510
Views
1
CrossRef citations to date
0
Altmetric
Review Article

The Use of Conducting Polymers for Enhanced Electrochemical Determination of Hydrogen Peroxide

ORCID Icon, ORCID Icon & ORCID Icon
Pages 204-217 | Published online: 28 Jan 2020

References

  • Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P. G. Hydrogen Peroxide: A Metabolic by‑Product or a Common Mediator of Ageing Signals? Nat. Rev. Mol. Cell Biol. 2007, 8, 722–728. DOI: 10.1038/nrm2240.
  • Lennicke, C.; Rahn, J.; Lichtenfels, R.; Wessjohann, L. A.; Seliger, B. Hydrogen Peroxide – Production, Fate and Role in Redox Signaling of Tumor Cells. Cell Commun. Signal 2015, 13, 1–19. DOI: 10.1186/s12964-015-0118-6.
  • Veal, E. A.; Day, A. M.; Morgan, B. A. Hydrogen Peroxide Sensing and Signaling. Mol. Cell 2007, 26, 1–14. DOI: 10.1016/j.molcel.2007.03.016.
  • Balamurugan, M.; Santharaman, P.; Madasamy, T.; Rajesh, S.; Kumar, S.; Bhargava, K.; Kotamraju, S.; Karunakaran, C. Recent Trends in Electrochemical Biosensors of Superoxide Dismutases. Biosens. Bioelectron. 2018, 116, 89–99. DOI: 10.1016/j.bios.2018.05.040.
  • Prodromidis, M. I.; Karayannis, M. I. Enzyme Based Amperometric Biosensors for Food Analysis. Electroanalysis 2002, 14, 241–264. DOI: 1040-0397/02/0402-0241.
  • Burmistrova, N. A.; Kolontaeva, O. A.; Duerkop, A. New Nanomaterials and Luminescent Optical Sensors for Detection of Hydrogen Peroxide. Chemosensors 2015, 3, 253–273. DOI: 10.3390/chemosensors3040253.
  • Chen, W.; Ren, Q. Q.; Yang, Q.; Wen, W.; Zhao, Y. D. In Vivo Electrochemical Biosensors for Reactive Oxygen Species Detection : A Mini-Review. Anal. Lett. 2012, 45, 156–167. DOI: 10.1080/00032719.2011.633185.
  • Mills, A.; Tommons, C.; Bailey, R. T.; Tedford, M. C.; Crilly, P. J. Reversible, Fluorescence-Based Optical Sensor for Hydrogen Peroxide. Analyst 2007, 132, 566–571. DOI: 10.1039/b618506a.
  • Albers, A. E.; Okreglak, V. S.; Chang, C. J. A FRET-Based Approach to Ratiometric Fluorescence Detection of Hydrogen Peroxide. J. Am. Chem. Soc. 2006, 128, 9640–9641. DOI: 10.1021/ja063308k.
  • Chen, W.; Li, B.; Xu, C.; Wang, L. Chemiluminescence Flow Biosensor for Hydrogen Peroxide Using DNAzyme Immobilized on Eggshell Membrane as a Thermally Stable Biocatalyst. Biosenor. Bioelectron. 2009, 24, 2534–2540. DOI: 10.1016/j.bios.2009.01.010.
  • Yang, X.; Guo, Y.; Mei, Z. Chemiluminescent Determination of H2O2 Using 4-(1,2,4-Triazol-1-yl)Phenol as an Enhancer Based on the Immobilization of Horseradish Peroxidase onto Magnetic Beads. Anal. Biochem. 2009, 393, 56–61. DOI: 10.1016/j.ab.2009.06.008.
  • Nakashima, K.; Wada, M.; Kuroda, N.; Akiyama, S.; Imai, K. High-Performance Liquid Chromatographic Determination of Hydrogen Peroxide with Peroxyoxalate Chemiluminescence Detection. J. Liq. Chromatogr. 1994, 17, 2111–2126. DOI: 10.1080/10826079408013535.
  • Steinberg, S. M. High-Performance Liquid Chromatography Method for Determination of Hydrogen Peroxide in Aqueous Solution and Application to Simulated Martian Soil and Related Materials. Environ. Monit. Assess. 2013, 185, 3749–3757. DOI: 10.1007/s10661-012-2825-4.
