577
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Application of Identification and Evaluation Techniques for Ethnobotanical Medicinal Plant of Genus Panax: A Review

, , &
Pages 373-398 | Published online: 13 Mar 2020

References

  • Editorial Committee of the Flora of China of Chinese Academy of Science. Flora of China. Beijing Science Press: Beijing; 1993.
  • Jia, L.; Zhao, Y. Q. Current Evaluation of the Millennium Phytomedicine–Ginseng (I): Etymology, Pharmacognosy, Phytochemistry, Market and Regulations. CMC. 2009, 16, 2475–2484. DOI: 10.2174/092986709788682146.
  • Yun, T. K. Brief Introduction of Panax Ginseng C.A. Meyer. J. Korean Med. Sci. 2001, 16, S3–S5. DOI: 10.3346/jkms.2001.16.S.S3.
  • Park, H. J.; Kim, D. H.; Park, S. J.; Kim, J. M.; Ryu, J. H. Ginseng in Traditional Herbal Prescriptions. J. Ginseng Res. 2012, 36, 225–241. DOI: 10.5142/jgr.2012.36.3.225.
  • Biodiversity Committee of Chinese Academy of Sciences. Species; 2000, China Node. http://www.sp2000.org.cn/. (accessed Nov. 29, 2019).
  • Royal Botanic Gardens, Kew, the Missouri Botanical Garden. The Plant List. http://www.theplantlist.org/. (accessed Nov. 29, 2019).
  • Qiao, Y. J.; Shang, J. H.; Wang, D.; Zhu, H. T.; Yang, C. R.; Zhang, Y. J. Research of Panax Spp. in Kunming Institute of Botany, CAS. Nat. Prod. Bioprospect. 2018, 8, 245–263. DOI: 10.1007/s13659-018-0176-8.
  • Zhang, S. P.; Wang, R. F.; Zeng, W. Y.; Zhu, W. J.; Zhang, X. F.; Wu, C.; Song, J.; Zheng, Y. L.; Chen, P. Resource Investigation of Traditional Medicinal Plant Panax Japonicus (T.Nees) C.A. Mey. and Its Varieties in China. J. Ethnopharmacol. 2015, 166, 79–85. DOI: 10.1016/j.jep.2015.02.051.
  • Xu, C. L.; Zheng, Y. N.; Cui, S. Y.; Hu, H. L.; Li, X. Determination of Six Ginsenosides in Leaves and Stems of Panax Quinuefolium L. by RP-HPLC. J. Jilin Agr. Univ. 2002, 24, 50–52.
  • Vanhaelen-Fastre, R. J.; Faes, M. L.; Vanhaelen, M. H. High-Performance Thin-Layer Chromatographic Determination of Six Major Ginsenosides in Panax Ginseng. J. Chromatogr. A. 2000, 868, 269–276. DOI: 10.1016/S0021-9673(99)01253-4.
  • Shin, B. K.; Kwon, S. W.; Park, J. H. Chemical Diversity of Ginseng Saponins from Panax Ginseng. J. Ginseng Res. 2015, 39, 287–298. DOI: 10.1016/j.jgr.2014.12.005.
  • Ma, X. Q.; Liang, X. M.; Xu, Q.; Zhang, X. Z.; Xiao, H. B. Identification of Ginsenosides in Roots of Panax Ginseng by HPLC-APCI/MS. Phytochem. Anal. 2005, 16, 181–187. DOI: 10.1002/pca.842.
  • Guo, H. B.; Cui, X. M.; An, N.; Cai, G. P. Sanchi Ginseng (Panax Notoginseng (Burkill) F. H. Chen) in China: Distribution, Cultivation and Variations. Genet. Resour. Crop Evol. 2010, 57, 453–460. DOI: 10.1007/s10722-010-9531-2.
  • Szczuka, D.; Nowak, A.; Zakłos-Szyda, M.; Kochan, E.; Szymańska, G.; Motyl, I.; Blasiak, J. American Ginseng (Panax Quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties. Nutrients 2019, 11, 1041. DOI: 10.3390/nu11051041.
  • Liu, C. X.; Xiao, P. G. Recent Advances on Ginseng Research in China. J. Ethnopharmacol. 1992, 36, 27–38. DOI: 10.1016/0378-8741(92)90057-x.
  • Komatsu, K.; Zhu, S.; Fushimi, H.; Qui, T. K.; Cai, S. Q.; Kadota, S. Phylogenetic Analysis Based on 18S rRNA Gene and matK Gene Sequences of Panax Vietnamensis and Five Related Species. Planta Med. 2001, 67, 461–465. DOI: 10.1055/s-2001-15821.
  • Li, W.; Shi, Y.; Zhao, F.; Tong, C. Q. Historical Contribution of Manchu Medicine: Take Application of Panax Ginseng C. A. Mey. as an Example. Farm Prod. Proc. 2017, 72, 68–69.
  • Lin, X. M.; Xie, L. L.; You, J. W.; Guo, J.; Liao, C. L.; Liu, H. H. The Name and Basis of Zhujieshen. J. Chin. Med. Mat. 2007, 30, 742–743.
  • Dey, L.; Xie, J. T.; Wang, A.; Wu, J.; Maleckar, S. A.; Yuan, C. S. Anti-Hyperglycemic Effects of Ginseng: Comparison between Root and Berry. Phytomedicine 2003, 10, 600–605. DOI: 10.1078/094471103322331908.
  • Yang, X. L.; Wang, R. F.; Zhang, S. P.; Zhu, W. J.; Tang, J.; Liu, J. F.; Chen, P.; Zhang, D. M.; Ye, W. C.; Zheng, Y. L. Polysaccharides from Panax Japonicus C.A. Meyer and Their Antioxidant Activities. Carbohyd. Polym. 2014, 101, 386–391.
  • Wang, L. J.; Yao, Y.; Sang, W.; Yang, X. S.; Ren, G. X. Structural Features and Immunostimulating Effects of Three Acidic Polysaccharides Isolated from Panax Quinquefolius. Int. J. Biol. Macromol. 2015, 80, 77–86. DOI: 10.1016/j.ijbiomac.2015.06.007.
  • Mancuso, C.; Santangelo, R. Panax Ginseng and Panax Quinquefolius: From Pharmacology to Toxicology. Food Chem. Toxicol. 2017, 107, 362–372. DOI: 10.1016/j.fct.2017.07.019.
  • Bae, S. J.; Rho, G. J.; Kim, K. M.; Kang, J. S. Pharmacological Effects of Active Saponins from Panax Ginseng Meyer. Trop. J. Pharm. Res. 2019, 18, 555–561.
  • Patel, S.; Rauf, A. Adaptogenic Herb Ginseng (Panax) as Medical Food: Status Quo and Future Prospects. Biomed. Pharmacother. 2017, 85, 120–127. DOI: 10.1016/j.biopha.2016.11.112.
  • Chen, C. F.; Chiou, W. F.; Zhang, J. T. Comparison of the Pharmacological Effects of Panax Ginseng and Panax Quinquefolium. Acta. Pharmacol. Sin. 2008, 29, 1103–1108. DOI: 10.1111/j.1745-7254.2008.00868.x.
  • Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. China Medical Science Press: Beijing, 2015.
  • Sengupta, S.; Toh, S. A.; Sellers, L. A.; Skepper, J. N.; Koolwijk, P.; Leung, H. W.; Yeung, H. W.; Wong, R. N. S.; Sasisekharan, R.; Fan, T. P. D. Modulating Angiogenesis: The Yin and the Yang in Ginseng. Circulation 2004, 110, 1219–1225. DOI: 10.1161/01.CIR.0000140676.88412.CF.
  • Case, M. A.; Flinn, K. M.; Jancaitis, J.; Alley, A.; Paxton, A. Declining Abundance of American Ginseng (Panax Quinquefolius L.) Documented by Herbarium Specimens. Biol. Conserv. 2007, 134, 22–30. DOI: 10.1016/j.biocon.2006.07.018.
  • Proctor, J. T. A.; Shelp, B. J. Effect of Boron Nutrition on American Ginseng in Field and in Nutrient Cultures. J. Gins. Res. 2014, 38, 73–77. DOI: 10.1016/j.jgr.2013.11.002.
  • Lim, W.; Mudge, K. W.; Vermeylen, F. Effects of Population, Age, and Cultivation Methods on Ginsenoside Content of Wild American Ginseng (Panax Quinquefolium). J. Agric. Food Chem. 2005, 53, 8498–8505. DOI: 10.1021/jf051070y.
  • Chen, S. L.; Guo, B. L.; Zhang, G. J.; Yan, Z. Y.; Luo, G. M.; Sun, S. Q.; Wu, H. Z.; Huang, L. F.; Pang, X. H.; Chen, J. B. Advances of Studies on New Technology and Method for Identifying Traditional Chinese Medicinal Materials. Chin. J. Chin. Mater. Med. 2012, 37, 1043–1055.
  • Wang, L.; Gao, Y. G.; Wang, J. N.; Zang, P.; Zhang, L. X. Advances in the Identification of Medicinal Plants of Panax. Lishizhen Med. Mater. Med. Res. 2017, 28, 694–696.
  • Du, Y. Interpretation of Four Identification Methods for Identification of Traditional Chinese Medicine. Chin. Med. Pharm. 2012, 2, 102.
  • Zhao, Z. Z.; Liang, Z. T.; Ping, G. Macroscopic Identification of Chinese Medicinal Materials: Traditional Experiences and Modern Understanding. J. Ethnopharmacol. 2011, 134, 556–564. DOI: 10.1016/j.jep.2011.01.018.
