505
Views
6
CrossRef citations to date
0
Altmetric
Review Article

A Review of Properties, Delivery Systems and Analytical Methods for the Characterization of Monomeric Glycoprotein Transferrin

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 399-410 | Published online: 26 Mar 2020

References

  • Li, H.; Qian, Z. M. Transferrin/Transferrin Receptor-Mediated Drug Delivery. Med. Res. Rev. 2002, 22, 225–250. DOI: 10.1002/med.10008.
  • Cheng, Y.; Zak, O.; Aisen, P.; Harrison, S. C.; Walz, T. Structure of the Human Transferrin Receptor-Transferrin Complex. Cell 2004, 116, 565–576. DOI: 10.1016/S0092-8674(04)00130-8.
  • Baker, E. N.; Lindley, P. F. New Perspectives on the Structure and Function of Transferrins. J. Inorg. Biochem. 1992, 47, 147–160. DOI: 10.1016/0162-0134(92)84061-Q.
  • Vincent, J. B.; Love, S. The Binding and Transport of Alternative Metals by Transferrin. BBA-Gen. Subjects 2012, 1820, 362–378. DOI: 10.1016/j.bbagen.2011.07.003.
  • Gomme, P. T.; McCann, K. B.; Bertolini, J. Transferrin: Structure, Function and Potential Therapeutic Actions. Drug Discov. Today 2005, 10, 267–273. DOI: 10.1016/S1359-6446(04)03333-1.
  • Barnum-Huckins, K.; Adrian, G. S. Iron Regulation of Transferrin Synthesis in the Human Hepatoma Cell Line HepG2. Cell Biol. Int. 2000, 24, 71–77. DOI: 10.1006/cbir.1999.0456.
  • Tortorella, S.; Karagiannis, T. C. Transferrin Receptor-Mediated Endocytosis: A Useful Target for Cancer Therapy. J. Membrane Biol. 2014, 247, 291–307. DOI: 10.1007/s00232-014-9637-0.
  • DeGregorio-Rocasolano, N.; Martí-Sistac, O.; Ponce, J.; Castelló-Ruiz, M.; Millán, M.; Guirao, V.; García-Yébenes, I.; Salom, J. B.; Ramos-Cabrer, P.; Alborch, E.; et al. Iron-Loaded Transferrin (Tf) is Detrimental Whereas Iron-Free Tf Confers Protection against Brain Ischemia by Modifying Blood Tf Saturation and Subsequent Neuronal Damage. Redox Biol. 2018, 15, 143–158. DOI: 10.1016/j.redox.2017.11.026.
  • Cheng, Y.; Zak, O.; Aisen, P.; Harrison, S. C.; Walz, T. Single Particle Reconstruction of the Human Apo-Transferrin-Transferrin Receptor Complex. J. Struct. Biol. 2005, 152, 204–210. DOI: 10.1016/j.jsb.2005.10.006.
  • Andrews, N. C. Iron Homeostasis: Insights from Genetics and Animal Models. Nat. Rev. Genet. 2000, 1, 208–217. DOI: 10.1038/35042073.
  • Wally, J.; Halbrooks, P. J.; Vonrhein, C.; Rould, M. A.; Stephen, J.; Mason, A. B.; Buchanan, S. K. Transferrin Provides Insight into Inter-Lobe. J. Biol. Chem. 2006, 281, 24934–24944. DOI: 10.1074/jbc.M604592200.
  • Zhai, G.; Wu, J.; Yu, B.; Guo, C.; Yang, X.; Lee, R. J. A Transferrin Receptor-Targeted Liposomal Formulation for Docetaxel. J. Nanosci. Nanotech. 2010, 10, 5129–5136. DOI: 10.1166/jnn.2010.2393.
  • Yang, X.; Yang, S.; Chai, H.; Yang, Z.; Lee, R. J.; Liao, W.; Teng, L. A Novel Isoquinoline Derivative Anticancer Agent and Its Targeted Delivery to Tumor Cells Using Transferrin-Conjugated Liposomes. PLoS One 2015, 10, 1–12. DOI: 10.1371/journal.pone.0136649.
