4,874
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Analysis of Natural Dyes from Historical Objects by High Performance Liquid Chromatography and Electromigration Techniques

, , ORCID Icon & ORCID Icon
Pages 411-444 | Published online: 15 Apr 2020

References

  • Santos, R.; Hallett, J.; Oliveira, M. C.; Sousa, M. M.; Sarraguça, J.; Simmonds, M. S. J.; Nesbitt, M. HPLC-DAD-MS Analysis of Colorant and Resinous Components of Lac-Dye: A Comparison between Kerria and Paratachardina Genera. Dyes Pigm. 2015, 118, 129–136. DOI: 10.1016/j.dyepig.2015.02.024.
  • de Graaff, J. H. H.; Roelofs, W. G. T.; van Bommel, M. R. The Colourful Past: Origins, Chemistry and Identification of Natural Dyestuffs; Archetype: UK, 2004.
  • Cardon, D. Natural Dyes: Sources, Tradition, Technology and Science; Archetype: UK, 2007.
  • Wouters, J. High Performance Liquid Chromatography of Anthraquinones: Analysis of Plant and Insect Extracts and Dyed Textiles. Stud. Conserv. 1985, 30, 119–128. DOI: 10.2307/1505927.
  • Wouters, J.; Verhecken, A. The Coccid Insect Dyes: HPLC and Computerized Diode Array Analysis of Dyed Yarns. Stud. Conserv. 1989, 34, 189–200. DOI: 10.1179/sic1989.34.4.189. DOI: 10.1179/sic.1989.34.4.189.
  • Halpine, S. M. An Improved Dye and Lake Pigment Analysis Method Using High-Performance Liquid Chromatography and Diode-Array Detector. Stud. Conserv. 1996, 41, 76–94. DOI: 10.2307/1506519.
  • Ferreira, E. S. B.; Hulme, A. N.; McNab, H.; Quye, A. The Natural Constituents of Historical Textile Dyes. Chem. Soc. Rev. 2004, 33, 329–336. DOI: 10.1039/b305697j.
  • Zadrożna, I.; Pawlak, K.; Głuch, I.; Ackacha, M.; Mojski, M.; Witowska-Jarosz, J.; Jarosz, M. Old Master Paintings—a Fruitful Field of Activity for Analysts: Targets, Methods, Outlook. J. Sep. Sci. 2003, 26, 996–1004. DOI: 10.1002/jssc.200301483.
  • Rosenberg, E. Characterisation of Historical Organic Dyestuffs by Liquid Chromatography–Mass Spectrometry. Anal. Bioanal. Chem. 2008, 391, 33–57. DOI: 10.1007/s00216-008-1977-0.
  • Pauk, V.; Barták, P.; Lemr, K. Characterization of Natural Organic Colorants in Historical and Art Objects by High-Performance Liquid Chromatography. J. Sep. Sci. 2014, 37, 3393–3410. DOI: 10.1002/jssc.201400650..
  • Valianou, L.; Karapanagiotis, I.; Chryssoulakis, Y. Comparison of Extraction Methods for the Analysis of Natural Dyes in Historical Textiles by High-Performance Liquid Chromatography. Anal. Bioanal. Chem. 2009, 395, 2175–2189. DOI: 10.1007/s00216-009-3137-6.
  • Serrano, A.; Sousa, M. M.; Hallett, J.; Lopes, J. A.; Oliveira, M. C. Analysis of Natural Red Dyes (Cochineal) in Textiles of Historical Importance Using HPLC and Multivariate Data Analysis. Anal. Bioanal. Chem. 2011, 401, 735–743. DOI: 10.1007/s00216-011-5094-0.
  • Lech, K.; Jarosz, M. Identification of Polish Cochineal (Porphyrophora Polonica L.) in Historical Textiles by High-Performance Liquid Chromatography Coupled with Spectrophotometric and Tandem Mass Spectrometric Detection. Anal. Bioanal. Chem. 2016, 408, 3349–3358. DOI: 10.1007/s00216-016-9408-0.
  • Nowik, W.; Bonose-Crosnier de Bellaistre, M.; Tchapla, A.; Héron, S. Separation of 9,10-Anthraquinone Derivatives: Evaluation of Functionalised Stationary Phases in Reversed Phase Mode. J. Chromatogr. A 2011, 1218, 3636–3647. DOI: 10.1016/j.chroma.2011.04.012.