  • Hu, N. N.; Tian, S. Q.; Yu, J. W.; Zhang, L. B.; Liu, Y.; Yang, G. Z. Research and Development of Identification Methods of Traditional Chinese Medicine. Inform. Tradit. Chin. Med. 2008, 25, 15–18.
  • Zhang, C. L.; Yuan, X. H. A Comparative Study on the Identification of American Ginseng and Its Adulterant Ginseng. Guangming J. Chin. Med. 2017, 32, 2178–2180.
  • Li, B.; Sun, M.; Wang, J. X.; Ren, Y.; Liu, Y.; Zhang, Z. F.; Lu, L. Y.; Zhang, J. Z.; Zeng, R.; Li, L. M. Authentication of Morphological and Microscopic Features of Stem and Leaf of Panax Quinquefolius L. grown in Ontario. Canada. Adv. Med. Plant Res. 2014, 2, 34–40.
  • Lee, S. K.; Kim, J. H.; Sohn, H. J.; Yang, J. W. Changes in Aroma Characteristics during the Preparation of Red Ginseng Estimated by Electronic Nose, Sensory Evaluation and Gas Chromatography/Mass Spectrometry. Sensor. Actuat. B-Chem. 2005, 106, 7–12.
  • Lee, D. G.; Kim, K. T.; Lee, S. Taste Profile Characterization of White Ginseng by Electronic Tongue Analysis. Afr. J. Biotechnol. 2012, 11, 9280–9287.
  • Cui, S. Q.; Yang, L. C.; Wang, J.; Wang, X. L. Taste Characteristics Based Quantitative and Qualitative Evaluation of Ginseng Adulteration. J. Sci. Food Agric. 2015, 95, 1535–1543. DOI: 10.1002/jsfa.6858.
  • Ye, L. L.; Xue, Y. L.; Wang, Y. D.; Qi, J. C.; Xiao, T. Q. Identification of Ginseng Root Using Quantitative X-Ray Microtomography. J. Ginseng Res. 2017, 41, 290–297. DOI: 10.1016/j.jgr.2016.05.004.
  • Ye, L. L.; Xue, Y. L.; Tan, H.; Chen, R. C.; Qi, J. C.; Xiao, T. Q. X-Ray Phase Contrast Micro-Tomography and Its Application in Quantitative 3D Imaging Study of Wild Ginseng Characteristic Microstructures. Acta Optica Sinica. 2013, 33, 373–378.
  • Jung, I. C.; Jeong, I. S.; Kim, C. S. Distinction of Internal Tissue of Raw Ginseng Root Using a Computed Tomography Scanner. J. Ginseng. Res. 2012, 36, 469–476. DOI: 10.5142/jgr.2012.36.4.469.
  • Yip, T. T.; Lau, C. N.; But, P. P.; Kong, Y. C. Quantitative Analysis of Ginsenosides in Fresh Panax Ginseng. Am. J. Chin. Med. 1985, 13, 77–88. DOI: 10.1142/S0192415X85000125.
  • Lee, T. M.; Marderosian, A. D. Two-Dimensional TLC Analysis of Ginsenosides from Root of Dwarf Ginseng (Panax Trifolius L.) Araliaceae. J. Pharm. Sci. 1981, 70, 89–91. DOI: 10.1002/jps.2600700119.
  • Bombardelli, E.; Bonati, A.; Gabetta, B.; Martinelli, E. M. Gas-Liquid Chromatographic Method for Determination of Ginsenosides in Panax Ginseng. J. Chromatogr. A. 1980, 196, 121–132. DOI: 10.1016/S0021-9673(00)80364-7.
  • Qiao, Y. J.; Zhang, J. J.; Shang, J. H.; Zhu, H. T.; Wang, D.; Yang, C. R.; Zhang, Y. J. GC-MS-Based Identification and Statistical Analysis of Liposoluble Components in the Rhizosphere Soils of Panax Notoginseng. RSC Adv. 2019, 9, 20557–20564. DOI: 10.1039/C9RA02110H.
  • Li, W. K.; Fitzloff, J. F. HPLC with Evaporative Light Scattering Detection as a Tool to Distinguish Asian Ginseng (Panax Ginseng) and North American Ginseng (Panax Quinquefolius). J. Liq. Chromatogr. R. T. 2002, 25, 17–27. DOI: 10.1081/JLC-100108536.
  • Kim, S. N.; Ha, Y. W.; Shin, H.; Son, S. H.; Wu, S. J.; Kim, Y. S. Simultaneous Quantification of 14 Ginsenosides in Panax Ginseng C.A. Meyer (Korean Red Ginseng) by HPLC-ELSD and Its Application to Quality Control. J. Pharm. Biomed. Anal. 2007, 45, 164–170. DOI: 10.1016/j.jpba.2007.05.001.
  • Liu, Y.; Duan, Z. M.; Xiong, H. Y.; Xu, Y.; Xu, D. X.; Lin, J. Determination of Ginsenosides in Flower, Stem, Leaf and Root of Fresh Panax Notoginseng from Wenshan, Yunnan Province. J. Food Safety Quality 2017, 8, 3864–3869.
  • Chen, J. H.; Xie, M. Y.; Fu, Z. H.; Lee, F. S. C.; Wang, X. R. Development of a Quality Evaluation System for Panax Quinquefolium. L Based on HPLC Chromatographic Fingerprinting of Seven Major Ginsenosides. Microchem. J. 2007, 85, 201–208. DOI: 10.1016/j.microc.2006.05.007.
  • Zhu, Y. Q.; Yin, Q. H.; Yang, J.; Yang, C. F.; Sun, X. D. Quality Assessment of Panax Notoginseng Flowers Based on Fingerprinting Using High-Performance Liquid chromatography-PDA. Res. Chem. Intermed. 2014, 40, 1641–1653. DOI: 10.1007/s11164-013-1070-y.
  • Fuzzati, N.; Gabetta, B.; Jayakar, K.; Pace, R.; Peterlongo, F. Liquid Chromatography–Electrospray Mass Spectrometric Identification of Ginsenosides in Panax Ginseng Roots. J. Chromatogr. A. 1999, 854, 69–79. DOI: 10.1016/S0021-9673(99)00463-X.
  • Shi, X. J.; Yang, W. Z.; Huang, Y.; Hou, J. J.; Qiu, S.; Yao, C. L.; Feng, Z. J.; Wei, W. L.; Wu, W. Y.; Guo, D. A. Direct Screening of Malonyl-Ginsenosides from Nine Ginseng Extracts by an Untargeted Profiling Strategy Incorporating in-Source Collision-Induced Dissociation, Mass Tag, and Neutral Loss Scan on a Hybrid Linear Ion-Trap/Orbitrap Mass Spectrometer Coupled to Ultra-High Performance Liquid Chromatography. J. Chromatogr. A. 2018, 1571, 213–222.
  • Lin, H. Q.; Zhu, H. L.; Tan, J.; Wang, C. Z.; Dong, Q. H.; Wu, F. L.; Wang, H.; Liu, J. L.; Li, P. Y.; Liu, J. P. Comprehensive Investigation on Metabolites of Wild-Simulated American Ginseng Root Based on Ultra-High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. J. Agric. Food Chem. 2019, 67, 5801–5819. DOI: 10.1021/acs.jafc.9b01581.
  • He, Y. F.; Cai, H. Q.; Zhang, H. M.; Ren, Z. H.; Tang, H.; Li, Y.; Zhou, X. W.; Liu, W. L.; Pei, J.; Liu, S. Y. A Metabolomic Study of Asian and American Ginseng Based on RRLC-QTOF/MS Methods. J. Liq. Chromatogr. R. T. 2019, 42, 452–458.
  • Guo, N.; Zhu, L. L.; Song, J.; Dou, D. Q. A New Simple and Fast Approach to Analyze Chemical Composition on White, Red, and Black Ginseng. Ind. Crop. Prod. 2019, 134, 185–194.
  • Chen, W.; Balan, P.; Popovich, D. G. Ginsenosides Analysis of New Zealand–Grown Forest Panax Ginseng by LC-QTOF-MS/MS. J. Gins. Res. 2019.
  • Min, J. E.; Hong, J. Y.; Kwon, S. W.; Park, J. H. Integrated Metabolomics Signature for Assessing the Longevity of Panax Ginseng Seeds. J. Sci. Food Agric. 2019, 99, 6089–6096. DOI: 10.1002/jsfa.9887.
  • Le, K. C.; Ho, T. T.; Paek, K. Y.; Park, S. Y.; Low Dose Gamma Radiation Increases the Biomass and Ginsenoside Content of Callus and Adventitious Root Cultures of Wild Ginseng (Panax Ginseng Mayer). Ind. Crop. Prod. 2019, 130, 16–24. DOI: 10.1016/j.indcrop.2018.12.056.
  • Wei, G. F.; Yang, F.; Wei, F. G.; Zhang, L. J.; Gao, Y.; Qian, J.; Chen, Z. J.; Jia, Z. W.; Wang, Y.; Su, H. Metabolomes and Transcriptomes Revealed the Saponin Distribution in Root Tissues of Panax Quinquefolius and Panax Notoginseng. J. Gins. Res. 2019.
  • Yoon, D.; Choi, B. R.; Ma, S.; Lee, J. W.; Jo, I. H.; Lee, Y. S.; Kim, G. S.; Kim, S.; Lee, D. Y. Metabolomics for Age Discrimination of Ginseng Using a Multiplex Approach to HR-MAS NMR Spectroscopy, UPLC-QTOF/MS, and GC × GC-TOF/MS. Molecules 2019, 24, 2381. DOI: 10.3390/molecules24132381.