  • Daniels, T. R.; Bernabeu, E.; Rodríguez, J. A.; Patel, S.; Kozman, M.; Chiappetta, D. A.; Holler, E.; Ljubimova, J. Y.; Helguera, G.; Penichet, M. L. The Transferrin Receptor and the Targeted Delivery of Therapeutic Agents against Cancer. Biochim. Biophys. Acta 2012, 1820, 291–317. DOI: 10.1016/j.bbagen.2011.07.016.
  • Keer, H. N.; Kozlowski, J. M.; Tsai, Y. C.; Lee, C.; McEwan, R. N.; Grayhack, J. T. Elevated Transferrin Receptor Content in Human Prostate Cancer Cell Lines Assessed in Vitro and in Vivo. J. Urol. 1990, 143, 381–385. DOI: 10.1016/S0022-5347(17)39970-6.
  • Senzer, N. N.; Matsuno, K.; Yamagata, N.; Fujisawa, T.; Wasserman, E.; Sutherland, W.; Sharma, S.; Phan, A. MBP-426, a Novel Liposome-Encapsulated Oxaliplatin, in Combination with 5-FU/Leucovorin (LV) – Phase I Results of a Phase I/II Study in Gastro-Esophageal Adenocarcinoma, with Pharmacokinetics. Mol. Cancer Ther. 2009, 8, 15–19. DOI: 10.1158/1535-7163.TARG-09-C36.
  • Śliwińska-Hill, U. Interaction of Imatinib Mesylate with Human Serum Transferrin: The Comparative Spectroscopic Studies. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2017, 173, 468–475. DOI: 10.1016/j.saa.2016.09.041.
  • Kratz, F.; Beyer, U.; Roth, T.; Tarasova, N.; Collery, P.; Lechenault, F.; Cazabat, A.; Schumacher, P.; Unger, C.; Falken, U. Transferrin Conjugates of Doxorubicin: Synthesis, Characterization, Cellular Uptake, and in Vitro Efficacy. J. Pharm. Sci. 1998, 87, 338–346. DOI: 10.1021/js970246a.
  • Sahoo, S. K.; Labhasetwar, V. Enhanced Antiproliferative Activity of Transferrin-Conjugated Paclitaxel-Loaded Nanoparticles is Mediated via Sustained Intracellular Drug Retention. Mol. Pharmaceutics 2005, 2, 373–383. DOI: 10.1021/mp050032z.
  • Choi, C. H. J.; Alabi, C. A.; Webster, P.; Davis, M. E. Mechanism of Active Targeting in Solid Tumors with Transferrin-Containing Gold Nanoparticles. Proc. Natl. Acad. Sci. 2010, 107, 1235–1240. DOI: 10.1073/pnas.0914140107.
  • Wang, J.; Tian, S.; Petros, R. A.; Napier, M. E.; DeSimone, J. M. The Complex Role of Multivalency in Nanoparticles Targeting the Transferrin Receptor for Cancer Therapies. J. Am. Chem. Soc. 2010, 132, 11306–11313. DOI: 10.1021/ja1043177.
  • Arizaga Rodríguez, S.; Blanco González, E.; Alvarez Llamas, G.; Montes-Bayón, M.; Sanz-Medel, A. Detection of Transferrin Isoforms in Human Serum: Comparison of UV and ICP-MS Detection after CZE and HPLC Separations. Anal. Bioanal. Chem. 2005, 383, 390–397. DOI: 10.1007/s00216-005-3217-1.
  • Sanz-Nebot, V.; Balaguer, E.; Benavente, F.; Neusüß, C.; Barbosa, J. Characterization of Transferrin Glycoforms in Human Serum by CE-UV and CE-ESI-MS. Electrophoresis 2007, 28, 1949–1957. DOI: 10.1002/elps.200600648.
  • Caslavska, J.; Joneli, J.; Wanzenried, U.; Schiess, J.; Lanz, C.; Thormann, W. Determination of Genetic Transferrin Variants in Human Serum by High-Resolution Capillary Zone Electrophoresis. J. Sep. Sci. 2014, 37, 1663–1670. DOI: 10.1002/jssc.201400243.
