 1974, 92, 223–230. doi:10.1016/S0021-9673(00)85732-5.
  • McReynolds, W. O. Characterization of Some Liquid Phases. J. Chromatogr. Sci. 1970, 8, 685–691. doi:10.1093/chromsci/8.12.685.
  • G.; Tarjan, A.; Kiss, G.; Kocsis, S. M.; J. M. T. General Contribution to the Theory of Retention Index Systems in Gas-Liquid Chromatography. J. Chromatogr. 1976, 119, 327–332. doi:10.1016/S0021-9673(00)86796-5.
  • Rohrschneider, L. Eine Methode Zur Chrakterisierung Von Gaschromatographischen Trennflüssigkeiten. J. Chromatogr. A 1966, 22, 6–22. doi:10.1016/S0021-9673(01)97064-5.
  • Haken, J. K. Polysiloxane Stationary Phases in Gas Chromatography. J. Chromatogr. A 1977, 141, 247–288. doi:10.1016/S0021-9673(00)93536-2.
  • Rouquerol, J.; Avnir, D.; Fairbridge, C. W.; Everett, D. H.; Haynes, J. M.; Pernicone, N.; Ramsay, J. D. F.; Sing, K. S. W.; Unger, K. K. Reccomendations for the Characterization of Porous Solids. Pure Appl. Chem. 1994, 66, 1739–1758. doi:10.1351/pac199466081739.
  • Xie, S. M.; Yuan, L. M. Recent Progress of Chiral Stationary Phases for Separation of Enantiomers in Gas Chromatography. J. Sep. Sci. 2017, 40, 124–137. doi:10.1002/jssc.201600808.
  • Gil-Av, E.; Feibush, B.; Charles-Sigler, R. Separation of Enantiomers by Gas Liquid Chromatography with an Optically Active Stationary Phase. Tetrahedron Lett. 1966, 7, 1009–1015. doi:10.1016/S0040-4039(00)70231-0.
  • Patil, R. A.; Weatherly, C. A.; Armstrong, D. W. Chiral Gas Chromatography, 3rd ed.; Elsevier B.V: Germany, 2018. doi: 10.1016/B978-0-444-64027-7.00012-4.
  • Frank, H.; Nicholson, G. J.; Bayer, E. Rapid Gas Chromatographic Separation of Amino Acid Enantiomers with a Novel Chiral Stationary Phase. J. Chromatogr. Sci. 1977, 15, 174–176. doi:10.1093/chromsci/15.5.174.
  • Schurig, V.; Betschinger, F. Metal-Mediated Enantioselective Access to Unfunctionalized Aliphatic Oxiranes: Prochiral and Chiral Recognition. Chem. Rev. 1992, 92, 873–888. doi:10.1021/cr00013a006.
  • Li, W. Y.; Jin, H. L.; Armstrong, D. W. 2,6-Di-O-Pentyl-3-O-Trifluoroacetyl Cyclodextrin Liquid Stationary Phases for Capillary Gas Chromatographic Separation of Enantiomers. J. Chromatogr. A 1990, 509, 303–324. doi:10.1016/S0021-9673(01)93089-4.
  • Gus’kov, V. Y.; Maistrenko, V. N. New Chiral Stationary Phases: Preparation, Properties, and Applications in Gas Chromatography. J. Anal. Chem. 2018, 73, 937–945. doi:10.1134/S1061934818100027.
  • Kewley, A.; Stephenson, A.; Chen, L.; Briggs, M. E.; Hasell, T.; Cooper, A. I. Porous Organic Cages for Gas Chromatography Separations. Chem. Mater. 2015, 27, 3207–3210. doi:10.1021/acs.chemmater.5b01112.
  • Xie, S. M.; Zhang, Z. J.; Wang, Z. Y.; Yuan, L. M. Chiral Metal-Organic Frameworks for High-Resolution Gas Chromatographic Separations. J. Am. Chem. Soc. 2011, 133, 11892–11895. doi:10.1021/ja2044453.