  • Liang, W. X.; Wang, S. H.; Yao, L.; Wang, J.; Gao, W. Y. Quality Evaluation of Panax Ginseng Adventitious Roots Based on Ginsenoside Constituents, Functional Genes, and Ferric-Reducing Antioxidant Power . J. Food Biochem. 2019, 43, e12901. DOI: 10.1111/jfbc.12901.
  • Zhao, Q.; Bai, Y. P.; Liu, D.; Zhao, N.; Gao, H. Y.; Zhang, X. Z. Quinetides: diverse Posttranslational Modified Peptides of Ribonuclease-like Storage Protein from Panax Quinquefolius as Markers for Differentiating Ginseng Species. J. Gins. Res. 2019.
  • Liang, J.; Chen, L.; Guo, Y. H.; Zhang, M. L.; Gao, Y. Simultaneous Determination and Analysis of Major Ginsenosides in Wild American Ginseng Grown in Tennessee. Chem. Biodivers. 2019, 16, e1900203.
  • Jia, L.; Zuo, T. T.; Zhang, C. X.; Li, W. W.; Wang, H. D.; Hu, Y.; Wang, X. Y.; Qian, Y. X.; Yang, W. Z.; Yu, H. S. Simultaneous Profiling and Holistic Comparison of the Metabolomes among the Flower Buds of Panax Ginseng, Panax Quinquefolius, and Panax Notoginseng by UHPLC/IM-QTOF-HDMSE-Based Metabolomics Analysis. Molecules 2019, 24, 2188. DOI: 10.3390/molecules24112188.
  • Yang, B. W.; Lee, J. B.; Lee, J. M.; Jo, M. S.; Byun, J. K.; Kim, H. C.; Ko, S. K. The Comparison of Seasonal Ginsenoside Composition Contents in Korean Wild Simulated Ginseng (Panax Ginseng) Which Were Cultivated in Different Areas and Various Ages. Nat. Prod. Sci. 2019, 25, 1. DOI: 10.20307/nps.2019.25.1.1.
  • Lee, M. Y.; Seo, H. S.; Singh, D.; Lee, S. J.; Lee, C. H. Unraveling Dynamic Metabolomes Underlying Different Maturation Stages of Berries Harvested from Panax Ginseng. J. Gins. Res. 2019, 1226–8453.
  • Song, H. H.; Kim, D. Y.; Woo, S.; Lee, H. K.; Oh, S. R. An Approach for Simultaneous Determination for Geographical Origins of Korean Panax Ginseng by UPLC-QTOF/MS Coupled with OPLS-DA Models. J. Gins. Res. 2013, 37, 341–348.
  • Ye, J.; Gao, Y. X.; Tian, S. S.; Su, J.; Zhang, W. D. A Novel and Effective Mode-Switching Triple Quadrupole Mass Spectrometric Approach for Simultaneous Quantification of Fifteen Ginsenosides in Panax Ginseng. Phytomedicine 2018, 44, 164–172. DOI: 10.1016/j.phymed.2018.02.007.
  • Du, Z. X.; Li, J. H.; Zhang, X.; Pei, J.; Huang, L. F. An Integrated LC-MS-Based Strategy for the Quality Assessment and Discrimination of Three Panax Species. Molecules 2018, 23, 2988. DOI: 10.3390/molecules23112988.
  • Li, L. L.; Wang, Y.; Xiu, Y.; Liu, S. Y. Chemical Differentiation and Quantitative Analysis of Different Types of Panax Genus Stem-Leaf Based on a UPLC-Q-Exactive Orbitrap/MS Combined with Multivariate Statistical Analysis Approach. J. Anal. Methods. Chem. 2018, 2018, 1–16. DOI: 10.1155/2018/9598672.
  • Huang, B. M.; Zha, Q. L.; Chen, T. B.; Xiao, S. Y.; Xie, Y.; Luo, P.; Wang, Y. P.; Liu, L.; Zhou, H. Discovery of Markers for Discriminating the Age of Cultivated Ginseng by Using UHPLC-QTOF/MS Coupled with OPLS-DA. Phytomedicine 2018, 45, 8–17. DOI: 10.1016/j.phymed.2018.03.011.
  • Lee, D. G.; Lee, J.; Kim, K. T.; Lee, S. W.; Kim, Y. O.; Cho, I. H.; Kim, H. J.; Park, C. G.; Lee, S. High-Performance Liquid Chromatography Analysis of Phytosterols in Panax Ginseng Root Grown under Different Conditions. J. Gins. Res. 2018, 42, 16–20. DOI: 10.1016/j.jgr.2016.10.004.
  • Choi, J. Y.; Hong, J. H.; Dang, Y. M.; Jamila, N.; Khan, N.; Jo, C. H.; Chun, H. S.; Kim, K. S.; Identification Markers of Adulteration in Korean Red Ginseng (Panax Ginseng) Products Using High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography–Mass Spectrometry (LC-MS. ). Anal. Lett. 2018, 51, 2588–2601. DOI: 10.1080/00032719.2018.1443340.
  • Rho, T.; Jeong, H. W.; Hong, Y. D.; Yoon, K.; Cho, J. Y.; Yoon, K. D. Identification of a Novel Triterpene Saponin from Panax Ginseng Seeds, Pseudoginsenoside RT8, and Its Antiinflammatory Activity. J. Gins. Res. 2020, 44, 145–153.
  • Yang, Z. Z.; Zhu, J. Q.; Zhang, H.; Fan, X. H. Investigating Chemical Features of Panax Notoginseng Based on Integrating HPLC Fingerprinting and Determination of Multiconstituents by Single Reference Standard. J. Gins. Res. 2018, 42, 334–342. DOI: 10.1016/j.jgr.2017.04.005.
  • Inagaki, T.; Katayama, N.; Cho, R. K.; Chen, X. J.; Tsuchikawa, S. Near Infrared Estimation of Concentration of Ginsenosides in Asian Ginseng. J. Near. Infrared Spec. 2019, 27, 115–122. DOI: 10.1177/0967033518814851.
  • Huang, X.; Liu, Y.; Zhang, N.; Sun, X. L.; Yue, H.; Chen, C. B.; Liu, S. Y. UPLC Orbitrap HRMS Analysis of Panax Quinquefolium L. for Authentication of Panax Genus with Chemometric Methods. J. Chromatogr. Sci. 2018, 56, 25–35. DOI: 10.1093/chromsci/bmx077.
  • Lee, J.; Ji, S. H.; Choi, B. R.; Choi, D.; Lee, Y. G.; Kim, H. G.; Kim, G. S.; Kim, K.; Lee, Y. H.; Baek, N. I.; et al. UPLC-QTOF/MS-Based Metabolomics Applied for the Quality Evaluation of Four Processed Panax Ginseng Products. Molecules 2018, 23, 2062. DOI: 10.3390/molecules23082062.
  • Meng, F. C.; Wu, Q. S.; Wang, R. B.; Li, S. P.; Lin, L. G.; Chen, P.; Zhang, Q. W. A Novel Strategy for Quantitative Analysis of Major Ginsenosides in Panacis Japonici Rhizoma with a Standardized Reference Fraction. Molecules 2017, 22, 2067. DOI: 10.3390/molecules22122067.
  • Xia, P. G.; Guo, H. B.; Ru, M.; Yang, D. F.; Liang, Z. S.; Yan, X. J.; Liu, Y. Accumulation of Saponins in Panax Notoginseng during Its Growing Seasons. Ind. Crop. Prod. 2017, 104, 287–292. DOI: 10.1016/j.indcrop.2017.04.045.
  • Yin, J. X.; Wang, L. W.; Huang, Y.; Mu, Y.; Lv, S. W. Authentication of Panax Ginseng from Different Regions. RSC Adv. 2017, 7, 55646–55652. DOI: 10.1039/C7RA09537F.
  • Dai, Y. L.; Qiao, M. D.; Yu, P.; Zheng, F.; Yue, H.; Liu, S. Y. Comparing Eight Types of Ginsenosides in Ginseng of Different Plant Ages and Regions Using RRLC-Q-TOF MS/MS. J. Gins. Res. 2017, 44, 205–214.
  • Lee, J.; Choi, B. R.; Kim, Y. C.; Choi, D.; Lee, Y. S.; Kim, G. S.; Baek, N. I.; Kim, S. Y.; Lee, D. Comprehensive Profiling and Quantification of Ginsenosides in the Root, Stem, Leaf, and Berry of Panax Ginseng by UPLC-QTOF/MS. Molecules 2017, 22, 2147. DOI: 10.3390/molecules22122147.
  • Lee, J.; Ji, S. H.; Lee, Y. S.; Choi, D.; Choi, B. R.; Kim, G. S.; Baek, N. I.; Lee, D. Mass Spectrometry Based Profiling and Imaging of Various Ginsenosides from Panax Ginseng Roots at Different Ages. IJMS. 2017, 18, 1114. DOI: 10.3390/ijms18061114.
  • Liu, J.; Liu, Y.; Wang, Y.; Abozeid, A.; Zu, Y. G.; Tang, Z. H. The Integration of GC-MS and LC-MS to Assay the Metabolomics Profiling in Panax Ginseng and Panax Quinquefolius Reveals a Tissue- and Species-Specific Connectivity of Primary Metabolites and Ginsenosides Accumulation. J. Pharmaceut. Biomed. Anal. 2017, 135, 176–185.
  • Yang, X. W.; Wang, H. P.; Xu, W.; Wang, Y. P.; Xu, Y. H.; Zhang, L. X. Content Analyses of Ginsenosides in the Roots and Rhizomes of Panax Ginseng from Different Regions. Chin. J. Pharm. Anal. 2017, 37, 30–36.