  • Satomi, Y.; Shimonishi, Y.; Hase, T.; Takao, T. Site-Specific Carbohydrate Profiling of Human Transferrin by Nano-Flow Liquid Chromatography/Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 2983–2988. DOI: 10.1002/rcm.1718.
  • Wu, L.; Wu, J.; Zhang, J.; Zhou, Y.; Ren, G.; Hu, Y. A Simple Method for Obtaining Transferrins from Human Plasma and Porcine Serum: Preparations and Properties. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 867, 62–68. DOI: 10.1016/j.jchromb.2008.03.012.
  • Barroso, A.; Giménez, E.; Benavente, F.; Barbosa, J.; Sanz-Nebot, V. Classification of Congenital Disorders of Glycosylation Based on Analysis of Transferrin Glycopeptides by Capillary Liquid Chromatography-Mass Spectrometry. Talanta 2016, 160, 614–623. DOI: 10.1016/j.talanta.2016.07.055.
  • Spies, P.; Chen, G. J.; Gygax, D. Establishment of a Miniaturized Enzyme-Linked Immunosorbent Assay for Human Transferrin Quantification Using an Intelligent Multifunctional Analytical Plate. Anal. Biochem. 2008, 382, 35–39. DOI: 10.1016/j.ab.2008.07.006.
  • Aubailly, L.; Drucbert, A. S.; Danzé, P. M.; Forzy, G. Comparison of Surface Plasmon Resonance Transferrin Quantification with a Common Immunoturbidimetric Method. Clin. Biochem. 2011, 44, 731–735. DOI: 10.1016/j.clinbiochem.2011.02.010.
  • Penezić, A.; Miljuš, G.; Milutinović, B.; Nedić, O. A Microscale Protocol for the Isolation of Transferrin Directly from Serum. Clin. Chim. Acta. 2017, 471, 12–16. DOI: 10.1016/j.cca.2017.05.013.
  • MendonçA, L. S.; Firmino, F.; Moreira, J. N.; Pedroso de Lima, M. C.; Simões, S. Transferrin Receptor-Targeted Liposomes Encapsulating anti-BCR-ABL siRNA or Asodn for Chronic Myeloid Leukemia Treatment. Bioconjugate Chem. 2010, 21, 157–168. DOI: 10.1021/bc9004365.
  • Gaspar, M. M.; Radomska, A.; Gobbo, O. L.; Bakowsky, U.; Radomski, M. W.; Ehrhardt, C. Targeted Delivery of Transferrin-Conjugated Liposomes to an Orthotopic Model of Lung Cancer in Nude Rats. J. Aerosol Med. Pulm. Drug Deliv. 2012, 25, 310–318. DOI: 10.1089/jamp.2011.0928.
  • Aisen, P.; Listowsky, I. Iron Transport and Storage Proteins. Annu. Rev. Biochem. 1980, 49, 357–393. DOI: 10.1146/annurev.bi.49.070180.002041.
  • MacGillivray, R. T.; Moore, S. A.; Chen, J.; Anderson, B. F.; Baker, H.; Luo, Y.; Bewley, M.; Smith, C. A.; Murphy, M. E.; Wang, Y.; et al. Two High-Resolution Crytal Sructures of the Recombinant N-Lobe of Human Tranferrin Reveal a Structure Change Implicated in Iron Release. Biochemistry 1998, 37, 7919–7928. DOI: 10.1021/bi980355j.
  • Parkkinen, J.; von Bonsdorff, L.; Ebeling, F.; Sahlstedt, L. Function and Therapeutic Development of Apotransferrin. Vox Sang 2002, 83, 321–326. DOI: 10.1111/j.1423-0410.2002.tb05327.x.
  • Inoue, T.; Cavanaugh, P. G.; Steck, P. A.; Brünner, N.; Nicolson, G. L. Differences in Transferrin Response and Numbers of Transferrin Receptors in Rat and Human Mammary Carcinoma Lines of Different Metastatic Potentials. J. Cell. Physiol. 1993, 156, 212–217. DOI: 10.1002/jcp.1041560128.