  • Matsubara, C.; Kawamoto, N.; Takamura, K. Oxo[5, 10, 15, 20-Tetra(4-pyridyl)porphyrinato]titanium(IV): An Ultra-High Sensitivity Spectrophotometric Reagent for Hydrogen Peroxide. Analyst 1992, 117, 1781–1784. DOI: 10.1039/an9921701781.
  • Chen, S.; Yuan, R.; Chai, Y.; Hu, F. Electrochemical Sensing of Hydrogen Peroxide Using Metal Nanoparticles : A Review. Microchim. Acta 2013, 180, 15–32. DOI: 10.1007/s00604-012-0904-4.
  • Da Silva, E. T. S. G.; Souto, D. E. P.; Barragan, J. T.; Giarola, J. F.; Moraes, A. C. M.; Kubota, L. T. Electrochemical Biosensors in Point-of-Care Devices : Recent Advances and Future Trends. ChemElectroChem 2017, 4, 778–794. DOI: 10.1002/celc.201600758.
  • Dahlin, A. B. Size Matters: Problems and Advantages Associated with Highly Miniaturized Sensors. Sensors 2012, 12, 3018–3036. DOI: 10.3390/s120303018.
  • Aydemir, N.; Malmstro, J.; Travas-Sejdic, J. Conducting Polymer Based Electrochemical Biosensors. Phys. Chem. Chem. Phys. 2016, 12, 8264–8277. DOI: 10.1039/C5CP06830D.
  • Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chang, C. K.; Heeger, A. J. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives od Polyacetylene, (CH)x. J. Chem. Soc Chem. Commun. 1997, 16, 578–580. DOI: 10.1039/c39770000578.
  • Zhou, D. D.; Cui, X. T.; Hines, A.; Greenberg, R. J. Conducting Polymers in Neural Stimulation Applications. In Implantable Neural Prostheses 2. Biological and Medical Physics, Biomedical Engineering; Zhou, D., Greenbaum, E., Eds; Springer: New York; 2009, pp 217–252.
  • Ziadan, K. M. Conducting Polymers Application. In New Polymers for Special Applications; Gomes, A. S., Ed.; InTech: Rijeka, 2012, pp. 3–24. DOI: 10.5772/48316.
  • Yoon, H. Current Trends in Sensors Based on Conducting Polymer Nanomaterials. Nanomaterials 2013, 3, 524–549. DOI: 10.3390/nano3030524.
  • Heinze, J.; Frontana-Uribe, B. A.; Ludwigs, S. Electrochemistry of Conducting Polymers-Persistent Models and New Concepts. Chem. Rev. 2010, 110, 4724–4771. DOI: 10.1021/cr900226k.
  • Boehler, C.; Oberueber, F.; Schlabach, S.; Stieglitz, T.; Asplund, M. Long-Term Stable Adhesion for Conducting Polymers in Biomedical Applications: IrOx and Nanostructured Platinum Solve the Chronic Challenge. ACS Appl. Mater. Interfaces 2017, 9, 189–197. DOI: 10.1021/acsami.6b13468.
  • Le, T. H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9, 150. DOI: 10.3390/polym9040150.
  • Balint, R.; Cassidy, N. J.; Cartmell, S. H. Conductive Polymers : Towards a Smart Biomaterial for Tissue Engineering. Acta Biomater. 2014, 10, 2341–2353. DOI: 10.1016/j.actbio.2014.02.015.
  • MacDiarmid, A. G.; Mammone, R. J.; Kaner, R. N.; Porter, S. J.; Pethig, R.; Heeger, A. J.; Rosseinsky, D. R. The Concept of ‘Doping’ of Conducting Polymers: The Role of Reduction Potentials. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1985, 314, 3–15. DOI: 10.1098/rsta.1985.0004.
  • Gupta, S.; McDonald, B.; Carrizosa, S. B.; Price, C. Microstructure, Residual Stress, and Intermolecular Force Distribution Maps of Graphene/Polymer Hybrid Composites: Nanoscale Morphology-Promoted Synergistic Effects. Compos. Part B Eng. 2016, 92, 175–192. DOI: 10.1016/j.compositesb.2016.02.049.
