839
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Sensors to Detect Sarin Simulant

ORCID Icon, &
Pages 299-311 | Published online: 06 Feb 2020

References

  • Witkiewicz, Z.; Mazurek, M.; Szulc, J. Chromatographic Analysis of Chemical Warfare Agents. J. Chromatogr. 1990, 503, 293–357. DOI: 10.1016/S0021-9673(01)81514-4.
  • Witkiewicz, Z.; Sliwka, E.; Neffe, S. Chromatographic Analysis of Chemical Compounds Related to the Chemical Weapon Convention. Trends Anal. Chem. 2016, 85, 21–33. DOI: 10.1016/j.trac.2016.05.006.
  • Witkiewicz, Z.; Neffe, S.; Sliwka, E.; Quagliano, J. Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents. Crit. Rev. Anal. Chem. 2018, 48, 337–371. DOI: 10.1080/10408347.2018.1439366.
  • Zheng, Q.; Fu, Y.; Xu, J. Advances in the Chemical Sensors for the Detection of DMMP – A Simulant for Nerve Agent Sarin. Proc. Eng. 2010, 7, 179–184. DOI: 10.1016/j.proeng.2010.11.027.
  • Giordano, B. C.; Collins, G. E. Synthetic Methods Applied to the Detection of Chemical Warfare Nerve Agents. COC. 2007, 11, 255–265. DOI: 10.2174/138527207779940883.
  • Kloske, M.; Witkiewicz, Z. Novichoks – The A Group of Organophosphorus Chemical Warfare Agents. Chemosphere 2019, 221, 672–682. DOI: 10.1016/j.chemosphere.2019.01.054.
  • Hulanicki, A.; Głąb, S.; Ingman, F. Chemical Sensors: definitions and Classification. Pure Appl. Chem. 1991, 63, 1247–1250. DOI: 10.1351/pac199163091247.
  • Antonisse, M. M. G.; Reinhoudt, D. N. Potentiometric Anion Selective Sensors. Electroanalysis 1999, 11, 1035–1048. DOI: 10.1002/(SICI)1521-4109(199910)11:14<1035::AID-ELAN1035>3.0.CO;2-I.
  • Cha, G. S.; Liu, D.; Meyerhoff, M. E.; Cantor, H. C.; Midgley, A. R.; Goldberg, H. D.; Brown, R. B. Electrochemical Performance, Biocompatibility, and Adhesion of New Polymer Matrices for Solid-State Ion Sensors. Anal. Chem. 1991, 63, 1666–1672. DOI: 10.1021/ac00017a003.
  • Pijanowska, D. G.; Wyglądacz, K.; Jaźwiński, J.; Łysko, J. M.; Koszur, J.; Brzózka, Z.; Malinowska, E. Technological Aspects of Potentiometric BSC-Type Microsensor Fabrication. Proc. SPIE 2001, 4516, 32–35.
  • Koncki, R.; Tymecki, Ł.; Zwierkowska, E.; Głąb, S. Screen-Printed Copper Ion-Selective Electrodes. Fresenius J., Anal. Chem. 2000, 367, 393–395. DOI: 10.1007/s002160000408.
  • Lee, H. J.; Hong, U. S.; Lee, D. K.; Shin, J. H.; Nam, H.; Cha, G. S. Solvent-Processible Polymer Membrane-Based Liquid Junction-Free Reference Electrode. Anal. Chem. 1998, 70, 3377–3383. DOI: 10.1021/ac980265k.
  • Zachara, J. E.; Toczyłowska, R.; Pokrop, R.; Zagórska, M.; Dybko, A.; Wróblewski, W. Miniaturised All-Solid-State Potentiometric Ion Sensors Based on PVC-Membranes Containing Conducting Polymers. Sens. Actuators B Chem. 2004, 101, 207–212. DOI: 10.1016/j.snb.2004.02.052.
  • Parsons, R.; Peat, R. Adsorption of Pentaerythritol at the Mercury/Aqueous Sodium Fluoride Interphase. Faraday Trans. 1993, 89, 181–186. DOI: 10.1039/ft9938900181.
  • Brzózka, Z. Miniaturyzacja w Analityce; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, 2005.
  • Gebicki, J. Application of Electrochemical Sensors and Sensor Matrixes for Measurement of Odorous Chemical Compounds. Trends Anal. Chem. 2016, 77, 1–13. DOI: 10.1016/j.trac.2015.10.005.
  • Boeker, P. On ‘Electronic Nose’ Methodology. Sens. Actuators B Chem. 2014, 204, 2–17. DOI: 10.1016/j.snb.2014.07.087.
  • Gebicki, J.; Dymerski, T. Application of Chemical Sensors and Sensor Matrixes to Air Quality Evaluation. Compr. Anal. Chem. 2016, 78, 267–294.