  • Morris, C. M.; Candy, J. C.; Keith, A. B.; Oakley, A. E.; Taylor, G. A.; Pullen, R. G. L.; Bloxham, C. A.; Gocht, A.; Edwardson, J. A. Brain Iron Homeostasis. J. Inorg. Biochem. 1992, 47, 257–265. DOI: 10.1016/0162-0134(92)84071-T.
  • Nicolson, G. L.; Inoue, T.; Van Pelt, C. S.; Cavanaugh, P. G. Differential Expression of a Mr Approximately 90,000 Cell Surface Transferrin Receptor-Related Glycoprotein on Murine B16 Metastatic Melanoma Sublines Selected for Enhanced Brain or Ovary Colonization. Cancer Res. 1990, 50, 515–520.
  • Suire, S.; Fontaine, I.; Guillou, F. Transferrin Gene Expression and Secretion in Rat Sertoli Cells. Mol. Reprod. Dev. 1997, 48, 168–175. DOI: 10.1002/(SICI)1098-2795(199710)48:2 < 168::AID-MRD4 > 3.0.CO;2-Q.
  • Hayashi, A.; Wada, Y.; Suzuki, T.; Shimizu, A. Studies on Familial Hypotransferrinemia: Unique Clinical Course and Molecular Pathology. Am. J. Hum. Genet. 1993, 53, 201–213.
  • Worwood, M.; May, A. M.; Bain, B. J. Iron Deficiency Anaemia and Iron Overload. In Dacie and Lewis Practical Haematology, 12th ed.; Bain, B. J., Bates, I., Laffan, M. A., Eds. Elsevier: Amsterdam, 2016; pp 165–186. DOI: 10.1016/B978-0-7020-6696-2.00009-6.
  • Zhang, D.; Nandi, S.; Bryan, P.; Pettit, S.; Nguyen, D.; Santos, M. A.; Huang, N. Expression, Purification, and Characterization of Recombinant Human Transferrin from Rice (Oryza sativa L.). Protein Expr. Purif. 2010, 74, 69–79. DOI: 10.1016/j.pep.2010.04.019.
  • Ludwig, H.; Evstatiev, R.; Kornek, G.; Aapro, M.; Bauernhofer, T.; Buxhofer-Ausch, V.; Fridrik, M.; Geissler, D.; Gisslinger, H.; Koller, E.; et al. Iron Metabolism and Iron Supplementation in Cancer Patients. Wien. Klin. Wochenschr. 2015, 127, 907–919. DOI: 10.1007/s00508-015-0842-3.
  • Guo, M.; Sun, H.; McArdle, H. J.; Gambling, L.; Sadler, P. J. Ti IV Uptake and Release by Human Serum Transferrin and Recognition of Ti IV-Transferrin by Cancer Cells: Understanding the Mechanism of Action of the Anticancer Drug Titanocene Dichloride. Biochemistry 2000, 39, 10023–10033. DOI: 10.1021/bi000798z.
  • Mayle, K. M.; Le, A. M.; Kamei, D. T. The Intracellular Trafficking Pathway of Transferrin. BBA-Gen. Subjects 2012, 1820, 264–281. DOI: 10.1016/j.bbagen.2011.09.009.
  • Cutrin, J. C.; Alberti, D.; Bernacchioni, C.; Ciambellotti, S.; Turano, P.; Luchinat, C.; Crich, S. G.; Aime, S. Cancer Cell Death Induced by Ferritins and the Peculiar Role of Their Labile Iron Pool. Oncotarget 2018, 9, 27974–27984. DOI: 10.18632/oncotarget.25416.
  • Zhao, T.; He, X. W.; Li, W. Y.; Zhang, Y. K. Transferrin-Directed Preparation of Red-Emitting Copper Nanoclusters for Targeted Imaging of Transferrin Receptor over-Expressed Cancer Cells. J. Mater. Chem. B. 2015, 3, 2388–2394. DOI: 10.1039/C4TB02130D.
  • Zhao, H.; Wang, S.; Nguyen, S. N.; Elci, S. G.; Kaltashov, I. A. Evaluation of Nonferrous Metals as Potential in Vivo Tracers of Transferrin-Based Therapeutics. J. Am. Soc. Mass Spectrom. 2016, 27, 211–219. DOI: 10.1007/s13361-015-1267-y.