  • Kang, O. J.; Kim, J. S. Comparison of Ginsenoside Contents in Different Parts of Korean Ginseng (Panax Ginseng C.A. Meyer). JFN. 2016, 21, 389–392. DOI: 10.3746/pnf.2016.21.4.389.
  • Chen, X. J.; Qiu, J. F.; Wang, Y. T.; Wan, J. B. Discrimination of Three Panax Species Based on Differences in Volatile Organic Compounds Using a Static Headspace GC-MS-Based Metabolomics Approach. Am. J. Chin. Med. 2016, 44, 663–676. DOI: 10.1142/S0192415X16500361.
  • Zhao, H. F.; Xu, F. F.; Guo, Y. T.; Mi, H. Identification of a Panax Ginseng Fruit Fingerprint by HPLC-ESI-MS. Genet. Mol. Res. 2016, 15, 15017235. DOI: 10.4238/gmr.15017235.
  • Shin, J. S.; Park, H. W.; In, G.; Seo, H. K.; Won, T. H.; Jang, K. H.; Cho, B. G.; Han, C. K.; Shin, J. H. Metabolomic Approach for Discrimination of Four- and Six-Year-Old Red Ginseng (Panax Ginseng) Using UPLC-QToF-MS. Chem. Pharm. Bull. 2016, 64, 1298–1303.
  • Wang, H. P.; Zhang, Y. B.; Yang, X. W.; Yang, X. B.; Xu, W.; Xu, F.; Cai, S. Q.; Wang, Y. P.; Xu, Y. H.; Zhang, L. X. High-Performance Liquid Chromatography with Diode Array Detector and Electrospray Ionization Ion Trap Time-of-Flight Tandem Mass Spectrometry to Evaluate Ginseng Roots and Rhizomes from Different Regions. Molecules 2016, 21, 603. DOI: 10.3390/molecules21050603.
  • Park, H. W.; In, G.; Kim, J. H.; Cho, B. G.; Han, G. H.; Chang, I. M. Metabolomic Approach for Discrimination of Processed Ginseng Genus (Panax Ginseng and Panax Quinquefolius) Using UPLC-QTOF MS. J. Gins. Res. 2014, 38, 59–65. DOI: 10.1016/j.jgr.2013.11.011.
  • Xia, P. G.; Li, J. Z.; Wang, R. L.; Zhang, Y.; Guo, H. B.; Yan, X. J.; Liu, Y.; Liang, Z. S.; Comparative Study on Volatile Oils of Four Panax Genus Species in Southeast Asia by Gas Chromatography–Mass Spectrometry. Ind. Crop. Prod. 2015, 74, 478–484. DOI: 10.1016/j.indcrop.2015.05.059.
  • Yu, C. H.; Wang, C. Z.; Zhou, C. J.; Wang, B.; Han, L. D.; Zhang, C. F.; Wu, X. H.; Yuan, C. S.; Adulteration and Cultivation Region Identification of American Ginseng Using HPLC Coupled with Multivariate Analysis. J. Pharm. Biomed. Anal. 2014, 99, 8–15. DOI: 10.1016/j.jpba.2014.06.031.
  • Chan, T. W. D.; But, P. P. H.; Cheng, S. W.; Kwok, I. M. Y.; Lau, F. W.; Xu, H. X.; Differentiation and Authentication of Panax Ginseng, Panax Quinquefolius, and Ginseng Products by Using HPLC/MS. Anal. Chem. 2000, 72, 1281–1287. DOI: 10.1021/ac990819z.
  • Li, W. K.; Gu, C. G.; Zhang, H. J.; Awang, D. V. C.; Fitzlof, J. F.; Fong, H. H. S.; Van Breemen, R. B.; Harry, H. S.; Fong, A. R. B. V. Use of High-Performance Liquid Chromatography-Tandem Mass Spectrometry to Distinguish Panax Ginseng C. A. Meyer (Asian Ginseng) and Panax Quinquefolius L. Anal. Chem. 2000, 72, 5417–5422. DOI: 10.1021/ac000650l.
  • Qiu, S.; Yang, W. Z.; Shi, X. J.; Yao, C. L.; Yang, M.; Liu, X.; Jiang, B. H.; Wu, W. Y.; Guo, D. A. A Green Protocol for Efficient Discovery of Novel Natural Compounds: characterization of New Ginsenosides from the Stems and Leaves of Panax Ginseng as a Case Study. Anal. Chim. Acta 2015, 893, 65–76.
  • Yao, C. L.; Pan, H. Q.; Wang, H.; Yao, S.; Yang, W. Z.; Hou, J. J.; Jin, Q. H.; Wu, W. Y.; Guo, D. A. Global Profiling Combined with Predicted Metabolites Screening for Discovery of Natural Compounds: Characterization of Ginsenosides in the Leaves of Panax Notoginseng as a Case Study. J. Chromatogr. A. 2018, 1538, 34–44. DOI: 10.1016/j.chroma.2018.01.040.
  • Qiu, S.; Yang, W. Z.; Yao, C. L.; Qiu, Z. D.; Shi, X. J.; Zhang, J. X.; Hou, J. J.; Wang, Q. R.; Wu, W. Y.; Guo, D. A.; Nontargeted Metabolomic Analysis and “Commercial-Homophyletic” Comparison-Induced Biomarkers Verification for the Systematic Chemical Differentiation of Five Different Parts of Panax Ginseng. J. Chromatogr. A. 2016, 1453, 78–87. DOI: 10.1016/j.chroma.2016.05.051.
  • Yang, W. Z.; Shi, X. J.; Yao, C. L.; Huang, Y.; Hou, J. J.; Han, S. M.; Feng, Z. J.; Wei, W. L.; Wu, W. Y.; Guo, D. A. A Novel Neutral Loss/Product Ion Scan-Incorporated Integral Approach for the Untargeted Characterization and Comparison of the Carboxyl-Free Ginsenosides from Panax Ginseng, Panax Quinquefolius, and Panax Notoginseng. J. Pharmaceut. Biomed. 2020, 177, 112813. DOI: 10.1016/j.jpba.2019.112813.
  • Zhang, H. W.; Jiang, Y.; Huang, W. L.; Yang, X. J.; Deng, C.; Wang, W.; Song, X. M. A New Triterpenoid Saponin from Leaves of Panax Japonicas Var. major. Chin. Tradit. Herb. Drugs 2020, 51, 26–30.
  • Yang, W. Z.; Ye, M.; Qiao, X.; Liu, C. F.; Miao, W. J.; Bo, T.; Tao, H. Y.; Guo, D. A. A Strategy for Efficient Discovery of New Natural Compounds by Integrating Orthogonal Column Chromatography and Liquid Chromatography/Mass Spectrometry Analysis: Its Application in Panax Ginseng, Panax Quinquefolium and Panax Notoginseng to Characterize 437 Potential New Ginsenosides. Anal. Chim. Acta 2012, 739, 56–66. DOI: 10.1016/j.aca.2012.06.017.
  • Wan, J. B.; Li, S. P.; Chen, J. M.; Wang, Y. T. Chemical Characteristics of Three Medicinal Plants of the Panax Genus Determined by HPLC-ELSD. J. Sep. Sci. 2007, 30, 825–832. DOI: 10.1002/jssc.200600359.
  • Leung, K. Y.; Chan, K.; Bensoussan, A.; Munroe, M. J.; Application of Atmospheric Pressure Chemical Ionisation Mass Spectrometry in the Identification and Differentiation of Panax Species. Phytochem. Anal. 2007, 18, 146–150. DOI: 10.1002/pca.962.
  • Yunusova, N.; Kim, J. Y.; Lee, G. J.; Hong, J. Y.; Shin, B. K.; Cai, S. Q.; Piao, X. L.; Park, J. H.; Kwon, S. W.; Comparison of Ginsenosides in Radix and Rhizome of Wild Panax Species Using LC-ELSD and LC-Q-TOF-MS. Int. J. Food Sci. Technol. 2015, 50, 1607–1614. DOI: 10.1111/ijfs.12814.
  • Wang, H. D.; Zhang, C. X.; Zuo, T. T.; Li, W. W.; Jia, L.; Wang, X. Y.; Qian, Y. X.; Guo, D. A.; Yang, W. Z.; In-Depth Profiling, Characterization, and Comparison of the Ginsenosides among Three Different Parts (the Root, Stem Leaf, and Flower Bud) of Panax Quinquefolius L. by Ultra-High Performance Liquid Chromatography/quadrupole-Orbitrap Mass Spectrometry. Anal. Bioanal. Chem. 2019, 411, 7817–7829.
  • Shi, X. J.; Yang, W. Z.; Qiu, S.; Hou, J. J.; Wu, W. Y.; Guo, D. A.; Systematic Profiling and Comparison of the Lipidomes from Panax Ginseng, P. quinquefolius, and P. notoginseng by Ultrahigh Performance Supercritical Fluid Chromatography/High-Resolution Mass Spectrometry and Ion Mobility-Derived Collision Cross Section Measurement. J. Chromatogr. A. 2018, 1548, 64–75. DOI: 10.1016/j.chroma.2018.03.025.
  • Zhang, L.; Liu, X. Y.; Xu, W.; Yang, X. W. Pharmacokinetics Comparison of 15 Ginsenosides and 3 Aglycones in Ginseng Radix et Rhizoma and Baoyuan Decoction Using Ultra-Fast Liquid Chromatography Coupled with Triple Quadrupole Tandem Mass Spectrometry. Phytomedicine 2019, 59, 152775. DOI: 10.1016/j.phymed.2018.11.035.