  • Janáky, C.; Visy, C. Conducting Polymer-Based Hybrid Assemblies for Electrochemical Sensing : A Materials Science Perspective. Anal. Bioanal. Chem. 2013, 405, 3489–3511. DOI: 10.1007/s00216-013-6702-y.
  • Naseri, M.; Fotouhi, L.; Ehsani, A. Recent Progress in the Development of Conducting Polymer-Based Nanocomposites for Electrochemical Biosensors Applications : A Mini-Review. Chem. Rec. 2018, 18, 599–618. DOI: 10.1002/tcr.201700101.
  • Morrison, M. M.; Roberts, J. R.; Sawyer, D. T. Oxidation-Reduction Chemistry of Hydrogen Peroxide in Aprotic and Aqueous Solutions. Inorg. Chem. 1979, 18, 1971–1973. DOI: 10.1021/ic50197a050.
  • Agrisuelas, J.; González-Sánchez, M. I.; Gómez-Monedero, B.; Valero, E. A Comparative Study of Poly(Azure A) Film-Modified Disposable Electrodes for Electrocatalytic Oxidation of H2O2 : Effect of Doping Anion. Polymers 2018, 10, 48. DOI: 10.3390/polym10010048.
  • Zhang, R.; Xu, X.; Fan, X.; Yang, R.; Wu, R.; Zhang, C. Application of Conducting Micelles Self-Assembled from Commercial Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) and Chitosan for Electrochemical Biosensor. Colloid Polym. Sci. 2018, 296, 495–502. DOI: 10.1007/s00396-018-4270-6.
  • Suryani, R.; Ambarsari, L.; Maddu, A. Biosensor H2O2 by Using Immobilized Horseradish Peroxidase Glutaraldehyde on Carbon Polyaniline Nanofiber Composite. Enzym. Eng. 2016, 5, 1–5. DOI: 10.4172/2329-6674.1000140.
  • Wang, J.; Wang, Y.; Cui, M.; Xu, S.; Luo, X. Enzymeless Voltammetric Hydrogen Peroxide Sensor Based on the Use of PEDOT Doped with Prussian Blue Nanoparticles. Microchim. Acta 2017, 184, 483–489. DOI: 10.1007/s00604-016-2025-y.
  • Mercante, L. A.; Facure, M. H. M.; Sanfelice, R. C.; Migliorini, F. L.; Mattoso, L. H. C.; Correa, D. S. Applied Surface Science One-Pot preparation of PEDOT : PSS-Reduced Graphene Decorated with Au Nanoparticles for Enzymatic Electrochemical Sensing of H2O2. Appl. Surf. Sci. 2017, 407, 162–170. DOI: 10.1016/j.apsusc.2017.02.156.
  • Arefin, S.; Sarker, M. A. H.; Islam, M. A.; Harun-Ur-Rashid, M.; Islam, M. N. Use of Hydrogen Peroxide (H2O2) in Raw Cow’s Milk Preservation. J. Adv. Vet. Anim. Res. 2017, 4, 371–377. DOI: 10.5455/javar.2017.d236.
  • Karimi, A.; Husain, S. W.; Hosseini, M.; Azar, P. A.; Ganjali, M. R. Rapid and Sensitive Detection of Hydrogen Peroxide in Milk by Enzyme-Free Electrochemiluminescence Sensor Based on a Polypyrrole-Cerium Oxide Nanocomposite. Sensors Actuators B Chem. 2018, 271, 90–96. DOI: 10.1016/j.snb.2018.05.066.
  • Kumar, V.; Gupta, R. K.; Gundampati, R. K.; Singh, D. K.; Mohan, S.; Hasan, S. H.; Malviya, M. Enhanced Electron Transfer Mediated Detection of Hydrogen Peroxide Using a Silver Nanoparticle – Reduced Graphene Oxide – Polyaniline Fabricated Electrochemical Sensor. RSC Adv. 2018, 2, 619–631. DOI: 10.1039/C7RA11466D.
  • Yang, M.; Liu, Y.; Song, Y.; Zhao, G.; Tan, H.; Zhang, Q.; Xu, F. Spontaneous Growth of Prussian Blue Nanoparticles on Three Dimensional Porous PEDOT for Enhanced Catalytic Reduction and Sensitive Detection of Hydrogen Peroxide. Int. J. Electrochem. Sci. 2017, 12, 4428–4443. DOI: 10.20964/2017.05.57.