  • Li, H.; Sun, H.; Qian, Z. M. The Role of the Transferrin – Transferrin-Receptor System in Drug Delivery and Targeting. Trends Pharmacol. Sci. 2002, 23, 206–209. DOI: 10.1016/S0165-6147(02)01989-2.
  • Gkouvatsos, K.; Papanikolaou, G.; Pantopoulos, K. Regulation of Iron Transport and the Role of Transferrin. BBA-Gen. Subjects 2012, 1820, 188–202. DOI: 10.1016/j.bbagen.2011.10.013.
  • Mizutani, K.; Toyoda, M.; Mikami, B. X-Ray Structures of Transferrins and Related Proteins. BBA-Gen. Subjects 2012, 1820, 203–211. DOI: 10.1016/j.bbagen.2011.08.003.
  • Steere, A. N.; Byrne, S. L.; Chasteen, N. D.; Mason, A. B. Kinetics of Iron Release from Transferrin Bound to the Transferrin Receptor at Endosomal pH. BBA-Gen. Subjects 2012, 1820, 326–333. DOI: 10.1016/j.bbagen.2011.06.003.
  • Luck, A. N.; Mason, A. B. Transferrin-Mediated Cellular Iron Delivery. Curr. Top. Membr. 2012, 69, 3–35. DOI: 10.1016/B978-0-12-394390-3.00001-X.
  • Moraes, T. F.; Yu, R. H.; Strynadka, N. C.; Schryvers, A. B. Insights into the Bacterial Transferrin Receptor: The Structure of Transferrin-Binding Protein B from Actinobacillus pleuropneumoniae. Mol. Cell 2009, 35, 523–533. DOI: 10.1016/j.molcel.2009.06.029.
  • Wessling-Resnick, M. Crossing the Iron Gate: Why and How Transferrin Receptors Mediate Viral Entry. Annu. Rev. Nutr. 2018, 38, 431–458. DOI: 10.1146/annurev-nutr-082117-051749.
  • Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in Cancer Therapy: Challenges, Opportunities, and Clinical Applications. J. Control Release 2015, 200, 138–157. DOI: 10.1016/j.jconrel.2014.12.030.
  • Sanna, V.; Sechi, M. Nanoparticle Therapeutics for Prostate Cancer Treatment. Maturitas 2012, 73, 27–32. DOI: 10.1016/j.maturitas.2012.01.016.
  • Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review. J. Control Release 2000, 65, 271–284. DOI: 10.1016/S0168-3659(99)00248-5.
  • Petrilli, R.; Eloy, J. O.; Marchetti, J. M.; Lopez, R. V.; Lee, R. J. Targeted Lipid Nanoparticles for Antisense Oligonucleotide Delivery. CPB. 2014, 15, 847–855. DOI: 10.2174/1389201015666141020155834.
  • Allen, T. M.; Cullis, P. R. Liposomal Drug Delivery Systems: From Concept to Clinical Applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. DOI: 10.1016/j.addr.2012.09.037.
  • Eloy, J. O.; Souza, M. C.; Petrilli, R.; Barcellos, J. P. A.; Lee, R. J.; Marchetti, J. M. Liposomes as Carriers of Hydrophilic Small Molecule Drugs: Strategies to Enhance Encapsulation and Delivery. Colloids Surf. B. Biointerfaces 2014, 123, 345–363. DOI: 10.1016/j.colsurfb.2014.09.029.
  • Jhaveri, A.; Deshpande, P.; Pattni, B.; Torchilin, V. Transferrin-Targeted, Resveratrol-Loaded Liposomes for the Treatment of Glioblastoma. J. Control Release 2018, 277, 89–101. DOI: 10.1016/j.jconrel.2018.03.006.
  • Nag, M.; Gajbhiye, V.; Kesharwani, P.; Jain, N. K. Transferrin Functionalized chitosan-PEG Nanoparticles for Targeted Delivery of Paclitaxel to Cancer Cells. Colloids Surf. B Biointerfaces 2016, 148, 363–370. DOI: 10.1016/j.colsurfb.2016.08.059.