  • Bonose-Crosnier de Bellaistre, M.; Nowik, W.; Tchapla, A.; Heron, S. Separation of 9,10-Anthraquinone Derivatives: Evaluation of C18 Stationary Phases. J. Chromatogr. A 2011, 1218, 778–786. DOI: 10.1016/j.chroma.2010.12.032.
  • Mouri, C.; Laursen, R. Identification of Anthraquinone Markers for Distinguishing Rubia Species in Madder-Dyed Textiles by HPLC. Microchim. Acta 2012, 179, 105–113. DOI: 10.1007/s00604-012-0868-4.
  • Surowiec, I.; Szostek, B.; Trojanowicz, M. HPLC‐MS of Anthraquinoids, Flavonoids, and Their Degradation Products in Analysis of Natural Dyes in Archeological Objects. J. Sep. Sci. 2007, 30, 2070–2079. DOI: 10.1002/jssc.200700041.
  • Sanyova, J.; Reisse, J. Development of a Mild Method for the Extraction of Anthraquinones from Their Aluminum Complexes in Madder Lakes Prior to HPLC Analysis. J. Cult. Heritage 2006, 7, 229–235. DOI: 10.1016/j.culher.2006.06.003.
  • Wouters, J.; Rosario-Chirinos, N. Dye Analysis of Pre-Columbian Peruvian Tetiles with High Performance Liquid Chromtography and Diode Array Detection. J. Am. Inst. Conserv. 1992, 31, 237–255. DOI: 10.1179/019713692806066637.
  • Novotná, P.; Pacáková, V.; Bosáková, Z.; Štulı́k, K. High-Performance Liquid Chromatographic Determination of Some Anthraquinone and Naphthoquinone Dyes Occurring in Historical Textiles. J. Chromatogr. A 1999, 863, 235–241. DOI: 10.1016/S0021-9673(99)00980-2.
  • Ackacha, M.; Pawlak, K.; Jarosz, M. Identification of Anthraquinone Coloring Matters in Natural Red Dyestuffs by High Performance Liquid Chromatography with Ultraviolet and Electrospray Mass Spectrometric Detection. J. Sep. Sci. 2003, 26, 1028–1034. 10. 1002/jssc.200301484. DOI: 10.1002/jssc.200301484.
  • Angelini, L. G.; Pistelli, L.; Belloni, P.; Bertoli, A.; Panconesi, S. Rubia Tinctorum a Source of Natural Dyes: agronomic Evaluation, Quantitative Analysis of Alizarin and Industrial Assays. Ind. Crops Prod. 1997, 6, 303–311. DOI: 10.1016/S0926-6690(97)00021-6.
  • Gupta, D.; Bleakley, B.; Gupta, R. K. Dragon’s Blood: Botany, Chemistry and Therapeutic Uses. J. Ethnopharmacol. 2008, 115, 361–380. DOI: 10.1016/j.jep.2007.10.018.
  • Jura-Morawiec, J.; Tulik, M. Dragon’s Blood Secretion and Its Ecological Significance. Chemoecology 2016, 26, 101–105. DOI: 10.1007/s00049-016-0212-2.
  • Sousa, M. M.; Melo, M. J.; Parola, A. J.; Seixas de Melo, J. S.; Catarino, F.; Pina, F.; Cook, F. E. M.; Simmonds, M. S. J.; Lopes, J. A. Flavylium Chromophores as Species Markers for Dragon’s Blood Resins from Dracaena and Daemonorops Trees. J. Chromatogr. A 2008, 1209, 153–161. DOI: 10.1016/j.chroma.2008.09.007.
  • Surowiec, I.; Nowik, W.; Trojanowicz, M. Identification of “Insoluble” Red Dyewoods by High Performance Liquid Chromatography–Photodiode Array Detection (HPLC-PDA) Fingerprinting. J. Sep. Sci. 2004, 27, 209–216. DOI: 10.1002/jssc.200301612.