  • Yuan, L. M.; Zhou, Y.; Zhang, Y. H.; Zi, M.; Chang, Y. X.; Xu, Z. G.; Ren, C. X. Cellulose Derivatives Used as Chiral Stationary Phases in Capillary Gas Chromatography. Anal. Lett. 2006, 39, 173–182. doi:10.1080/00032710500424755.
  • Kimaru, I. W.; Morris, L.; Vassiliou, J.; Savage, N. Synthesis and Evaluation of L-Phenylalanine Ester-Based Chiral Ionic Liquids for GC Stationary Phase Ability. J. Mol. Liq. 2017, 237, 193–200. doi:10.1016/j.molliq.2017.04.079.
  • Grob, K. J.; Grob, G.; Grob, K. Comprehensive, Standardized Quality Test for Glass Capillary Columns. J. Chromatogr. 1978, 156, 1–20. doi:10.1016/S0021-9673(00)83120-9.
  • Luong, J.; Gras, R.; Jennings, W. An Advanced Solventless Column Test for Capillary GC Columns. J. Sep. Sci. 2007, 30, 2480–2492. doi:10.1002/jssc.200700131.
  • Kovats, E. Gas-Chromatographische Charakterisierung Organischer Verbindung En Teil 1 : Retentionsindices Aliphatischer Halogenide, Alkohole, Aldehyde Und Ketone. Helv. Chim. Acta 1958, 41, 1915–1932.
  • De Lacy Costello, B.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N. M. A Review of the Volatiles from the Healthy Human Body. J. Breath Res. 2014, 8, 014001. doi: https://doi.org/10.1088/1752-7155/8/1/014001. doi:10.1088/1752-7155/8/1/014001.
  • Ratiu, I. A.; Ligor, T.; Bocos-Bintintan, V.; Buszewski, B. Mass Spectrometric Techniques for the Analysis of Volatile Organic Compounds Emitted from Bacteria. Bioanalysis 2017, 9, 1069–1092. doi:10.4155/bio-2017-0051.
  • Ratiu, I.-A.; Ligor, T.; Bocos-Bintintan, V.; Szeliga, J.; Machała, K.; Jackowski, M.; Buszewski, B. GC-MS Application in Determination of Volatile Profiles Emitted by Infected and Uninfected Human Tissue. J. Breath Res. 2019, 13, 026003. doi:10.1088/1752-7163/aaf708.
  • Ratiu, I. A.; Bocos-Bintintan, V.; Patrut, A.; Moll, V. H.; Turner, M.; Thomas, C. L. P. Discrimination of Bacteria by Rapid Sensing Their Metabolic Volatiles Using an Aspiration-Type Ion Mobility Spectrometer (a-IMS) and Gas Chromatography-Mass Spectrometry GC-MS. Anal. Chim. Acta 2017, 982, 209–217. doi:10.1016/j.aca.2017.06.031.
  • Fuchs, P.; Loeseken, C.; Schubert, J. K.; Miekisch, W. Breath Gas Aldehydes as Biomarkers of Lung Cancer. Int. J. Cancer 2010, 126, 2663–2670. doi:10.1002/ijc.24970.
  • Song, G.; Qin, T.; Liu, H.; Xu, G. B.; Pan, Y. Y.; Xiong, F. X.; Gu, K. S.; Sun, G. P.; Chen, Z. D. Quantitative Breath Analysis of Volatile Organic Compounds of Lung Cancer Patients. Lung Cancer 2010, 67, 227–231. doi:10.1016/j.lungcan.2009.03.029.
  • Gaspar, E. M.; Lucena, A. F.; Duro da Costa, J.; Chaves das Neves, H. Organic Metabolites in Exhaled Human Breath-A Multivariate Approach for Identification of Biomarkers in Lung Disorders. J. Chromatogr. A 2009, 1216, 2749–2756. doi:10.1016/j.chroma.2008.10.125.