  • Singh, R. P.; Sharma, G.; Sonali; Agrawal, P.; Pandey, B. L.; Koch, B.; Muthu, M. S. Transferrin Receptor Targeted PLA-TPGS Micelles Improved Efficacy and Safety in Docetaxel Delivery. Int. J. Biol. Macromol. 2016, 83, 335–344. DOI: 10.1016/j.ijbiomac.2015.11.081.
  • Afzal, S. M.; Shareef, M. Z.; Kishan, V. Transferrin Tagged Lipid Nanoemulsion of Docetaxel for Enhanced Tumor Targeting. J. Drug Deliv. Sci. Technol. 2016, 26, 175–182. DOI: 10.1016/j.jddst.2016.10.008.
  • MacGillivray, R. T.; Mendez, E.; Sinha, S. K.; Sutton, M. R.; Lineback-Zins, J.; Brew, K. The Complete Amino Acid Sequence of Human Serum Transferrin. Proc. Natl. Acad. Sci. 1982, 79, 2504–2508. DOI: 10.1073/pnas.79.8.2504.
  • Thevis, M.; Loo, R. R. O.; Loo, J. A. Mass Spectrometric Characterization of Transferrins and Their Fragments Derived by Reduction of Disulfide Bonds. J. Am. Soc. Mass Spectrom. 2003, 14, 635–647. DOI: 10.1016/S1044-0305(03)00199-5.
  • Mahmood, T.; Yang, P. Western Blot: Technique, Theory, and Trouble Shooting. North Am. J. Med. Sci. 2012, 4, 429–434. DOI: 10.4103/1947-2714.100998.
  • Fekete, S.; Guillarme, D.; Sandra, P.; Sandra, K. Chromatographic, Electrophoretic, and Mass Spectrometric Methods for the Analytical Characterization of Protein Biopharmaceuticals. Anal. Chem. 2016, 88, 480–507. DOI: 10.1021/acs.analchem.5b04561.
  • Hanck-Silva, G.; Trevizan, L. N. F.; Petrilli, R.; De Lima, F. T.; Eloy, J. O.; Chorilli, M. A Critical Review of Properties and Analytical/Bioanalytical Methods for Characterization of Cetuximab. Crit. Rev. Anal. Chem. 2019, 50, 125–135. DOI: 10.1080/10408347.2019.1581984.
  • Sun, F.; Ding, J.; Yu, H.; Gao, R.; Wang, H.; Pei, C. Identification of New Binding Sites of Human Transferrin Incubated with Organophosphorus Agents via Q Exactive LC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1022, 256–264. DOI: 10.1016/j.jchromb.2016.04.028.
  • Van Scherpenzeel, M.; Steenbergen, G.; Morava, E.; Wevers, R. A.; Lefeber, D. J. High-Resolution Mass Spectrometry Glycoprofiling of Intact Transferrin for Diagnosis and Subtype Identification in the Congenital Disorders of Glycosylation. Transl. Res 2015, 166, 639–649. DOI: 10.1016/j.trsl.2015.07.005.
  • Ordonez, Y. N.; Anton, R. F.; Davis, W. C. Quantification of Total Serum Transferrin and Transferrin Sialoforms in Human Serum; an Alternative Method for the Determination of Carbohydrate-Deficient Transferrin in Clinical Samples. Anal. Methods 2014, 6, 3967–3974. DOI: 10.1039/C4AY00159A.
  • Nguyen, S. N.; Bobst, C. E.; Kaltashov, I. A. Mass Spectrometry-Guided Optimization and Characterization of a Biologically Active Transferrin-Lysozyme Model Drug Conjugate. Mol. Pharmaceutics 2013, 10, 1998–2007. DOI: 10.1021/mp400026y.
  • Luo, L. Z.; Jin, H. W.; Huang, H. Q. Application of Capillary Isoelectric Focusing and Peptide Mass Fingerprinting in Carbohydrate-Deficient Transferrin Detection. Rapid Commun. Mass Spectrom. 2011, 25, 1391–1398. DOI: 10.1002/rcm.4993.