  • Peng, J. J.; Li, D. X.; Huang, J. Y.; Tong, L.; Yu, B. Y.; Simultaneous Determination of Saponins in Dripping Pills Made from Astragali Radix and Panax Notoginseng by UPLC-ELSD. Chin. Herb. Med. 2017, 9, 267–274. DOI: 10.1016/S1674-6384(17)60103-5.
  • Yang, W.; Zhang, J.; Yao, C.; Qiu, S.; Chen, M.; Pan, H.; Shi, X.; Wu, W.; Guo, D. Method Development and Application of Offline Two-Dimensional Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry-Fast Data Directed Analysis. J. Pharm. Biomed. Anal. 2016, 128, 322–332. DOI: 10.1016/j.jpba.2016.05.035.
  • Xue, M.; Yang, L.; Shi, D. Z.; Radauer, C.; Breiteneder, H.; Ma, Y.; Qualitative Analysis of Xinyue Capsules by High-Performance Liquid Chromatography: Preliminary Evaluation of Drug Quality in a Sino-Austrian Joint Study. Chin. J. Integr. Med. 2015, 21, 772–777. DOI: 10.1007/s11655-015-2311-2.
  • Wang, L. L.; Han, L. F.; Yu, H. S.; Sang, M. M.; Liu, E. W.; Zhang, Y.; Fang, S. M.; Wang, T.; Gao, X. M. Analysis of the Constituents in “Zhu She Yong Xue Shuan Tong” by Ultra High Performance Liquid Chromatography with Quadrupole Time-of-Flight Mass Spectrometry Combined with Preparative High Performance Liquid Chromatography. Molecules 2015, 20, 20518–20537. DOI: 10.3390/molecules201119712.
  • Gong, L.; Haiyu, X.; Wang, L.; Xiaojie, Y.; Huijun, Y.; Songsong, W.; Cheng, L.; Ma, X.; Gao, S.; Liang, R.; Yang, H. Identification and Evaluation of the Chemical Similarity of Yindan Xinnaotong Samples by Ultra High Performance Liquid Chromatography with Quadrupole Time‐of‐Flight Mass Spectrometry Fingerprinting. J. Sep. Sci. 2016, 39, 611–622. DOI: 10.1002/jssc.201500836.
  • Ge, A. H.; Li, J.; Donnapee, S.; Bai, Y.; Liu, J.; He, J.; Liu, E. W.; Kang, L. Y.; Gao, X. M.; Chang, Y. X. Simultaneous Determination of 2 Aconitum Alkaloids and 12 Ginsenosides in Shenfu Injection by Ultraperformance Liquid Chromatography Coupled with a Photodiode Array Detector with Few Markers to Determine Multicomponents. J. Food Drug Anal. 2015, 23, 267–278. DOI: 10.1016/j.jfda.2014.10.013.
  • Yang, H.; Liu, L.; Gao, W.; Liu, K.; Qi, L. W.; Li, P.; Direct and Comprehensive Analysis of Ginsenosides and Diterpene Alkaloids in Shenfu Injection by Combinatory Liquid Chromatography-Mass Spectrometric Techniques. J. Pharm. Biomed. Anal. 2014, 92, 13–21. DOI: 10.1016/j.jpba.2013.12.041.
  • Yao, H.; Shi, P. Y.; Shao, Q.; Fan, X. H. Chemical Fingerprinting and Quantitative Analysis of a Panax Notoginseng Preparation Using HPLC-UV and HPLC-MS. Chin. Med. 2011, 6, 9. DOI: 10.1186/1749-8546-6-9.
  • Li, S. L.; Lai, S. F.; Song, J. Z.; Qiao, C. F.; Liu, X.; Zhou, Y.; Cai, H.; Cai, B. C.; Xu, H. X.; Decocting-Induced Chemical Transformations and Global Quality of Du–Shen–Tang, the Decoction of Ginseng Evaluated by UPLC–Q-TOF-MS/MS Based Chemical Profiling Approach. J. Pharm. Biomed. Anal. 2010, 53, 946–957. DOI: 10.1016/j.jpba.2010.07.001.
  • Cao, J.; Qi, L. W.; Chen, J.; Yi, L.; Li, P.; Ren, M. T.; Li, Y. J.; Application of Liquid Chromatography-Electrospray Ionization Time-of-Flight Mass Spectrometry for Analysis and Quality Control of Compound Danshen Preparations. Biomed. Chromatogr. 2009, 23, 397–405. DOI: 10.1002/bmc.1130.
  • Li, Y. F.; Qu, H. B.; Cheng, Y. Y. Identification of Major Constituents in the Traditional Chinese Medicine “QI-SHEN-YI-QI” Dropping Pill by High-Performance Liquid Chromatography Coupled with Diode Array Detection-Electrospray Ionization Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2008, 47, 407–412.
  • Liu, Y.; Yang, J. S.; Cai, Z. W. Chemical Investigation on Sijunzi Decoction and Its Two Major Herbs Panax Ginseng and Glycyrrhiza Uralensis by LC/MS/MS. J. Pharm. Biomed. Anal. 2006, 41, 1642–1647. DOI: 10.1016/j.jpba.2006.02.033.
  • Fan, X. H.; Cheng, Y. Y.; Ye, Z. L.; Lin, R. C.; Qian, Z. Z. Multiple Chromatographic Fingerprinting and Its Application to the Quality Control of Herbal Medicines. Anal. Chim. Acta 2006, 555, 217–224. DOI: 10.1016/j.aca.2005.09.037.
  • Zhang, H. J.; Cheng, Y. Y. Solid-Phase Extraction and Liquid Chromatography–Electrospray Mass Spectrometric Analysis of Saponins in a Chinese Patent Medicine of Formulated Salvia Miltiorrhizae and Panax Notoginseng. J. Pharm. Biomed. Anal. 2006, 40, 429–432. DOI: 10.1016/j.jpba.2005.07.010.
  • Yao, C. L.; Yang, W. Z.; Zhang, J. X.; Qiu, S.; Chen, M.; Shi, X. J.; Pan, H. Q.; Wu, W. Y.; Guo, D. A. UHPLC-Q-TOF-MS-Based Metabolomics Approach to Compare the Saponin Compositions of Xueshuantong Injection and Xuesaitong Injection. J. Sep. Sci. 2017, 40, 834–841. DOI: 10.1002/jssc.201601122.
  • Yao, C. L.; Yang, W. Z.; Si, W.; Pan, H. Q.; Qiu, S.; Wu, J.; Shi, X. J.; Feng, R. H.; Wu, W. Y.; Guo, D. A. A Strategy for Establishment of Practical Identification Methods for Chinese Patent Medicine from Systematic Multi-Component Characterization to Selective Ion Monitoring of Chemical Markers: Shuxiong Tablet as a Case Study. RSC Adv. 2016, 6, 65055–65066. DOI: 10.1039/C6RA10883K.
  • Yao, C. L.; Yang, W. Z.; Wu, W. Y.; Da, J.; Hou, J. J.; Zhang, J. X.; Zhang, Y. H.; Jin, Y.; Yang, M.; Jiang, B. H.; et al. Simultaneous Quantitation of Five Panax Notoginseng Saponins by Multi Heart-Cutting Two-Dimensional Liquid Chromatography: Method Development and Application to the Quality Control of Eight Notoginseng Containing Chinese Patent Medicines. J. Chromatogr. A. 2015, 1402, 71–81. DOI: 10.1016/j.chroma.2015.05.015.
  • Chen, F. Q.; Luo, J. G.; Kong, L. Y. Determination of 10 Ginsenosides in Panax Ginseng of Different Harvest Times Based on HPLC Fingerprints and Principal Component Analysis. Nat. Prod. Res. 2013, 27, 851–854.
  • Serrone, P. D.; Attorri, L.; Palazzino, G. Easy DNA Extraction for Rapid Detection of Panax Ginseng C. A. Meyer in Commercial Ginseng Products. Nat. Prod. Res. 2007, 21, 1099–1103. DOI: 10.1080/14786410600879789.
  • Cheong, K. L.; Wu, D. T.; Deng, Y.; Leong, F.; Zhao, J.; Zhang, W. J.; Li, S. P. Qualitation and Quantification of Specific Polysaccharides from Panax Species Using GC–MS, Saccharide Mapping and HPSEC-RID-MALLS. Carbohyd. Polym. 2016, 153, 47–54. DOI: 10.1016/j.carbpol.2016.07.077.
  • Yang, W. Z.; Hu, Y.; Wu, W. Y.; Ye, M.; Guo, D. A. Saponins in the Genus Panax L. (Araliaceae): A Systematic Review of Their Chemical Diversity. Phytochemistry 2014, 106, 7–24. DOI: 10.1016/j.phytochem.2014.07.012.
  • Song, Y.; Zhang, N.; Shi, S.; Li, J.; Zhao, Y.; Zhang, Q.; Jiang, Y.; Tu, P. Homolog-Focused Profiling of Ginsenosides Based on the Integration of Step-Wise Formate Anion-to-Deprotonated Ion Transition Screening and Scheduled Multiple Reaction Monitoring. J. Chromatogr. A. 2015, 1406, 136–144.
  • Qiu, S.; Yang, W. Z.; Yao, C. L.; Shi, X. J.; Li, J. Y.; Lou, Y.; Duan, Y. N.; Wu, W. Y.; Guo, D. A. Malonylginsenosides with Potential Antidiabetic Activities from the Flower Buds of Panax Ginseng. J. Nat. Prod. 2017, 80, 899–908. DOI: 10.1021/acs.jnatprod.6b00789.
  • Lee, D. G.; Quilantang, N. G.; Lee, J. S.; Geraldino, P. J. L.; Kim, H. Y.; Lee, S. Quantitative Analysis of Dammarane-Type Ginsenosides in Different Ginseng Products. Nat. Prod. Sci. 2018, 24, 229. DOI: 10.20307/nps.2018.24.4.229.