  • Jia, Z.; Zhang, H.; Ong, C. N.; Patra, A.; Lu, Y.; Lim, C. T.; Venkatesan, T. Detection of Lung Cancer : Concomitant Volatile Organic Compounds and Metabolomic Profiling of Six Cancer Cell Lines of Different Histological Origins. ACS Omega 2018, 3, 5131–5140. doi:10.1021/acsomega.7b02035.
  • Ma, H.; Li, X.; Chen, J.; Wang, H.; Cheng, T.; Chen, K.; Xu, S. Analysis of Human Breath Samples of Lung Cancer Patients and Healthy Controls with Solid-Phase Microextraction (SPME) and Flow-Modulated Comprehensive Two-Dimensional Gas Chromatography (GC × GC). Anal. Methods 2014, 6, 6841–6849. doi:10.1039/C4AY01220H.
  • Tong, H.; Wang, Y.; Li, Y.; Liu, S.; Chi, C.; Liu, D.; Guo, L.; Li, E.; Wang, C. Volatile Organic Metabolites Identify Patients with Gastric Carcinoma, Gastric Ulcer, or Gastritis and Control Patients. Cancer Cell Int. 2017, 17, 1–9. doi:10.1186/s12935-017-0475-x.
  • Wang, C.; Ke, C.; Wang, X.; Chi, C.; Guo, L.; Luo, S.; Guo, Z.; Xu, G.; Zhang, F.; Li, E. Noninvasive Detection of Colorectal Cancer by Analysis of Exhaled Breath. Anal. Bioanal. Chem. 2014, 406, 4757–4763. doi:10.1007/s00216-014-7865-x.
  • Wang, C.; Li, P.; Lian, A.; Sun, B.; Wang, X.; Guo, L.; Chi, C.; Liu, S.; Zhao, W.; Luo, S.; et al. Blood Volatile Compounds as Biomarkers for Colorectal Cancer. Cancer Biol. Ther. 2014, 15, 200–206. doi:10.4161/cbt.26723.
  • Peng, G.; Hakim, M.; Broza, Y. Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of Lung, Breast, Colorectal, and Prostate Cancers from Exhaled Breath Using a Single Array of Nanosensors. Br. J. Cancer 2010, 103, 542–551. doi:10.1038/sj.bjc.6605810.
  • Gao, Q.; Su, X.; Annabi, M. H.; Schreiter, B. R.; Prince, T.; Ackerman, A.; Morgas, S.; Mata, V.; Williams, H.; Lee, W.-Y. Application of Urinary Volatile Organic Compounds (VOCs) for the Diagnosis of Prostate Cancer. Clin. Genitourin. Cancer 2019, 17, 183–190. doi: 10.1016/j.clgc.2019.02.003.
  • Wang, C.; Sun, B.; Guo, L.; Wang, X.; Ke, C.; Liu, S.; Zhao, W.; Luo, S.; Guo, Z.; Zhang, Y. Volatile Organic Metabolites Identify Patients with Breast Cancer, Cyclomastopathy, and Mammary Gland Fibroma. Sci. Rep. 2014, 4, 5383. doi: 10.1038/srep05383.
  • Barash, O.; Zhang, W.; Halpern, J. M.; Hua, Q.-L.; Pan, Y.-Y.; Kayal, H.; Khoury, K.; Liu, H.; Davies, M. P. A.; Haick, H. Differentiation between Genetic Mutations of Breast Cancer by Breath Volatolomics. Oncotarget 2015, 6, 3–5. doi:10.18632/oncotarget.6269.
  • Porto-Figueira, P.; Pereira, J.; Miekisch, W.; Câmara, J. S. Exploring the Potential of NTME/GC-MS, in the Establishment of Urinary Volatomic Profiles. Lung Cancer Patients as Case Study. Sci. Rep. 2018, 8, 1–11. doi: 10.1038/s41598-018-31380-y.
  • Altomare, D. F.; Di Lena, M.; Porcelli, F.; Trizio, L.; Travaglio, E.; Tutino, M.; Dragonieri, S.; Memeo, V.; De Gennaro, G. Exhaled Volatile Organic Compounds Identify Patients with Colorectal Cancer. Br. J. Surg. 2013, 100, 144–150. doi:10.1002/bjs.8942.