  • Manhita, A.; Ferreira, T.; Candeias, A.; Barrocas Dias, C. Extracting Natural Dyes from Wool—an Evaluation of Extraction Methods. Anal. Bioanal. Chem. 2011, 400, 1501–1514. DOI: 10.1007/s00216-011-4858-x.
  • Dapson, R.; Bain, C. Brazilwood, Sappanwood, Brazilin and the Red Dye Brazilein: From Textile Dyeing and Folk Medicine to Biological Staining and Musical Instruments. Biotech. Histochem. 2015, 90, 401–423. DOI: 10.3109/10520295.2015.1021381.
  • Blanc, R.; Espejo, T.; López-Montes, A.; Torres, D.; Crovetto, G.; Navalón, A.; Vílchez, J. L. Sampling and Identification of Natural Dyes in Historical Maps and Drawings by Liquid Chromatography with Diode-Array Detection. J. Chromatogr. A 2006, 1122, 105–113. DOI: 10.1016/j.chroma.2006.04.056.
  • Serrano, A.; van Bommel, M.; Hallett, J. Evaluation between Ultrahigh Pressure Liquid Chromatography and High-Performance Liquid Chromatography Analytical Methods for Characterizing Natural Dyestuffs. J. Chromatogr. A 2013, 1318, 102–111. DOI: 10.1016/j.chroma.2013.09.062.
  • Degano, I.; Biesaga, M.; Colombini, M. P.; Trojanowicz, M. Historical and Archaeological Textiles: An Insight on Degradation Products of Wool and Silk Yarns. J. Chromatogr. A 2011, 1218, 5837–5847. DOI: 10.1016/j.chroma.2011.06.095.
  • Orska-Gawryś, J.; Surowiec, I.; Kehl, J.; Rejniak, H.; Urbaniak-Walczak, K.; Trojanowicz, M. Identification of Natural Dyes in Archeological Coptic Textiles by Liquid Chromatography with Diode Array Detection. J. Chromatogr. A 2003, 989, 239–248. DOI: 10.1016/S0021-9673(03)00083-9.
  • Petroviciu, I.; Albu, F.; Medvedovici, A. LC/MS and LC/MS/MS Based Protocol for Identification of Dyes in Historic Textiles. Microchem. J. 2010, 95, 247–254. DOI: 10.1016/j.microc.2009.12.009.
  • Petroviciu, I.; Vanden Berghe, I.; Cretu, I.; Albu, F.; Medvedovici, A. Identification of Natural Dyes in Historical Textiles from Romanian Collections by LC-DAD and LC-MS (Single Stage and Tandem MS). J. Cult. Heritage 2012, 13, 89–97. DOI: 10.1016/j.culher.2011.05.004.
  • Clementi, C.; Nowik, W.; Romani, A.; Cibin, F.; Favaro, G. A Spectrometric and Chromatographic Approach to the Study of Ageing of Madder (Rubia Tinctorum L.) Dyestuff on Wool. Anal. Chim. Acta 2007, 596, 46–54. DOI: 10.1016/j.aca.2007.05.036.
  • Peggie, A. D.; Hulme, N. A.; McNab, H.; Quye, A. Towards the Identification of Characteristic Minor Components from Textiles Dyed with Weld (Reseda Luteola L.) and Those Dyed with Mexican Cochineal (Dactylopius Coccus Costa). Microchim. Acta 2008, 162, 371–380. DOI: 10.1007/s00604-007-0866-0.
  • Stathopoulou, K.; Valianou, L.; Skaltsounis, A.-L.; Karapanagiotis, I.; Magiatis, P. Structure Elucidation and Chromatographic Identification of Anthraquinone Components of Cochineal (Dactylopius Coccus) Detected in Historical Objects. Anal. Chim. Acta 2013, 804, 264–272. DOI: 10.1016/j.aca.2013.09.053.
  • Niemeyer, H. M.; Agüero, C. Dyes Used in pre-Hispanic Textiles from the Middle and Late Intermediate Periods of San Pedro de Atacama (Northern Chile): New Insights into Patterns of Exchange and Mobility. J. Archaeolog. Sci. 2015, 57, 14–23. DOI: 10.1016/j.jas.2015.02.003.