  • Liu, Z.; Wang, C. Z.; Zhu, X. Y.; Wan, J. Y.; Zhang, J.; Li, W.; Ruan, C. C.; Yuan, C. S. Dynamic Changes in Neutral and Acidic Ginsenosides with Different Cultivation Ages and Harvest Seasons: Identification of Chemical Characteristics for Panax Ginseng Quality Control. Molecules 2017, 22, 734. DOI: 10.3390/molecules22050734.
  • Geng, Y.; Jiang, L. J.; Jiang, H. X.; Wang, L.; Peng, Y.; Wang, C.; Shi, X. M.; Gu, J.; Wang, Y. H.; Zhu, J. C.; et al. Assessment of Heavy Metals, Fungicide Quintozene and Its Hazardous Impurity Residues in Medical Panax Notoginseng (Burk) F. H. Chen Root. Biomed. Chromatogr. 2019, 33, e4378.
  • Wu, J. W.; Liu, Y. G.; Zhao, R. H.; Xu, R. Fast Pesticide Multiresidue Analysis in American Ginseng (Panax Quinquefolium L.) by Gas Chromatography with Electron Capture Detection. J. Nat. Med. 2011, 65, 406–409. DOI: 10.1007/s11418-010-0500-z.
  • Cui, L. L.; Yan, M. X.; Piao, X. M.; Pang, S. F.; Wang, Y. P. Rapid Determination of Pesticide Multiresidues in Panax Ginseng by QuEChERS-Gas Chromatography-Mass Spectrometry. Chin. J. Chromatogr. 2018, 36, 1173. DOI: 10.3724/SP.J.1123.2018.06015.
  • Xie, Y. Y.; Luo, D.; Cheng, Y. J.; Ma, J. F.; Wang, Y. M.; Liang, Q. L.; Luo, G. A. Steaming-Induced Chemical Transformations and Holistic Quality Assessment of Red Ginseng Derived from Panax Ginseng by Means of HPLC-ESI-MS/MSn-Based Multicomponent Quantification Fingerprint. J. Agric. Food Chem. 2012, 60, 8213–8224.
  • Zhu, H. L.; Lin, H. Q.; Tan, J.; Wang, C. Z.; Wang, H.; Wu, F. L.; Dong, Q. H.; Liu, Y. H.; Li, P. Y.; Liu, J. P. UPLC-QTOF/MS-Based Nontargeted Metabolomic Analysis of Mountain- and Garden-Cultivated Ginseng of Different Ages in Northeast China. Molecules 2018, 24, 33. DOI: 10.3390/molecules24010033.
  • Nguyen, H. T.; Lee, D. K.; Lee, W. J.; Lee, G. J.; Yoon, S. J.; Byong-Kyu Shin, M. D. N. J.; Kwon, S. W. UPLC-QTOFMS Based Metabolomics Followed by Stepwise Partial Least Square-Discriminant Analysis (PLS-DA) Explore the Possible Relation between the Variations in Secondary Metabolites and the Phylogenetic Divergences of the Genus Panax. J. Chromatogr. B. 2016, 1012, 61–68. DOI: 10.1016/j.jchromb.2016.01.002.
  • Mao, Q.; Bai, M.; Xu, J. D.; Kong, M.; Zhu, L. Y.; Zhu, H.; Wang, Q.; Li, S. L. Discrimination of Leaves of Panax Ginseng and P. quinquefolius by Ultra High Performance Liquid Chromatography Quadrupole/Time-of-Flight Mass Spectrometry Based Metabolomics Approach. J. Pharm. Biomed. Anal. 2014, 97, 129–140. DOI: 10.1016/j.jpba.2014.04.032.
  • Shi, X. J.; Yang, W. Z.; Qiu, S.; Yao, C. L.; Shen, Y.; Pan, H. Q.; Bi, Q. R.; Yang, M.; Wu, W. Y.; Guo, D. A. An in-Source Multiple Collision-Neutral Loss Filtering Based Nontargeted Metabolomics Approach for the Comprehensive Analysis of Malonyl-Ginsenosides from Panax Ginseng, P. quinquefolius, and P. notoginseng. Anal. Chim. Acta 2017, 952, 59–70. DOI: 10.1016/j.aca.2016.11.032.
  • Zhang, H.; Liu, X. F.; Zhao, L.; Zhu, Z. Y.; Zhang, G. Y.; Chai, Y. F.; HPLC-TOF/MS in Identification of Chemical Components in Ginseng. Acad. J. Sec. Mil. Med. Univ. 2009, 30, 812–816. DOI: 10.3724/SP.J.1008.2009.00812.
  • Zhang, C. X.; Zuo, T. T.; Wang, X. Y.; Wang, H. D.; Hu, Y.; Li, Z.; Li, W. W.; Jia, L.; Qian, Y. X.; Yang, W. Z.; et al. Integration of Data-Dependent Acquisition (DDA) and Data-Independent High-Definition MSE (HDMSE) for the Comprehensive Profiling and Characterization of Multicomponents from Panax Japonicus by UHPLC/IM-QTOF-MS. Molecules 2019, 24, 2708. DOI: 10.3390/molecules24152708.
  • Baek, S. H.; Bae, O. N.; Park, J. H. Recent Methodology in Ginseng Analysis. J. Ginseng Res. 2012, 36, 119–134. DOI: 10.5142/jgr.2012.36.2.119.
  • Gurung, B.; Bhardwaj, P. K.; Rai, A. K.; Sahoo, D.; Major Ginsenoside Contents in Rhizomes of Panax Sokpayensis and Panax Bipinnatifidus. Nat. Prod. Res. 2018, 32, 234–238.
  • Zuo, T.; Qian, Y. X.; Zhang, C. X.; Wei, Y. X.; Wang, X. Y.; Wang, H. D.; Hu, Y.; Li, W. W.; Wu, X. H.; Yang, W. Z. Data-Dependent Acquisition and Database-Driven Efficient Peak Annotation for the Comprehensive Profiling and Characterization of the Multicomponents from Compound Xueshuantong Capsule by UHPLC/IM-QTOF-MS. Molecules 2019, 24, 3431. DOI: 10.3390/molecules24193431.
  • Jamshidi, B.; Mohajerani, E.; Jamshidi, J. Developing a Vis/NIR Spectroscopic System for Fast and Non-Destructive Pesticide Residue Monitoring in Agricultural Product. Measurement. 2016, 89, 1–6. DOI: 10.1016/j.measurement.2016.03.069.
  • Qin, J. Y.; Ying, Y. B.; Xie, L. J. The Detection of Agricultural Products and Food Using Terahertz Spectroscopy: A Review. Appl. Spectrosc. Rev. 2013, 6, 439–457. DOI: 10.1080/05704928.2012.745418.
  • Li, Y.; Wang, Y. Z.; Yang, W. Z.; Yang, S. B.; Zhang, J. Y.; Xu, F. R. Study on the Genetic Relationship of Panax Notoginseng and Its Wild Relatives Based on Fourier Translation Infrared Spectroscopy. Spectrosc. Spect. Anal. 2016, 36, 2420–2424.
  • Ma, F.; Chen, J. B.; Wu, X. X.; Zhou, Q.; Sun, S. Q. Rapid Discrimination of Panax Notogeinseng of Different Grades by FT-IR and 2DCOS-IR. J. Mol. Struc. 2016, 1124, 131–137. DOI: 10.1016/j.molstruc.2016.02.087.
  • Edwards, H. G. M.; Munshi, T.; Page, K. Analytical Discrimination between Sources of Ginseng Using Raman Spectroscopy. Anal. Bioanal. Chem. 2007, 389, 2203–2215. DOI: 10.1007/s00216-007-1605-4.
  • Kandpal, L. M.; Lee, J.; Bae, H.; Kim, M. S.; Baek, I.; Cho, B. K. Near-Infrared Transmittance Spectral Imaging for Nondestructive Measurement of Internal Disorder in Korean Ginseng. Sensors 2020, 20, 273. DOI: 10.3390/s20010273.
  • Dong, F.; Lin, J. T.; You, J. H.; Ji, J. R.; Xu, X.; Zhang, L. Y.; Jin, Y.; Du, S. H. A Chemometric Modeling-Free near Infrared Barcode Strategy for Smart Authentication and Geographical Origin Discrimination of Chinese Ginseng. Spectrochim. Acta A. 2020, 226, 117555.
  • Kong, Y. J.; Hong, M. F. Determination of Total Saponin Content in Panax Ginseng and Notoginseng by UV Spectrometer. Chin. J. Mod. Appl. Pharm. 2000, 17, 53–54.
  • Shen, T. T.; Li, W. J.; Zhang, X.; Kong, W. W.; Liu, F.; Wang, W.; Peng, J. Y. High-Sensitivity Determination of Nutrient Elements in Panax Notoginseng by Laser-Induced Breakdown Spectroscopy and Chemometric Methods. Molecules 2019, 24, 1525. DOI: 10.3390/molecules24081525.
  • Lv, H.; Zhang, Y. L.; Sun, Y. J.; Duan, Y. X. Elemental Characteristics of Sanqi (Panax Notoginseng) in Yunnan Province of China: Multielement Determination by ICP-AES and ICP-MS and Statistical Analysis. Microchem. J. 2019, 146, 931–939.
  • Yang, Y.; Dai, C. Y.; Guo, L. P.; Qu, Y.; Yang, X. Y.; Chen, Q.; Liu, D. Q.; Wang, C. X.; Cui, X. M. Distribution Pattern of Aluminum in Panax Notoginseng, a Native Medicinal Plant Adapted to Acidic Red Soils. Plant Soil 2018, 423, 375–384.