  • Silva, C. L.; Passos, M.; Câmara, J. S. Investigation of Urinary Volatile Organic Metabolites as Potential Cancer Biomarkers by Solid-Phase Microextraction in Combination with Gas Chromatography-Mass Spectrometry. Br. J. Cancer 2011, 105, 1894–1904. doi:10.1038/bjc.2011.437.
  • Jiménez-Pacheco, A.; Salinero-Bachiller, M.; Iribar, M. C.; López-Luque, A.; Miján-Ortiz, J. L.; Peinado, J. M. Furan and P-Xylene as Candidate Biomarkers for Prostate Cancer. Urol. Oncol. Semin. Orig. Investig. 2018, 36, 243.e21–243.e27. doi:10.1016/j.urolonc.2017.12.026.
  • Silva, C. L.; Passos, M.; Câmara, J. S. Solid Phase Microextraction, Mass Spectrometry and Metabolomic Approaches for Detection of Potential Urinary Cancer Biomarkers - A Powerful Strategy for Breast Cancer Diagnosis. Talanta 2012, 89, 360–368. doi:10.1016/j.talanta.2011.12.041.
  • Chen, Y.; Zhang, Y.; Pan, F.; Liu, J.; Wang, K.; Zhang, C.; Cheng, S.; Lu, L.; Zhang, W.; Zhang, Z.; et al. Breath Analysis Based on Surface-Enhanced Raman Scattering Sensors Distinguishes Early and Advanced Gastric Cancer Patients from Healthy Persons. ACS Nano 2016, 10, 8169–8179. doi:10.1021/acsnano.6b01441.
  • Chin, S. T.; Romano, A.; Doran, S. L. F.; Hanna, G. B. Cross-Platform Mass Spectrometry Annotation in Breathomics of Oesophageal-Gastric Cancer. Sci. Rep. 2018, 8, 1–10. doi: 10.1038/s41598-018-22890-w.
  • Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J. Variation in Volatile Organic Compounds in the Breath of Normal Humans. J. Chromatogr. B. 1999, 729, 75–88. doi:10.1016/S0378-4347(99)00127-9.
  • Li, J.; Peng, Y.; Liu, Y.; Li, W.; Jin, Y.; Tang, Z.; Duan, Y. Investigation of Potential Breath Biomarkers for the Early Diagnosis of Breast Cancer Using Gas Chromatography-Mass Spectrometry. Clin. Chim. Acta 2014, 436, 59–67. doi:10.1016/j.cca.2014.04.030.
  • Ji, Z.; Majors, R. E.; Guthrie, E. J. Porous Layer Open-Tubular Capillary Columns: Preparations, Applications and Future Directions. J. Chromatogr. A 1999, 842, 115–142. doi:10.1016/S0021-9673(99)00126-0.
  • J.; De Zeeuw, R. C. M.; De Nijs, J. C.; Buyten, J. A.; Peene, M.; Mohnke, J. PoraPLOT Q: A Porous Layer Open Tubular Column Coated with Styrene-Divinylbenzene Copolymer. J. High Resol. Chromatogr. 1988, 11, 162. doi:10.1002/jhrc.1240110204.
  • Hollis, L.; Hayes, W. V.; Dow, T.; Company, C. Water Analysis by Gas Chromatography Using Porous Polymer Columns. J. Gas Chromatogr. 1966, 4, 235–239.
  • Poole, C. F. Gas-Solid Chromatography (PLOT Columns). In Gas Chromatography. Elsevier: Oxford, 2012, pp. 123–136. doi: 10.1016/B978-0-12-385540-4.00005-5.
  • Rudnicka, J.; Kowalkowski, T.; Buszewski, B. Searching for Selected VOCs in Human Breath Samples as Potential Markers of Lung Cancer. Lung Cancer 2019, 135, 123. doi:10.1016/j.lungcan.2019.02.012.