  • Serrano, A.; van den Doel, A.; van Bommel, M.; Hallett, J.; Joosten, I.; van den Berg, K. J. Investigation of Crimson-Dyed Fibres for a New Approach on the Characterization of Cochineal and Kermes Dyes in Historical Textiles. Anal. Chim. Acta 2015, 897, 116–127. DOI: 10.1016/j.aca.2015.09.046.
  • Lech, K.; Witkoś, K.; Wileńska, B.; Jarosz, M. Identification of Unknown Colorants in pre-Columbian Textiles Dyed with American Cochineal (Dactylopius Coccus Costa) Using High-Performance Liquid Chromatography and Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2015, 407, 855–867. DOI: 10.1007/s00216-014-8107-y.
  • Trojanowicz, M.; Orska-Gawryś, J.; Surowiec, I.; Szostek, B.; Urbaniak-Walczak, K.; Kehl, J.; Wróbel, M. Chromatographic Investigation of Dyes Extracted from Coptic Textiles from the National Museum in Warsaw. Stud. Conserv. 2004, 49, 115–130. DOI: 10.1179/sic.2004.49.2.115.
  • Wouters, J.; Verhecken, A. High-Performance Liquid Chromatography of Blue and Purple Indigoid Natural Dyes. J. Soc. Dyers Colour. 2008, 107, 266–269. DOI: 10.1111/j.1478-4408.1991.tb01351.x.
  • Szostek, B.; Orska-Gawrys, J.; Surowiec, I.; Trojanowicz, M. Investigation of Natural Dyes Occurring in Historical Coptic Textiles by High-Performance Liquid Chromatography with UV–Vis and Mass Spectrometric Detection. J. Chromatogr. A 2003, 1012, 179–192. DOI: 10.1016/S0021-9673(03)01170-1.
  • Puchalska, M.; Orlińska, M.; Ackacha, M. A.; Połeć-Pawlak, K.; Jarosz, M. Identification of Anthraquinone Coloring Matters in Natural Red Dyes by Electrospray Mass Spectrometry Coupled to Capillary Electrophoresis. J. Mass Spectrom. 2003, 38, 1252–1258. DOI: 10.1002/jms.549.
  • López-Montes, A.; Blanc García, R.; Espejo, T.; Huertas-Perez, J. F.; Navalón, A.; Vílchez, J. L. Simultaneous Identification of Natural Dyes in the Collection of Drawings and Maps from the Royal Chancellery Archives in Granada (Spain) by CE. Electrophoresis. 2007, 28, 1243–1251. DOI: 10.1002/elps.200600446.
  • Surowiec, I.; Pawelec, K.; Rezeli, M.; Kilar, F.; Trojanowicz, M. Capillary Electrophoretic Determination of Main Components of Natural Dyes with MS Detection. J. Sep. Sci. 2008, 31, 2457–2462. DOI: 10.1002/jssc.200800032.
  • Ahmadi, S.; Absalan, G.; Craig, D.; Goltz, D. Photochemical Properties of Purpurin and Its Implications for Capillary Electrophoresis with Laser Induced Fluorescence Detection. Dyes Pigm. 2014, 105, 57–62. DOI: 10.1016/j.dyepig.2013.12.011.
  • Ahmadi, S.; Craig, D.; Goltz, D. Micellar Electrokinetic Chromatography with Laser-Induced Fluorescence Detection for Separation of Red and Yellow Historical Dyes. Chromatography 2013, 1, 9–23. DOI: 10.3390/chromatography1010009.
  • Maguregui, M. I.; Alonso, R. M.; Barandiaran, M.; Jimenez, R. M.; García, N. Micellar Electrokinetic Chromatography Method for the Determination of Several Natural Red Dyestuff and Lake Pigments Used in Art Work. J. Chromatogr. A 2007, 1154, 429–436. DOI: 10.1016/j.chroma.2007.03.089.
  • Trojanowicz, M. W.; Lena, W.; Urbaniak-Walczak, K. Identification of Natural Dyes in Historical Coptic Textiles by Capillary Electrophoresis with Diode Array Detection. Chem. Anal. (Warsaw) 2003, 48, 607–620.
  • Liang, H. R.; Sirén, H.; Riekkola, M. L.; Vuorela, P.; Vuorela, H.; Hiltunen, R. Optimized Separation of Pharmacologically Active Flavonoids from Epimedium Species by Capillary Electrophoresis. J. Chromatogr. A 1996, 746, 123–129. DOI: 10.1016/0021-9673(96)00287-7.