  • Huang, Y.; Teng, Y.; Zhang, N.; Fu, Z. C.; Ren, W. J. Human Health Risk Assessment of Heavy Metals in the soil-Panax Notoginseng System in Yunnan Province, China. Hum. Ecol. Risk. Assess. 2018, 24, 1312–1326.
  • Li, C. X.; Duan, Z. M.; Xu, D. X. Investigation on the Distribution of Selenium Content in Fresh Flower, Stem, Leaf and Root of Panax Notoginsengs from Wenshan Prefecture. J. Food Safety & Quality 2018, 9, 3656–3661.
  • Zhu, M. L.; Zeng, X. C.; Jiang, Y. X.; Fan, X. T.; Chao, S. H.; Cao, H. B.; Zhang, W. S. Determination of Arsenic Speciation and the Possible Source of Methylated Arsenic in Panax Notoginseng. Chemosphere 2017, 168, 1677–1683. DOI: 10.1016/j.chemosphere.2016.10.093.
  • Zhu, M. L.; Jiang, Y.; Cui, B.; Jiang, Y. X.; Cao, H. B.; Zhang, W. S. Cadmium Accumulation in Panax Notoginseng: levels, Affecting Factors and the Non-Carcinogenic Health Risk. Environ. Geochem. Health 2016, 38, 423–435. DOI: 10.1007/s10653-015-9728-6.
  • Yin, Q. H.; Zhu, Y. Q.; Ju, S. Q.; Liao, W. L.; Yang, Y. L. Rapid Determination of Copper and Lead in Panax Notoginseng by Magnetic Solid-Phase Extraction and Flame Atomic Absorption Spectrometry. Res. Chem. Intermed. 2016, 42, 4985–4998. DOI: 10.1007/s11164-015-2340-7.
  • Zhang, Y.; Li, H. Y. The Contents Determination of Trace Elements in Panax Ginseng from Different Regions in Jilin Province. Northern Horticult. 2015, 3, 135–137.
  • Zhao, J.; Liu, Y.; Zhang, A. H.; Wang, Y. L.; Hao, Q. X.; Guo, L. P.; Huang, L. Q.; Liu, D. H. Determination and Analysis of Heavy Metals Content in Panax Notoginseng of Different Origination. Chin. J. Chin. Mat. Med. 2014, 39, 4001–4006.
  • Xue, Z. C.; Linag, M. L.; Li, L. Z.; Zhang, X. X. Determination of Metal Elements in Herb of Panax Notoginseng by ICP-AES. Chin. J. Spec. Lab 2013, 30, 1629–1632.
  • Zhao, X. Y.; Liu, Y. H.; Xu, Y. Z.; Sun, M.; Wang, J. X.; Zuo, X.; Liu, Y. ICP-OES Determination of Inorganic Elements in Panax Quinquefolium L. and Its Processed Products. Med. Plant 2012, 3, 14–18.
  • Lei, X. J.; Sun, L. W.; Ma, R.; Shen, Y.; Li, C. Y.; Wang, Y. P. Twelve Essential Elements Analysis of Different Species of Panax Ginseng and Panax Quinquefolius. Chin. J. Gerontol. 2010, 30, 908–910.
  • Asgarpanah, J. Comparing Heavy Metal Contents of Panax Ginseng Samples from Selected Markets in Tehran and Beijing. J. Environ. Anal. Toxicol. 2013, 3, 2161–2525.
  • Lin, L. Y.; Zhong, L. R.; Yan, X. L.; Fei, Y. Reducing Arsenic Concentration in Panax Notoginseng via Contaminant Immobilization in Soil Using Fe-Ce Oxide. J. Environ. Qual. 2018, 47, 312–317. DOI: 10.2134/jeq2017.07.0297.
  • Ma, J.; Mi, Y. H.; Li, Q. W.; Chen, L.; Du, L. J.; He, L. Z.; Lei, M. Reduction, Methylation, and Translocation of Arsenic in Panax Notoginseng Grown under Field Conditions in Arsenic-Contaminated Soils. Sci. Total Environ. 2016, 550, 893–899. DOI: 10.1016/j.scitotenv.2016.01.188.
  • Park, H. W.; In, G.; Han, S. T.; Lee, M. W.; Kim, S. Y.; Kim, K. T.; Cho, B. G.; Han, G. H.; Chang, I. M. Simultaneous Determination of 30 Ginsenosides in Panax Ginseng Preparations Using Ultra Performance Liquid Chromatography. J. Gins. Res. 2013, 37, 457–467. DOI: 10.5142/jgr.2013.37.457.
  • Lim, W. S.; Mudge, K.; Weston, L.; Utilization of RAPD Markers to Assess Genetic Diversity of Wild Populations of North American Ginseng (Panax Quinquefolium). Planta Med. 2006, 73, 71–76. DOI: 10.1055/s-2006-951768.
  • Sun, H.; Lee, O. R.; Kim, Y. J.; Jeong, S. K.; In, J. G.; Kwon, W. S.; Kim, S. Y.; Yang, D. C. Identification of ‘Chunpoong’ among Panax Ginseng Cultivars Using Real Time PCR and SNP Marker. J. Gins. Res. 2010, 34, 47–50. DOI: 10.5142/JGR.2010.34.1.047.
  • Song, X. M.; Xu, M. M.; Liu, Y. H.; Wang, W.; Liu, C.; Yang, X. J.; Cui, J. C. Establishment and Optimization of ISSR-PCR Reaction System for Panax japonicus C. A. Mey. var. major. Northwest Pharm. J. 2014, 29, 551–554.
  • Wang, M. H.; Xi, J. J.; Chen, L. Y.; Zhao, L. W. Molecular Labeling Technology: Molecular Hybridization as the Core. Plant Doc. 2017, 30, 48–51.
  • Diao, Y.; Lin, X. M.; Liao, C. L.; Tang, C. Z.; Chen, Z. J.; Hu, Z. L. Authentication of Panax Ginseng from Its Adulterants by PCR-RFLP and ARMS. Planta Med. 2009, 75, 557–560. DOI: 10.1055/s-0029-1185321.
  • Cui, X. M.; Lo, C. K.; Yip, K. L.; Dong, T. T.; Tsim, K. W. Authentication of Panax Notoginseng by 5S-rRNA Spacer Domain and Random Amplified Polymorphic DNA (RAPD) Analysis. Planta Med. 2003, 69, 584–586. DOI: 10.1055/s-2003-40632.
  • Zhou, S. L.; Iong, G. M.; Li, Z. Y.; Wen, J. Loss of Genetic Diversity of Domesticated Panax Notoginseng F H Chen as Evidenced by ITS Sequence and AFLP Polymorphism: A Comparative Study with P. stipuleanatus H Tsai et K M Feng. J. Integr. Plant Biol. 2005, 47, 107–115. DOI: 10.1111/j.1744-7909.2005.00013.x.
  • Kim, J.; Jo, B. H.; Lee, K. L.; Yoon, E. S.; Ryu, G. H.; Chung, K. W. Identification of New Microsatellite Markers in Panax Ginseng. Mol. Cells. 2007, 24, 60–68.
  • Trieu, L. N.; Mien, N. T.; Van Tien, T.; Van Ket, N.; Van Duy, N.; Genetic Diversity of Panax Stipuleanatus Tsai in North Vietnam Detected by Inter Simple Sequence Repeat (ISSR) Markers. Biotechnol. Biotec. Eq. 2016, 30, 506–511. DOI: 10.1080/13102818.2016.1157448.
  • Hamilton, J. P.; Robin Buell, C. Advances in Plant Genome Sequencing. Plant J. 2012, 70, 177–190. DOI: 10.1111/j.1365-313X.2012.04894.x.
  • Manzanilla, V.; Kool, A.; Nhat, L. N.; Van, H. N.; Thu, H. L. T.; De Boer, H. J. Phylogenomics and Barcoding of Panax: Toward the Identification of Ginseng Species. BMC Evol. Biol. 2018, 18, 44. DOI: 10.1186/s12862-018-1160-y.
  • Ji, Y. H.; Liu, C. K.; Yang, Z. Y.; Yang, L. F.; He, Z. S.; Wang, H. C.; Yang, J. B.; Yi, T. S.; Testing and Using Complete Plastomes and Ribosomal DNA Sequences as the Next Generation DNA Barcodes in Panax (Araliaceae). Mol. Ecol. Resour. 2019, 33, 1333–1345. DOI: 10.1111/1755-0998.13050.
  • Zuo, Y. J.; Chen, Z. J.; Kondo, K.; Funamoto, T.; Wen, J.; Zhou, S. L. DNA Barcoding of Panax Species. Planta Med. 2011, 77, 182–187. DOI: 10.1055/s-0030-1250166.
  • Nguyen, V. B.; Park, H. S.; Lee, S. C.; Lee, J.; Park, J. Y.; Yang, T. J. Authentication Markers for Five Major Panax Species Developed via Comparative Analysis of Complete Chloroplast Genome Sequences. J. Agric. Food Chem. 2017, 65, 6298–6306. DOI: 10.1021/acs.jafc.7b00925.
  • Zhao, Y. B.; Yin, J. L.; Guo, H. Y.; Zhang, Y. Y.; Xiao, W.; Sun, C.; Wu, J. Y.; Qu, X. B.; Yu, J.; Wang, X. M. et al. The Complete Chloroplast Genome Provides Insight into the Evolution and Polymorphism of Panax Ginseng. Front. Plant Sci. 2015, 5, 696. DOI: 10.3389/fpls.2014.00696.