  • Mochalski, P.; Leja, M.; Gasenko, E.; Skapars, R.; Santare, D.; Sivins, A.; Aronsson, D. E.; Ager, C.; Jaeschke, C.; Shani, G.; et al. Ex Vivo Emission of Volatile Organic Compounds from Gastric Cancer and Non-Cancerous Tissue. J. Breath Res. 2013, 12, 046005. doi:10.1088/1752-7163/aacbfb.
  • Te-Hsuen, T.; Chun-Yen, K.; San-Yuan, W.; Po-Kai, H.; Yen-Ming, H.; Wei-Che, H.; Yu-Jie, H.; Po-Hung, K.; Shih-An, Y.; Si-Chen, L. A Portable Micro Gas Chromatography System for Lung Cancer Associated Volatile Organic Compound Detection. IEEE J. Solid-State Circuits 2016, 51, 259–272. doi: 10.1109/JSSC.2015.2489839.
  • Bajtarevic, A.; Ager, C.; Pienz, M.; Klieber, M.; Schwarz, K.; Ligor, M.; Ligor, T.; Filipiak, W.; Denz, H.; Fiegl, M.; et al. Noninvasive Detection of Lung Cancer by Analysis of Exhaled Breath. BMC Cancer, 2009, 9, 348. doi:10.1186/1471-2407-9-348.
  • Rudnicka, J.; Kowalkowski, T.; Ligor, T.; Buszewski, B. Determination of Volatile Organic Compounds as Biomarkers of Lung Cancer by SPME-GC-TOF/MS and Chemometrics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2011, 879, 3360–3366. doi:10.1016/j.jchromb.2011.09.001.
  • Oguma, T.; Nagaoka, T.; Kurahashi, M.; Kobayashi, N.; Yamamori, S.; Tsuji, C.; Takiguchi, H.; Niimi, K.; Tomomatsu, H.; Tomomatsu, K.; et al. Clinical Contributions of Exhaled Volatile Organic Compounds in the Diagnosis of Lung Cancer. PLoS One, 2017, 12, 1–10. doi:10.1371/journal.pone.0174802.
  • Buszewski, B.; Ligor, T.; Jezierski, T.; Wenda-Piesik, A.; Walczak, M.; Rudnicka, J. Identification of Volatile Lung Cancer Markers by Gas Chromatography-Mass Spectrometry: Comparison with Discrimination by Canines. Anal. Bioanal. Chem., 2012, 404, 141–146. doi:10.1007/s00216-012-6102-8.
  • Hanai, Y.; Shimono, K.; Matsumura, K.; Vachani, A.; Albelda, S.; Yamazaki, K.; Beauchamp, GK.; Oka, H. Urinary Volatile Compounds as Biomarkers for Lung Cancer. Biosci. Biotechnol. Biochem., 2012, 76, 679–684. doi:10.1271/bbb.110760.
  • Arasaradnam, R. P.; Mcfarlane, M. J.; Ryan-Fisher, C.; Westenbrink, E.; Hodges, P.; Thomas, M. G.; Chambers, S.; O’Connell, N.; Bailey, C.; Harmston, C.; et al. Detection of Colorectal Cancer (CRC) by Urinary Volatile Organic Compound Analysis. PLoS One, 2014, 9 (9). doi:10.1371/journal.pone.0108750.
  • Khalid, T.; Aggio, R.; White, P.; De Lacy Costello, B.; Persad, R.; Al-Kateb, H.; Jones, P.; Probert, C. S.; Ratcliffe, N. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer. PLoS One, 2015, 10, 1–15. doi:10.1371/journal.pone.0143283.
  • Huang, Y.; Li, Y.; Luo, Z.; Duan, Y. Investigation of Biomarkers for Discriminating Breast Cancer Cell Lines from Normal Mammary Cell Lines Based on VOCs Analysis and Metabolomics. RSC Adv., 2016, 6, 41816–41824. doi:10.1039/C6RA03238A.