  • Zhang, X.; Boytner, R.; Cabrera, J. L.; Laursen, R. Identification of Yellow Dye Types in Pre-Columbian Andean Textiles. Anal. Chem. 2007, 79, 1575–1582. DOI: 10.1021/ac061618f.
  • Valianou, L.; Stathopoulou, K.; Karapanagiotis, I.; Magiatis, P.; Pavlidou, E.; Skaltsounis, A.-L.; Chryssoulakis, Y. Phytochemical Analysis of Young Fustic (Cotinus Coggygria Heartwood) and Identification of Isolated Colourants in Historical Textiles. Anal. Bioanal. Chem. 2009, 394, 871–882. DOI: 10.1007/s00216-009-2767-z.
  • Lech, K.; Witkoś, K.; Jarosz, M. HPLC–UV–ESI MS/MS Identification of the Color Constituents of Sawwort (Serratula Tinctoria L.). Anal. Bioanal. Chem. 2014, 406, 3703–3708. DOI: 10.1007/s00216-013-7589-3.
  • Troalen, L. G.; Phillips, A. S.; Peggie, D. A.; Barran, P. E.; Hulme, A. N. Historical Textile Dyeing with Genista Tinctoria L.: a Comprehensive Study by UPLC-MS/MS Analysis. Anal. Methods 2014, 6, 8915–8923. DOI: 10.1039/C4AY01509F.
  • Nowik, W. HPLC-PDA Characterisation of Daphne Gnidium L. (Thymemeacea) Dyeing Extracts Using Two Different C-18 Stationary Phases. J. Sep. Sci. 2005, 28, 1595–1600. DOI: 10.1002/jssc.200401770.
  • Mouri, C.; Mozaffarian, V.; Zhang, X.; Laursen, R. Characterization of Flavonols in Plants Used for Textile Dyeing and the Significance of Flavonol Conjugates. Dyes Pigments 2014, 100, 135–141. DOI: 10.1016/j.dyepig.2013.08.025.
  • Colombini, M. P.; Andreotti, A.; Baraldi, C.; Degano, I.; Łucejko, J. J. Colour Fading in Textiles: A Model Study on the Decomposition of Natural Dyes. Microchem. J. 2007, 85, 174–182. DOI: 10.1016/j.microc.2006.04.002.
  • Han, J.; Wanrooij, J.; van Bommel, M.; Quye, A. Characterisation of Chemical Components for Identifying Historical Chinese Textile Dyes by Ultra High Performance Liquid Chromatography—Photodiode Array—Electrospray Ionisation Mass Spectrometer. J. Chromatogr. A 2017, 1479, 87–96. DOI: 10.1016/j.chroma.2016.11.044.
  • Zhang, X.; Laursen, R. A. Development of Mild Extraction Methods for the Analysis of Natural Dyes in Textiles of Historical Interest Using LC-Diode Array Detector-MS. Anal. Chem. 2005, 77, 2022–2025. DOI: 10.1021/ac048380k.
  • Wouters, J.; Grzywacz, C. M.; Claro, A. A Comparative Investigation of Hydrolysis Methods to Analyze Natural Organic Dyes by HPLC-PDA Nine Methods, Twelve Biological Sources, Ten Dye Classes, Dyed Yarns, Pigments and Paints. Stud. Conserv. 2011, 56, 231–249. DOI: 10.1179/204705811X13110713013353.
  • Marques, R.; Sousa, M. M.; Oliveira, M. C.; Melo, M. J. Characterization of Weld (Reseda Luteola L.) and Spurge Flax (Daphne Gnidium L.) by High-Performance Liquid Chromatography–Diode Array Detection–Mass Spectrometry in Arraiolos Historical Textiles. J. Chromatogr. A 2009, 1216, 1395–1402. DOI: 10.1016/j.chroma.2008.12.083.
  • Zhang, X.; Laursen, R. Application of LC–MS to the Analysis of Dyes in Objects of Historical Interest. Int. J. Mass Spectrom 2009, 284, 108–114. DOI: 10.1016/j.ijms.2008.07.014.