  • Baghayeri, M.; Zare, E. N.; Lakouraj, M. M. Monitoring of Hydrogen Peroxide Using a Glassy Carbon Electrode Modified with Hemoglobin and a Polypyrrole-Based Nanocomposite. Microchim. Acta 2015, 182, 771–779. DOI: 10.1007/s00604-014-1387-2.
  • Kausaite-Minkstimiene, A.; Glumbokaite, L.; Ramanaviciene, A.; Dauksaite, E.; Ramanavicius, A. An Amperometric Glucose Biosensor Based on Poly (Pyrrole-2-Carboxylic Acid)/Glucose Oxidase Biocomposite. Electroanalysis 2018, 30, 1642–1644. DOI: 10.1002/elan.201800044.
  • Tekbaşoğlu, T. Y.; Soganci, T.; Ak, M.; Koca, A.; Şener, M. K. Enhancing Biosensor Properties of Conducting Polymers via Copolymerization : Synthesis of EDOT-Substituted bis (2-Pyridylimino) Isoindolato-Palladium Complex and Electrochemical Sensing of Glucose by Its Copolymerized Film. Biosens. Bioelectron. 2017, 15, 81–88. DOI: 10.1016/j.bios.2016.08.020.
  • Krzyczmonik, P.; Socha, E.; Skrzypek, S. Electrochemical Detection of Glucose in Beverage Samples Using with Immobilized Glucose Oxidase. Electroanalyis 2018, 9, 380–387. DOI: 10.1007/s12678-017-0442-2.
  • Vagin, M. Y.; Jeerapan, I.; Wannapob, R.; Thavarungkul, P.; Kanatharana, P.; Anwar, N.; McCormac, T.; Eriksson, M.; Turner, A. P. F.; Jager, E. W. H.; Mak, W. C. Water-Processable Polypyrrole Microparticle Modules for Direct Fabrication of Hierarchical Structured Electrochemical Interfaces. Electrochim. Acta 2016, 190, 495–503. DOI: 10.1016/j.electacta.2015.12.183.
  • Wannapob, R.; Vagin, M. Y.; Liu, Y.; Thavarungkul, P.; Kanatharana, P.; Turner, A. P. F.; Mak, W. C. Printable Heterostructured Bioelectronic Interfaces with Enhanced Electrode Reaction Kinetics by Intermicroparticle Network. ACS Appl. Mater. Interfaces 2017, 9, 33368–33376. DOI: 10.1021/acsami.7b12559.
  • Liu, Y.; Turner, A. P. F.; Zhao, M.; Mak, W. C. Processable Enzyme-Hybrid Conductive Polymer Composites for Electrochemical Biosensing. Biosens. Bioelectron 2018, 100, 374–381. DOI: 10.1016/j.bios.2017.09.021.
  • Gokoglan, T. C.; Kesik, M.; Soylemez, S.; Yuksel, R.; Unalan, H. E.; Toppare, L. Paper Based Glucose Biosensor Using Graphene Modified with a Conducting Polymer and Gold Nanoparticles. J. Electrochem. Soc. 2017, 164, G59–G64. DOI: 10.1149/2.0791706jes.
  • Xu, M.; Obodo, D.; Yadavalli, V. K. The Design, Fabrication, and Applications of Flexible Biosensing Devices. Biosens. Bioelectron. 2019, 15, 96–114. DOI: 10.1016/j.bios.2018.10.019.
  • Sekretaryova, A. N.; Eriksson, M.; Turner, A. P. F. Bioelectrocatalytic Systems for Health Aapplications. Biotechnol. Adv. 2016, 34, 177–197. DOI: 10.1016/j.biotechadv.2015.12.005.
  • Zhu, J.; Liu, X.; Wang, X.; Huo, X.; Yan, R. Preparation of Polyaniline-TiO2 Nanotube Composite for the Development of Electrochemical Biosensors. Sensors Actuators B Chem. 2015, 221, 450–457. DOI: 10.1016/j.snb.2015.06.131.
  • Zhou, P.; Li, F.; Dong, W.; Huang, K.; Chen, Y.; Wei, C.; Ling, B.; Li, M. Covalent Immobilization of Glucose Oxidase onto Electro- Synthesized Nanocomposite with PEDOT Derivative for Amperometric Glucose Biosensing. Int. J. Electrochem. Sci. 2018, 13, 5294–5310. DOI: 10.20964/2018.06.51.