  • Terry, S. C.; Jerman, J. H.; Angell, J. B. A Gas Chromatographic Air Analyzer Fabricated. IEEE Trans. Electron Devices 1979, 26, 1880–1886. doi:10.1109/T-ED.1979.19791.
  • Ghosh, A.; Vilorio, C. R.; Hawkins, A. R.; Lee, M. L. Microchip Gas Chromatography Columns, Interfacing and Performance. Talanta 2018, 188, 463–492. doi:10.1016/j.talanta.2018.04.088.
  • Lewis, A. C.; Hamilton, J. F.; Rhodes, C. N.; Halliday, J.; Bartle, K. D.; Homewood, P.; Grenfell, R. J. P.; Goody, B.; Harling, A. M.; Brewer, P.; et al. Microfabricated Planar Glass Gas Chromatography with Photoionization Detection. J. Chromatogr. A. 2010, 1217, 768–774. doi:10.1016/j.chroma.2009.12.009.
  • Yan, Y.; Jin, Y.; Miao, M.; Tang, X.; Liu, H.; Lu, H.; Fang, R.; Zhang, Y. Design, Fabrication, and Performance Characterization of LTCC-Based Capacitive Accelerometers. Micromachines 2018, 9, 120. doi:10.3390/mi9030120.
  • Ghosh, A.; Foster, A. R.; Johnson, J. C.; Vilorio, C. R.; Tolley, L. T.; Iverson, B. D.; Hawkins, A. R.; Tolley, H. D.; Lee, M. L. Stainless-Steel Column for Robust, High-Temperature Microchip Gas Chromatography. Anal. Chem. 2019, 91, 792–796. doi:10.1021/acs.analchem.8b04174.
  • MacNaughton, S. I.; Sonkusale, S. Gas Analysis System on Chip with Integrated Diverse Nanomaterial Sensor Array. IEEE Sensors J. 2015, 15, 3500–3506. doi:10.1109/JSEN.2015.2391181.
  • Lussac, E.; Barattin, R.; Cardinael, P.; Agasse, V. Review on Micro-Gas Analyzer Systems : Feasibility, Separations and Applications. Crit. Rev. Anal. Chem. 2016, 46, 455–468. doi:10.1080/10408347.2016.1150153.
  • Zareian-Jahromi, M. A.; Ashraf-Khorassani, M.; Taylor, L. T.; Agah, M. Design, Modeling, and Fabrication of MEMS-Based Multicapillary Gas Chromatographic Columns. J. Microelectromech. Syst. 2009, 18, 28–37. doi:10.1109/JMEMS.2008.2007267.
  • Ali, S.; Ashraf-Khorassani, M.; Taylor, L. T.; Agah, M. MEMS-Based Semi-Packed Gas Chromatography Columns. Sensors Actuators, B Chem. 2009, 141, 309–315. doi:10.1016/j.snb.2009.06.022.
  • Sun, J.; Cui, D.; Chen, X.; Zhang, L.; Cai, H.; Li, H. Fabrication and Characterization of Microelectromechanical Systems-Based Gas Chromatography Column with Embedded Micro-Posts for Separation of Environmental Carcinogens. J. Chromatogr. A. 2013, 1291, 122–128. doi:10.1016/j.chroma.2013.03.022.
  • Nakai, T.; Nishiyama, S.; Shuzo, M.; Delaunay, J. J.; Yamada, I. Micro-Fabricated Semi-Packed Column for Gas Chromatography by Using Functionalized Parylene as a Stationary Phase. J. Micromech. Microeng. 2009, 19, 065032. doi:10.1088/0960-1317/19/6/065032.
  • Shakeel, H.; Rice, G. W.; Agah, M. Semipacked Columns with Atomic Layer-Deposited Alumina as a Stationary Phase. Sensors Actuators, B Chem. 2014, 203, 641–646. doi:10.1016/j.snb.2014.06.017.
  • Yusuf, K.; Aqel, A.; ALOthman, Z. Metal-Organic Frameworks in Chromatography. J. Chromatogr. A. 2014, 1348, 1–16. doi:10.1016/j.chroma.2014.04.095.