  • Zhang, X.; Mouri, C.; Mikage, M.; Laursen, R. Preliminary Studies toward Identification of Sources of Protoberberine Alkaloids Used as Yellow Dyes in Asian Objects of Historical Interest. Stud. Conserv. 2010, 55, 4, 177–185. DOI: 10.1179/sic.2010.55.3.177.
  • Mantzouris, D.; Karapanagiotis, I.; Panayiotou, C. Comparison of Extraction Methods for the Analysis of Indigofera Tinctoria and Carthamus Tinctorius in Textiles by High Performance Liquid Chromatography. Microchem. J. 2014, 115, 78–86. DOI: 10.1016/j.microc.2014.02.010.
  • Petroviciu, I.; Creţu, I.; Berghe, I. V.; Wouters, J.; Medvedovici, A.; Albu, F. Flavonoid Dyes Detected in Historical Textiles from Romanian Collections. In Sixth International Meeting of the Users’Group for Mass Spectrometry and Chromatography (MASC); Pisa, Italy, 2013; pp 84–90.
  • Surowiec, I.; Quye, A.; Trojanowicz, M. Liquid Chromatography Determination of Natural Dyes in Extracts from Historical Scottish Textiles Excavated from Peat Bogs. J. Chromatogr. A 2006, 1112, 209–217. DOI: 10.1016/j.chroma.2005.11.019.
  • Lech, K.; Jarosz, M. Novel Methodology for the Extraction and Identification of Natural Dyestuffs in Historical Textiles by HPLC–UV–Vis–ESI MS. Case Study: chasubles from the Wawel Cathedral Collection. Anal. Bioanal. Chem. 2011, 399, 3241–3251. DOI: 10.1007/s00216-010-4591-x.
  • Szumski, M.; Buszewski, B. State of the Art in Miniaturized Separation Techniques. Crit. Rev. Anal. Chem. 2002, 32, 1–46. DOI: 10.1080/10408340290765434.
  • Halpine, S. M. An Improved Dye and Lake Pigment Analysis Method Using High Performance Liquid Chromatography and Diode-Array Detector. Stud. Conserv. 1996, 41, 76–94. DOI: 10.2307/1506519.
  • Karapanagiotis, I.; Lakka, A.; Valianou, L.; Chryssoulakis, Y. High-Performance Liquid Chromatographic Determination of Colouring Matters in Historical Garments from the Holy Mountain of Athos. Microchim. Acta 2008, 160, 477–483. DOI: 10.1007/s00604-007-0774-4.
  • Zhang, X.; Cardon, D.; Cabrera, J. L.; Laursen, R. The Role of Glycosides in the Light-Stabilization of 3-Hydroxyflavone (Flavonol) Dyes as Revealed by HPLC. Microchim. Acta 2010, 169, 327–334. DOI: 10.1007/s00604-010-0361-x.
  • Ferreira, E.; Quye, A.; McNab, H.; Hulme, A. Photo-oxidation Products of Quercetin and Morin as Markers for the Characterisation of natural Yellow Dyes in Ancient Textiles. Dyes History Archaeol 1999, 18, 63–72.
  • Mantzouris, D.; Karapanagiotis, I.; Valianou, L.; Panayiotou, C. HPLC–DAD–MS Analysis of Dyes Identified in Textiles from Mount Athos. Anal. Bioanal. Chem. 2011, 399, 3065–3079. DOI: 10.1007/s00216-011-4665-4.
  • López-Montes, A.; Blanc, R.; Espejo, T.; Navalón, A.; Vílchez, J. L. Characterization of Sepia Ink in Ancient Graphic Documents by Capillary Electrophoresis. Microchem. J. 2009, 93, 121–126. DOI: 10.1016/j.microc.2009.05.008.
  • Rodrı́guez-Delgado, M. A.; Pérez, M. L.; Corbella, R.; González, G.; and.; Garcı́a Montelongo, F. J. ; Optimization of the Separation of Phenolic Compounds by Micellar Electrokinetic Capillary Chromatography. J. Chromatogr. A 2000, 871, 427–438. DOI: 10.1016/S0021-9673(99)00883-3.
  • Hancu, G.; Simon, B.; Rusu, A.; Mircia, E.; Gyéresi, A. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis. Adv. Pharm. Bull. 2013, 3, 1–8. DOI: 10.5681/apb.2013.001.