  • Mcdonnell, G. The Use of Hydrogen Peroxide for Disinfection and Sterilization Applications. In PATAI’S Chemistry of Functional Groups; John Wiley & Sons: Hoboken (NJ), 2014; pp. 1–34. DOI: 10.1002/9780470682531.pat0885.
  • Abbas, M. E.; Luo, W.; Zhu, L.; Zou, J.; Tang, H. Fluorometric Determination of Hydrogen Peroxide in Milk by Using a Fenton Reaction System. Food Chem. 2010, 120, 327–331. DOI: 10.1016/j.foodchem.2009.10.024.
  • Kittlesen, G. P.; White, H. S.; Wrighton, M. S. Chemical Derivatization of Microelectrode Arrays by Oxidation of Pyrrole and N-Methylpyrrole: Fabrication of Molecule-Based Electronic Devices. J. Am. Chem. Soc. 1984, 106, 7389–7396. DOI: 10.1021/ja00336a016.
  • Hoa, D. T.; Suresh Kumar, T. N.; Punekar, N. S.; Srinivasa, R. S.; Lal, R.; Contractor, A. Q. Biosensor Based on Conducting Polymers. Anal. Chem. 1992, 64, 2645–2646. DOI: 10.1021/ac00045a031.
  • Bartlett, P. N.; Birkin, P. R. Enzyme Switch Responsive to Glucose. Anal. Chem. 1993, 65, 1118–1119. DOI: 10.1021/ac00056a029.
  • Zhu, Z.-T.; Mabeck, J. T.; Zhu, C.; Cady, N. C.; Batt, C. A.; Malliaras, G. G. A Simple Poly(3, 4-Wthylene Dioxythiophene)/Poly(styrene Sulfonic Acid) Transistor for Glucose Sensing at Neutral pH. Chem. Commun. 2004, 13, 1556–1557. DOI: 10.1039/b403327m.
  • Macaya, D. J.; Nikolou, M.; Takamatsu, S.; Mabeck, J. T.; Owens, R. M.; Malliaras, G. G. Simple Glucose Sensors with Micromolar Sensitivity Based on Organic Electrochemical Transistors. Sensors Actuators B Chem 2007, 123, 374–378. DOI: 10.1016/j.snb.2006.08.038.
  • Bernards, D. A.; Macaya, D. J.; Nikolou, M.; Defranco, J. A.; Takamatsu, S.; Malliaras, G. G. Enzymatic Sensing with Organic Electrochemical Transistors. J. Mater. Chem. 2008, 18, 116–120. DOI: 10.1039/B713122D.
  • Shim, N. Y.; Bernards, D. A.; Macaya, D. J.; DeFranco, J. A.; Nikolou, M.; Owens, R. M.; Malliaras, G. G. All-Plastic Electrochemical Transistor for Glucose Sensing Using a Ferrocene Mediator. Sensors 2009, 9, 9896–9902. DOI: 10.3390/s91209896.
  • Kanakamedala, S. K.; Alshakhouri, H. T.; Agarwal, M.; DeCoster, M. A. A Simple Polymer ased Electrochemical Transistor for Micromolar Glucose Sensing. Sensors Actuators B Chem. 2011, 157, 92–97. DOI: 10.1016/j.snb.2011.03.030.
  • Liao, J.; Lin, S.; Yang, Y.; Liu, K.; Du, W. Highly Selective and Sensitive Glucose Sensors Based on Organic Electrochemical Transistors Using TiO2 Nanotube Arrays-Based Gate Electrodes. Sensors Actuators B Chem. 2015, 208, 457–463. DOI: 10.1016/j.snb.2014.11.038.
  • Ji, X.; Lau, H. Y.; Ren, X.; Peng, B.; Zhai, P.; Feng, S. P.; Chan, P. K. L. Highly Sensitive Metabolite Biosensor Based on Organic Electrochemical Transistor Integrated with Microfluidic Channel and Poly(N-Vinyl-2-Pyrrolidone)-Capped Platinum Nanoparticles. Adv. Mater. Technol. 2016, 1, 1–8. DOI: 10.1002/admt.201600042.