  • Arshak, K.; Moore, E.; Lyons, G. M.; Harris, J.; Clifford, S. A Review of Gas Sensors Employed in Electronic Nose Applications. Sens. Rev. 2004, 24, 181–198. DOI: 10.1108/02602280410525977.
  • Muñoz, R.; Sivret, E. C.; Parcsi, G.; Lebrero, R.; Wang, X.; Suffet, I. H.; Stuetz, R. M. Monitoring Techniques for Odour Abatement Assessment. Water Res. 2010, 44, 5129–5149. DOI: 10.1016/j.watres.2010.06.013.
  • Wilson, A. D.; Baietto, M. Applications and Advances in Electronic-Nose Technologies. Sensors 2009, 9, 5099–5148. DOI: 10.3390/s90705099.
  • Xu, X.; Cang, H.; Li, C.; Zhao, Z. K.; Li, H. Quartz Crystal Microbalance Sensor Array for the Detection of Volatile Organic Compounds. Talanta 2009, 78, 711–716. DOI: 10.1016/j.talanta.2008.12.031.
  • Szczepaniak, W. Metody Instrumentalne w Analizie Chemicznej; Wydawnictwo Naukowe PWN: Warszawa, 2008.
  • Arya, D.; Mondal, S.; Ansari, M. Z. A High Sensitive Mass Sensor for Robotic Applications. Proc. Comput. Sci. 2018, 133, 799–803. DOI: 10.1016/j.procs.2018.07.116.
  • Du, X.; Ying, Z.; Jiang, Y.; Liu, Z.; Yang, T.; Xie, G. Synthesis and Evaluation of a New Polysiloxane as SAW Sensor Coatings for DMMP Detection. Sens. Actuators B Chem. 2008, 134, 409–413. DOI: 10.1016/j.snb.2008.05.016.
  • Radosavljević, M. R.; Tošić, D. V.; Hribšek, M. F. Surface Acoustic Wave Sensors in Mechanical Engineering. FME Trans. 2010, 38, 11–18.
  • Grate, J. W. Hydrogen-Bond Acidic Polymers for Chemical Vapor Sensing. Chem. Rev. 2008, 108, 726–745. DOI: 10.1021/cr068109y.
  • Grate, J. W.; Rose-Pehrsson, S. L.; Venezky, D. L.; Klusty, M.; Wohltjen, H. Smart Sensor System for Trace Organophosphorus and Organosulfur Vapor Detection Employing a Temperature-Controlled Array of Surface Acoustic Wave Sensors, Automated Sample Preconcentration, and Pattern Recognition. Anal. Chem. 1993, 65, 1868–1881. DOI: 10.1021/ac00062a011.
  • Abraham, M. H.; Andonian-Haftvan, J.; Du, C. M.; Diart, V.; Whiting, G. S.; Grate, J. W.; McGil, R. A. Hydrogen Bonding. Part 29. Characterization of 14 Sorbent Coatings for Chemical Microsensors Using a New Solvation Equation. J. Chem. Soc., Perkin Trans. 1995, 2, 369–378. DOI: 10.1039/p29950000369.
  • Grate, J. W.; Kaganove, S. N.; Patrash, S. J.; Craig, R.; Bliss, M. Hybrid Organic/Inorganic Copolymers with Strongly Hydrogen-Bond Acidic Properties for Acoustic Wave and Optical Sensors. Chem. Mater. 1997, 9, 1201–1207. DOI: 10.1021/cm960590t.
  • Hartmann-Thompson, C.; Hu, J.; Kaganove, S. N.; Keinath, S. E.; Keeley, D. L.; Dvornic, P. R. Hydrogen-Bond Acidic Hyperbranched Polymers for Surface Acoustic Wave (SAW) Sensors. Chem. Mater. 2004, 16, 5357–5364. DOI: 10.1021/cm040346z.
  • Lal, G.; Tiwari, D. C. Investigation of Nanoclay Doped Polymeric Composites on Piezoelectric Quartz Crystal Microbalance (QCM) Sensor. Sens. Actuators B Chem. 2018, 262, 64–69. DOI: 10.1016/j.snb.2018.01.200.
  • Iqbal, N.; Lieberzeit, P. A. Artificial Receptors for Mass-Sensitive Sensors: Targeting Analytes from Surfaces, Nanoparticles, and Bioanalytes by Molecular Imprinting. In Molecularly Imprinted Sensors, Li, S., Ge, Y., Piletsky, S., Lunec, J., Eds.; Elsevier: Vienna. 2012; pp 195–235.
  • He, W.; Liu, Z.; Du, X.; Jiang, Y.; Xiao, D. Analytical Application of Poly{Methyl[3-(2-Hydroxy-3,4-Difluoro) Phenyl] Propyl Siloxane} as a QCM Coating for DMMP Detection. Talanta 2008, 76, 698–702. DOI: 10.1016/j.talanta.2008.04.022.