  • Murko, S.; MilačIč, R.; Kralj, B.;.; ŠČAnčAr, J.; Convective Interaction Media Monolithic Chromatography with ICPMS and Ultraperformance Liquid chromatography - Electrospray Ionization MS Detection: A Powerful Tool for Speciation of Aluminum in Human Serum at Normal Concentration Levels. Anal. Chem. 2009, 81, 4929–4936. DOI: 10.1021/ac9006232.
  • Sarmiento-González, A.; Encinar, J. R.; Cantarero-Roldán, A. M.; Marchante-Gayón, J. M.;.; Sanz-Medel, A.; HPLC − ICPMS and Stable Isotope-Labeled Approaches to Assess Quantitatively Ti(IV) Uptake by Transferrin in Human Blood Serum. Anal. Chem. 2008, 80, 8702–8711. DOI: 10.1021/ac801029p.
  • Ohlson, S.; Gudmundsson, B. M.; Wikstrom, P.; Larsson, P. O. High-Performance Liquid Affinity Chromatography: Rapid Immunoanalysis of Transferrin in Serum. Clin. Chem. 1988, 34, 2039–2043. DOI: 10.1093/clinchem/34.10.2039.
  • Del Castillo Busto, M. E.; Montes-Bayón, M.; Bettmer, J.; Sanz-Medel, A. Stable Isotope Labelling and FPLC-ICP-SFMS for the Accurate Determination of Clinical Iron Status Parameters in Human Serum. Analyst 2008, 133, 379–384. DOI: 10.1039/b715311b.
  • Barroso, A.; Giménez, E.; Benavente, F.; Barbosa, J.; Sanz-Nebot, V. Analysis of Human Transferrin Glycopeptides by Capillary Electrophoresis and Capillary Liquid Chromatography-Masss Pectrometry. Application to Diagnosis of Alcohol Dependence. Anal. Chim. Acta 2013, 813, 167–175. DOI: 10.1016/j.aca.2013.09.044.
  • Feng, L.; Zhang, D.; Wang, J.; Shen, D.; Li, H. A Novel Quantification Strategy of Transferrin and Albumin in Human Serum by Species-Unspecific Isotope Dilution Laser Ablation Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Anal. Chim. Acta 2015, 884, 19–25. DOI: 10.1016/j.aca.2015.05.009.
  • Konz, I.; Fernández, B.; Fernández, M. L.; Pereiro, R.; Sanz-Medel, A. Absolute Quantification of Human Serum Transferrin by Species-Specific Isotope Dilution Laser Ablation ICP-MS. Anal. Chem. 2011, 83, 5353–5360. DOI: 10.1021/ac200780b.
  • Zhang, X.; Sun, X.; Liu, Y.; Han, R.; Lan, L.; Chen, H.; Sun, X.; Li, Q.; Tang, Y. L. Interaction of Isoflavones with Different Structures and Transferrin. Spectrosc. Lett. 2016, 49, 596–601. DOI: 10.1080/00387010.2016.1231118.
  • Li, Y.; Ogris, M.; Wagner, E.; Pelisek, J.; Rüffer, M. Nanoparticles Bearing Polyethyleneglycol-Coupled Transferrin as Gene Carriers: Preparation and in Vitro Evaluation. Int. J. Pharm. 2003, 259, 93–101. DOI: 10.1016/S0378-5173(03)00211-4.
  • Sarzehi, S.; Chamani, J. Investigation on the Interaction between Tamoxifen and Human Holo-Transferrin: Determination of the Binding Mechanism by Fluorescence Quenching, Resonance Light Scattering and Circular Dichroism Methods. Int. J. Biol. Macromol 2010, 47, 558–569. DOI: 10.1016/j.ijbiomac.2010.08.002.
  • Aydin, S. A Short History, Principles, and Types of ELISA, and Our Laboratory Experience with Peptide/Protein Analyses Using ELISA. Peptides 2015, 72, 4–15. DOI: 10.1016/j.peptides.2015.04.012.
  • Rice University. Quantifying protein using absorbance at 280 nm; 2015. http://www.ruf.rice.edu/∼bioslabs/methods/protein/abs280.html (accessed Feb 11, 2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.