  • Pappa, A. M.; Curto, V. F.; Braendlein, M.; Strakosas, X.; Donahue, M. J.; Fiocchi, M.; Malliaras, G. G.; Owens, R. M. Organic Transistor Arrays Integrated with Finger-Powered Microfluidics for Multianalyte Saliva Testing. Adv. Healthcare Mater. 2016, 5, 2295–2302. DOI: 10.1002/adhm.201600494.
  • Welch, M. E.; Doublet, T.; Bernard, C.; Malliaras, G. G.; Ober, C. K. A Glucose Sensor via Stable Immobilization of the GOx Enzyme on an Organic Transistor Using a Polymer Brush. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 372–377. DOI: 10.1002/pola.27392.
  • Liao, C.; Mak, C.; Zhang, M.; Chan, H. L. W.; Yan, F. Flexible Organic Electrochemical Transistors for Highly Selective Enzyme Biosensors and Used for Saliva Testing. Adv. Mater. 2015, 27, 676–681. DOI: 10.1002/adma.201404378.
  • Wang, N.; Yang, A.; Fu, Y.; Li, Y.; Yan, F. Functionalized Organic Thin Film Transistors for Biosensing. Acc. Chem. Res. 2019, 52, 277–287. DOI: 10.1021/acs.accounts.8b00448.
  • De Gans, B. J.; Duineveld, P. C.; Schubert, U. S. Inkjet Printing of Polymers: State of the Art and Future Developments. Adv. Mater. 2004, 16, 203–213. DOI: 10.1002/adma.200300385.
  • Sowmiya, T.; Ananthi, A.; Anandhakumar, S.; Mathiyarasu, J. Potentiometric Glucose Biosensing Using Camphor Sulfonic Acid Doped Polyaniline. Anal. Methods 2012, 4, 1838–1842. DOI: 10.1039/c2ay25215e.
  • Song, E.; Choi, J. W. A Selective Hydrogen Peroxide Sensor Based on Chemiresistive Polyaniline Nanowires Modified with Silver Catalytic Nanoparticles. J. Micromech. Microeng. 2014, 24, 065004. DOI: 10.1088/0960-1317/24/6/065004.
  • Fang, K. C.; Hsu, C. P.; Kang, Y. W.; Fang, J. Y.; Huang, C. C.; Hsu, C. H.; Huang, Y. F.; Chen, C. C.; Li, S. S.; Yeh, J. A.; et al. Realization of an Ultra-Sensitive Hydrogen Peroxide Sensor with Conductance Change of Horseradish Peroxidase-Immobilized Polyaniline and Investigation of the Sensing Mechanism. Biosens. Bioelectron. 2014, 55, 294–300. DOI: 10.1016/j.bios.2013.12.029.
  • Inzelt, G. Conducting Polymers: Past, Present, Future. J. Electrochem. Sci. Eng. 2018, 8, 3–37. DOI: 10.5599/jese.448.
  • Bartlett, P. N.; Birkin, P. R. The Application of Conducting Polymers in Biosensors. Synth. Met. 1993, 61, 15–21. DOI: 10.1016/0379-6779(93)91194-7.
  • Mabeck, J. T.; Malliaras, G. G. Chemical and Biological Sensors Based on Organic Thin-Film Transistors. Anal. Bioanal. Chem. 2005, 384, 343–353. DOI: 10.1007/s00216-005-3390-2.
  • Richardson-Burns, S. M.; Hendricks, J. L.; Foster, B.; Povlich, L. K.; Kim, D. H.; Martin, D. C. Polymerization of the Conducting Polymer Poly(3, 4-Ethylenedioxythiophene) (PEDOT) around Living Neural Cells. Biomaterials 2007, 28, 1539–1552. DOI: 10.1016/j.biomaterials.2006.11.026.
  • Cho, N. H.; Shaw, J. E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J. D.; Ohlrogge, A. W.; Malanda, B. IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. DOI: 10.1016/j.diabres.2018.02.023.
  • Hoekstra, R.; Blondeau, P.; Andrade, F. J. Distributed Electrochemical Sensors: Recent Advances and Barriers to Market Adoption. Anal. Bioanal. Chem. 2018, 410, 4077–4089. DOI: 10.1007/s00216-018-1104-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.