  • Huang, J.; Jiang, Y.; Du, X.; Bi, J. A New Siloxane Polymer for Chemical Vapor Sensor. Sens. Actuators B Chem. 2010, 146, 388–394. DOI: 10.1016/j.snb.2010.02.010.
  • Xie, H.; Sun, X. X.; Ji, X. M. Nerve Agent Gas Sensor Based on Nano-Zeolite Films. J. Transducer Technol. 2005, 3, 80–83.
  • Zhao, Y.; He, J.; Yang, M.; Gao, S.; Zuo, G.; Yan, C.; Cheng, Z. Single Crystal WO3 Nanoflakes as Quartz Crystal Microbalance Sensing Layer for Ultrafast Detection of Trace Sarin Stimulant. Anal. Chim. Acta 2009, 654, 120–126. DOI: 10.1016/j.aca.2009.09.029.
  • National Research Council. Division on Engineering and Physical Sciences, Board on Army Science and Technology, Committee on Opportunities in Biotechnology for Future Army Applications, Opportunities in Biotechnology for Future Army Applications; National Academies Press: Washington, 2001.
  • Bagolini, A.; Gaiardo, A.; Crivellari, M.; Demenev, E.; Bartali, R.; Picciotto, A.; Valt, M.; Ficorella, F.; Guidi, V.; Bellutti, P. Development of MEMS MOS Gas Sensors with CMOS Compatible PECVD Inter-Metal Passivation. Sens. Actuators B Chem. 2019, 292, 225–232. DOI: 10.1016/j.snb.2019.04.116.
  • Gonzalez, R.; Catania, C. A. Time-Delayed Multiple Linear Regression for de-Noising MEMS Inertial Sensors. Comput. Electr. Eng. 2019, 76, 1–12. DOI: 10.1016/j.compeleceng.2019.02.023.
  • Yang, Y.; Ji, H. F.; Thundat, T. Nerve Agents Detection Using a Cu2+/l-Cysteine Bilayer-Coated Microcantilever. J. Am. Chem. Soc. 2003, 125, 1124–1125. DOI: 10.1021/ja028181n.
  • Zuniga, C.; Rinaldi, M.; Khamis, S. M.; Johnson, A. T.; Piazza, G. Nanoenabled Microelectromechanical Sensor for Volatile Organic Chemical Detection. Appl. Phys. Lett. 2009, 94, 223122. 223122-1-223122-4. DOI: 10.1063/1.3151919.
  • Blue, R.; Uttamchandani, D. Chemicapacitors as a Versatile Platform for Miniature Gas and Vapor Sensors. Meas. Sci. Technol. 2017, 28, 022001–022024. DOI: 10.1088/1361-6501/28/2/022001.
  • Mlsna, T. E.; Cemalovic, S.; Warburton, M.; Hobson, S. T.; Mlsna, D. A.; Patel, S. V. Chemicapacitive Microsensors for Chemical Warfare Agent and Toxic Industrial Chemical Detection. Sens. Actuators B Chem. 2006, 116, 192–201. DOI: 10.1016/j.snb.2005.12.066.
  • Snow, E. S.; Perkins, F. K.; Houser, E. J.; Badescu, S. C.; Reinecke, T. L. Chemical Detection with a Single-Walled Carbon Nanotube Capacitor. Science 2005, 307, 1942–1945. DOI: 10.1126/science.1109128.
  • Novak, J. P.; Snow, E. S.; Houser, E. J.; Park, D.; Stepnowski, J. L.; McGill, R. A. Nerve Agent Detection Using Networks of Single-Walled Carbon Nanotubes. Appl. Phys. Lett. 2003, 83, 4026–4027. DOI: 10.1063/1.1626265.
  • Wang, F.; Gu, H.; Swager, T. M. Carbon Nanotube/Polythiophene Chemiresistive Sensors for Chemical Warfare Agents. J. Am. Chem. Soc. 2008, 130, 5392–5393. DOI: 10.1021/ja710795k.
  • Wang, Y.; Zhou, Z.; Yang, Z.; Chen, X.; Xu, D.; Zhang, Y. Gas Sensors Based on Deposited Single-Walled Carbon Nanotube Networks for DMMP Detection. Nanotechnology 2009, 20, 345502–345509. DOI: 10.1088/0957-4484/20/34/345502.
  • Chang, C. P.; Yuan, C. L. The Fabrication of a MWNTs–Polymer Composite Chemoresistive Sensor Array to Discriminate between Chemical Toxic Agents. J. Mater. Sci. 2009, 44, 5485–5493. DOI: 10.1007/s10853-009-3766-3.