  • Zhang, J.; Chen, Z. Metal-Organic Frameworks as Stationary Phase for Application in Chromatographic Separation. J. Chromatogr. A. 2017, 1530, 1–18. doi:10.1016/j.chroma.2017.10.065.
  • Lashgari, M.; Yamini, Y. An Overview of the Most Common Lab-Made Coating Materials in Solid Phase Microextraction. Talanta 2019, 191, 283–306. doi:10.1016/j.talanta.2018.08.077.
  • Welton, T.; Hallett, J. P. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 2011, 111, 3508–3576. doi:10.1021/cr1003248.
  • Lei, Z.; Chen, B.; Koo, Y. M.; Macfarlane, D. R. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635. doi:10.1021/acs.chemrev.7b00246.
  • Guerrand, H., Pucheault, M., Vaultier, M. Ionic Liquids, 3rd ed.; Elsevier Inc.: Oxford, 2015. doi: 10.1201/b18533.
  • Poole, C. F.; Poole, S. K. Ionic Liquid Stationary Phases for Gas Chromatography. J. Sep. Sci. 2011, 34, 888–900. doi:10.1002/jssc.201000724.
  • Berthod, A.; Ruiz-Ángel, M. J.; Carda-Broch, S. Recent Advances on Ionic Liquid Uses in Separation Techniques. J. Chromatogr. A. 2018, 1559, 2–16. doi:10.1016/j.chroma.2017.09.044.
  • Castillo-García, M. L.; Aguilar-Caballos, M. P.; Gómez-Hens, A. Nanomaterials as Tools in Chromatographic Methods. TrAC - Trends Anal. Chem. 2016, 82, 385–393. doi:10.1016/j.trac.2016.06.019.
  • Zhang, X.; Ji, H.; Zhang, X.; Wang, Z.; Xiao, D. Capillary Column Coated with Graphene Quantum Dots for Gas Chromatographic Separation of Alkanes and Aromatic Isomers. Anal. Methods 2015, 7, 3229–3237. doi:10.1039/C4AY03068K.
  • Fan, J.; Qi, M.; Fu, R.; Qu, L. Performance of Graphene Sheets as Stationary Phase for Capillary Gas Chromatographic Separations. J. Chromatogr. A 2015, 1399, 74–79. doi:10.1016/j.chroma.2015.04.030.
  • Han, N.; Qi, M.; Ye, M.; Fu, R.; Qu, L. Chromatographic Selectivity of Graphene Capillary Column Pretreated with Bio-Inspired Polydopamine Polymer. RSC Adv. 2015, 5, 74040–74045. doi:10.1039/C5RA14111G.
  • Sidelnikov, V. N.; Nikolaeva, O. A.; Platonov, I. A.; Parmon, V. N. Gas Chromatography of the Future: Columns Whose Time Has Come. Russ. Chem. Rev. 2016, 85, 1033–1055. doi:10.1070/RCR4627.
  • Saito, M. History of Supercritical Fluid Chromatography: Instrumental Development. J. Biosci. Bioeng. 2013, 115, 590–599. doi:10.1016/j.jbiosc.2012.12.008.
  • Klesper, E.; Corwin, A. H.; Turner, D. A. High Pressure Gas Chromatography above Critical Temperatures. J. Org. Chem. 1962, 27, 700–706. doi:10.1021/jo01049a069.
  • Novotny, M.; Springston, S. R.; Peaden, P. A.; Fjeldsted, J. C.; Lee, M. L. Capillary Supercritical Fluid Chromatography. Anal. Chem. 1981, 53, 407–414. doi:10.1021/ac00268a004..
  • Lee, M. L.; Markides, K. E. Chromatography with Supercritical Fluids. Science (80-.) 1987, 235, 1342–1347. doi:10.1126/science.235.4794.1342.
  • Gere, D. R.; Board, R.; McManlglll, D. Supercritical Fluid Chromatography with Packed Columns. Anal. Chem. 1982, 54, 736–740. doi:10.1021/ac00241a032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.