  • Chen, W.; Kui, L.; Zhang, G. H.; Zhu, S. S.; Zhang, J.; Wang, X.; Yang, M.; Huang, H. C.; Liu, Y. X.; Wang, Y.; et al. Whole-Genome Sequencing and Analysis of the Chinese Herbal Plant Panax Notoginseng. Mol. Plant. 2017, 10, 899–902.
  • Gad, H. A.; El-Ahmady, S. H.; Abou-Shoer, M. I.; Al-Azizi, M. M. Application of Chemometrics in Authentication of Herbal Medicines: A Review. Phytochem. Anal. 2013, 24, 1–24. DOI: 10.1002/pca.2378.
  • Lee, D. Y.; Cho, J. G.; Lee, M. K.; Lee, J. W.; Lee, Y. H.; Yang, D. C.; Baek, N. I. Discrimination of Panax Ginseng Roots Cultivated in Different Areas in Korea Using HPLC-ELSD and Principal Component Analysis. J. Gins. Res. 2011, 35, 31–38. DOI: 10.5142/jgr.2011.35.1.031.
  • Wang, C. Z.; Ni, M.; Sun, S.; Li, X. L.; He, H.; Mehendale, S. R.; Yuan, C. S. Detection of Adulteration of Notoginseng Root Extract with Other Panax Species by Quantitative HPLC Coupled with PCA. J. Agric. Food Chem. 2009, 57, 2363–2367. DOI: 10.1021/jf803320d.
  • Xia, P.; Bai, Z.; Liang, T.; Yang, D.; Liang, Z.; Yan, X.; Liu, Y. High-Performance Liquid Chromatography Based Chemical Fingerprint Analysis and Chemometric Approaches for the Identification and Distinction of Three Endangered Panax Plants in Southeast Asia. J. Sep. Sci. 2016, 39, 3880–3888. DOI: 10.1002/jssc.201600460.
  • Zhang, X. J.; Huang, L. L.; Cai, X. J.; Li, P.; Wang, Y. T.; Wan, J. B. Fatty Acid Variability in Three Medicinal Herbs of Panax Species. Chem. Cent. J. 2013, 7, 12. DOI: 10.1186/1752-153X-7-12.
  • Yang, W. Z.; Qiao, X.; Li, K.; Fan, J. R.; Bo, T.; Guo, D. A.; Ye, M. Identification and Differentiation of Panax Ginseng, Panax Quinquefolium, and Panax Notoginseng by Monitoring Multiple Diagnostic Chemical Markers. Acta. Pharm. Sin. B. 2016, 6, 568–575. DOI: 10.1016/j.apsb.2016.05.005.
  • Chen, X. J.; Wu, D.; He, Y.; Liu, S.; Nondestructive Differentiation of Panax Species Using Visible and Shortwave near-Infrared Spectroscopy. Food Bioprocess Technol. 2011, 4, 753–761. DOI: 10.1007/s11947-009-0199-6.
  • Zhong, R.-x.; Liu, Y.-j.; Wan, J.; Zhu, L.-y.; Chen, Y.-b.; Wen, H.-m.; Duan, X.-y.; Wang, X.-l.; Wei, T.-s.; Wu, C.-h.; Feng, G.-f. Online Quality Control of Panaxatriol Saponins Percolation Extraction Using near-Infrared Technology. Trop. J. Pharm. Res. 2019, 17, 2055–2060. DOI: 10.4314/tjpr.v17i10.23.
  • Bu, H. B.; Nie, L. X.; Wang, D.; Yuan, S. X.; Li, S.; Guo, Z. Y.; Xu, X. J.; Wang, G. L.; Li, X. R. Rapid Determination of Panax Ginseng by Near-Infrared Spectroscopy. Anal. Methods 2013, 5, 6715–6721.
  • Li, H. D.; Liang, Y. Z.; Xu, Q. S. Support Vector Machines and Its Applications in Chemistry. Chemometr. Intell. Lab. 2009, 95, 188–198. DOI: 10.1016/j.chemolab.2008.10.007.
  • Yang, X. D.; Li, G. L.; Song, J.; Gao, M. J.; Zhou, S. L. Rapid Discrimination of Notoginseng Powder Adulteration of Different Grades Using FT-MIR Spectroscopy Combined with Chemometrics. Spectrochim. Acta A. 2018, 205, 457–464.
  • Chen, T. B.; Zuo, Y. H.; Dong, G. T.; Liu, L.; Zhou, H. An Integrated Strategy for Rapid Discovery and Identification of Quality Markers in Guanxin Kangtai Preparation Using UHPLC-TOF/MS and Multivariate Statistical Analysis. Phytomedicine 2018, 44, 239–246. DOI: 10.1016/j.phymed.2018.03.005.
  • Chung, I. M.; Kim, J. K.; Lee, J. H.; An, M. J.; Lee, K. J.; Park, S. K.; Kim, J. U.; Kim, M. J.; Kim, S. H. C/N/O/S Stable Isotopic and Chemometric Analyses for Determining the Geographical Origin of Panax Ginseng Cultivated in Korea. J. Gins. Res. 2018, 42, 485–495. DOI: 10.1016/j.jgr.2017.06.001.
  • Liu, P.; Wang, J.; Li, Q.; Gao, J.; Tan, X. Y.; Bian, X. H. Rapid Identification and Quantification of Panax Notoginseng with Its Adulterants by near Infrared Spectroscopy Combined with Chemometrics. Spectrochim. Acta A. 2019, 206, 23–30. DOI: 10.1016/j.saa.2018.07.094.
  • Chen, H.; Lin, Z.; Tan, C. Fast Discrimination of the Geographical Origins of Notoginseng by near-Infrared Spectroscopy and Chemometrics. J. Pharm. Biomed. Anal. 2018, 161, 239–245. DOI: 10.1016/j.jpba.2018.08.052.
  • Du, X. H.; Zhao, Y. L.; Yang, D. F.; Liu, Y.; Fan, K.; Liang, Z. S.; Han, R. L. A Correlation Model of UPLC Fingerprints and Anticoagulant Activity for Quality Assessment of Panax Notoginseng by Hierarchical Clustering Analysis and Multiple Linear Regression Analysis. Anal. Methods 2015, 7, 2985–2992. DOI: 10.1039/C4AY02277G.
  • Xu, X. F.; Nie, L. X.; Pan, L. L.; Hao, B.; Yuan, S. X.; Lin, R. C.; Bu, H. B.; Wang, D.; Dong, L.; Li, X. R. Quantitative Analysis of Panax Ginseng by FT-NIR Spectroscopy. J. Anal. Methods Chem. 2014, 2014, 1–6. DOI: 10.1155/2014/741571.
  • Zhu, J. Q.; Fan, X. H.; Cheng, Y. Y.; Agarwal, R.; Moore, C. M. V.; Chen, S. T.; Tong, W. D. Chemometric Analysis for Identification of Botanical Raw Materials for Pharmaceutical Use: A Case Study Using Panax Notoginseng. PLos One 2014, 9, e87462. DOI: 10.1371/journal.pone.0087462.
  • Sun, J. H.; Chen, P. Differentiation of Panax Quinquefolius Grown in the USA and China Using LC/MS-Based Chromatographic Fingerprinting and Chemometric Approaches. Anal. Bioanal. Chem. 2011, 399, 1877–1889. DOI: 10.1007/s00216-010-4586-7.
  • Xie, G. X.; Ni, Y.; Su, M. M.; Zhang, Y. Y.; Zhao, A. H.; Gao, X. F.; Liu, Z.; Xiao, P. G.; Jia, W. Application of Ultra-Performance LC-TOF MS Metabolite Profiling Techniques to the Analysis of Medicinal Panax Herbs. Metabolomics 2008, 4, 248–260. DOI: 10.1007/s11306-008-0115-5.
  • Yang, X. D.; Song, J.; Wu, X.; Xie, L.; Liu, X. W.; Li, G. L. Identification of Unhealthy Panax notoginseng from Different Geographical Origins by Means of Multi-Label Classification. Spectrochim. Acta A. 2019, 222, 117243. DOI: 10.1016/j.saa.2019.117243.
  • Kim, N.; Kim, K.; Choi, B. Y.; Lee, D.; Shin, Y.-S.; Bang, K.-H.; Cha, S.-W.; Lee, J. W.; Choi, H.-K.; Jang, D. S.; Lee, D.; Metabolomic Approach for Age Discrimination of Panax Ginseng Using UPLC-Q-Tof MS. J. Agric. Food Chem. 2011, 59, 10435–10441. DOI: 10.1021/jf201718r.
  • Chen, X. J.; Yu, X. M.; Wu, D.; He, Y. Application of Least-Square Support Vector Machines in Qualitative Analysis of Visible and near Infrared Spectra: Determination of Species and Producing Area of Panax. Fourth International Conference on Natural Comp. IEEE; 2008, 3, 107–111. DOI: 10.1109/icnc.2008.667.
  • Lavine, B. K. Jr.; Workman, J. Chemometrics. Anal. Chem. 2013, 85, 705–714. DOI: 10.1021/ac303193j.
  • Roggo, Y.; Chalus, P.; Maurer, L.; Lema-Martinez, C.; Edmond, A.; Jent, N. A Review of near Infrared Spectroscopy and Chemometrics in Pharmaceutical Technologies. J. Pharm. Biomed. Anal. 2007, 44, 683–700. DOI: 10.1016/j.jpba.2007.03.023.
  • Sun, X. B.; Chen, P.; Cook, S. L.; Jackson, G. P.; Harnly, J. M.; Harrington, P. B. Classification of Cultivation Locations of Panax Quinquefolius L Samples Using High Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry and Chemometric Analysis. Anal. Chem. 2012, 84, 3628–3634. DOI: 10.1021/ac2032832.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.