  • Yoo, R.; Kim, J.; Song, M.; Lee, W.; Noh, J. S. Nano-Composite Sensors Composed of Single-Walled Carbon Nanotubes and Polyaniline for the Detection of a Nerve Agent Simulant Gas. Sens. Actuators B Chem. 2015, 209, 444–448. DOI: 10.1016/j.snb.2014.11.137.
  • Kumar, D.; Jha, P.; Chouksey, A.; Rawat, J. S. B. S.; Tandon, R. P.; Chaudhury, P. K. 4-(Hexafluoro-2-Hydroxy Isopropyl) Aniline Functionalized Highly Sensitive Flexible SWCNT Sensor for Detection of Nerve Agent Simulant Dimethyl Methylphosphonate. Mater. Chem. Phys. 2016, 181, 487–494. DOI: 10.1016/j.matchemphys.2016.06.085.
  • Cattanach, K.; Kulkarni, R. D.; Kozlov, M.; Manohar, S. K. Flexible Carbon Nanotube Sensors for Nerve Agent Simulants. Nanotechnology 2006, 17, 4123–4128. DOI: 10.1088/0957-4484/17/16/022.
  • Wang, Y.; Yang, Z.; Hou, Z.; Xu, D.; Wei, L.; Siu-Wai Kong, E.; Zhang, Y. Flexible Gas Sensors with Assembled Carbon Nanotube Thin Films for DMMP Vapor Detection. Sens. Actuators B Chem. 2010, 150, 708–714. DOI: 10.1016/j.snb.2010.08.011.
  • Lee, S. C.; Choi, H. Y.; Lee, S. J.; Lee, W. S.; Huh, J. S.; Lee, D. D.; Kim, J. C. The Development of SnO2-Based Recoverable Gas Sensors for the Detection of DMMP. Sens. Actuators B Chem. 2009, 137, 239–245. DOI: 10.1016/j.snb.2008.12.051.
  • Yoo, R.; Cho, S.; Song, M.; Lee, W. Highly Sensitive Gas Sensor Based on Al-Doped ZnO Nanoparticles for Detection of Dimethyl Methylphosphonate as a Chemical Warfare Agent Simulant. Sens. Actuators B Chem. 2015, 221, 217–223. DOI: 10.1016/j.snb.2015.06.076.
  • Li, X.; Dutta, P. K. Interaction of Dimethylmethylphosphonate with Zeolite Y: Impedance-Based Sensor for Detecting Nerve Agent Simulants. J. Phys. Chem. C 2010, 114, 7986–7994. DOI: 10.1021/jp100088w.
  • Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z.; Sheehan, P. E. Reduced Graphene Oxide Molecular Sensors. Nano Lett. 2008, 8, 3137–3140. DOI: 10.1021/nl8013007.
  • Fatahilah, M. F.; Strempel, K.; Yu, F.; Vodapally, S.; Waag, A.; Wasisto, H. S. 3D GaN Nanoarchitecture for Field-Effect Transistors. Micro Nano Eng. 2019, 3, 59–81. DOI: 10.1016/j.mne.2019.04.001.
  • Xu, H.; Xing, J.; Lu, J.; Han, X.; Li, D.; Zhou, Z.; Bao, L.; Gao, H.; Huang, Y. Annealing Effects on the Electrical and Photoelectric Performance of SnS2 Field-Effect Transistor. Appl. Surf. Sci. 2019, 484, 39–44. DOI: 10.1016/j.apsusc.2019.04.094.
  • Liu, M.; Zhang, L.; Liang, J.; Li, X.; Dong, Y.; Zou, C.; Yang, Y.; Yang, K.; Huang, S. Monolayer-ReS2 Field Effect Transistor Using Monolayer-Graphene as Electrodes. Phys. B: Condens. Matter 2019, 554, 35–39. DOI: 10.1016/j.physb.2018.11.024.
  • Ben Aissa, M. F.; Rezgui, H.; Nasri, F.; Belmabrouk, H.; Guizani, A. Thermal Transport in Graphene Field-Effect Transistors with Ultrashort Channel Length. Superlattices Microstruct. 2019, 128, 265–273. DOI: 10.1016/j.spmi.2019.02.004.
  • Kong, L.; Wang, J.; Luo, T.; Meng, F.; Chen, X.; Li, M.; Liu, J. Novel Pyrenehexafluoroisopropanol Derivative-Decorated Single-Walled Carbon Nanotubes for Detection of Nerve Agents by Strong Hydrogen-Bonding Interaction. Analyst 2010, 135, 368–374. DOI: 10.1039/B920266H.
  • Kong, L.; Wang, J.; Fu, X.; Zhong, Y.; Meng, F.; Luo, T.; Liu, J. p-Hexafluoroisopropanol Phenyl Covalently Functionalized Single-Walled Carbon Nanotubes for Detection of Nerve Agents. Carbon 2010, 48, 1262–1270. DOI: 10.1016/j.carbon.2009.11.051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.