  • Herrero‐Martínez, J. M.; Oumada, F. Z.; Rosés, M.; Bosch, E.; Ràfols, C. Determination of Flavonoid Aglycones in Several Food Samples by Mixed Micellar Electrokinetic Chromatography. J. Sep. Sci. 2007, 30, 2493–2500. DOI: 10.1002/jssc.200700124.
  • Volpi, N. Separation of Flavonoids and Phenolic Acids from Propolis by Capillary Zone Electrophoresis. Electrophoresis. 2004, 25, 1872–1878. DOI: 10.1002/elps.200405949.
  • Głowacki, R.; Furmaniak, P.; Kubalczyk, P.; Borowczyk, K. Determination of Total Apigenin in Herbs by Micellar Electrokinetic Chromatography with UV Detection. J. Anal. Methods Chem. 2016, 2016, 1–8. DOI: 10.1155/2016/3827832.
  • Wang, S.-P.; Huang, K.-J. Determination of Flavonoids by High-Performance Liquid Chromatography and Capillary Electrophoresis. J. Chromatogr. A 2004, 1032, 273–279. DOI: 10.1016/j.chroma.2003.11.099.
  • Witkoś, K.; Lech, K.; Jarosz, M. Identification of Degradation Products of Indigoids by Tandem Mass Spectrometry. J. Mass Spectrom. 2015, 50, 1245–1251. DOI: 10.1002/jms.3641.
  • Maugard, T.; Enaud, E.; Choisy, P.; Legoy, M. D. Identification of an Indigo Precursor from Leaves of Isatis Tinctoria (Woad). Phytochemistry 2001, 58, 897–904. DOI: 10.1016/S0031-9422(01)00335-1.
  • Puchalska, M.; Połeć-Pawlak, K.; Zadrożna, I.; Hryszko, H.; Jarosz, M. Identification of Indigoid Dyes in Natural Organic Pigments Used in Historical Art Objects by High-Performance Liquid Chromatography Coupled to Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2004, 39, 1441–1449. DOI: 10.1002/jms.728.
  • Pawlak, K.; Puchalska, M.; Miszczak, A.; Rosłoniec, E.; Jarosz, M. Blue Natural Organic Dyestuffs—from Textile Dyeing to Mural Painting. Separation and Characterization of Coloring Matters Present in Elderberry, Logwood and Indigo. J. Mass Spectrom. 2006, 41, 613–622. DOI: 10.1002/jms.1018.
  • Karapanagiotis, I.; de Villemereuil, V.; Magiatis, P.; Polychronopoulos, P.; Vougogiannopoulou, K.; Skaltsounis, A. L. Identification of the Coloring Constituents of Four Natural Indigoid Dyes. J Liq Chromatogr R T 2006, 29, 1491–1502. DOI: 10.1080/10826070600674935.
  • Koren, Z. C. Archaeo-Chemical Analysis of Royal Purple on a Darius I Stone Jar. Microchim. Acta 2008, 162, 381–392. DOI: 10.1007/s00604-007-0862-4.
  • Karapanagiotis, I.; Mantzouris, D.; Cooksey, C.; Mubarak, M. S.; Tsiamyrtzis, P. An Improved HPLC Method Coupled to PCA for the Identification of Tyrian Purple in Archaeological and Historical Samples. Microchem. J. 2013, 110, 70–80. DOI: 10.1016/j.microc.2013.02.008.
  • Nowik, W.; Marcinowska, R.; Kusyk, K.; Cardon, D.; Trojanowicz, M. High Performance Liquid Chromatography of Slightly Soluble Brominated Indigoids from Tyrian Purple. J. Chromatogr. A 2011, 1218, 1244–1252. DOI: 10.1016/j.chroma.2011.01.004.
  • Yan, C.; Dadoo, R.; Zhao, H.; Zare, R. N.; Rakestraw, D. J. Capillary Electrochromatography—Analysis of Polycyclic Aromatic-Hydrocarbons. Anal. Chem. 1995, 67, 2026–2029. DOI: 10.1021/ac00109a020.
  • Pretorius, V.; Hopkins, B. J.; Schieke, J. D. Electro-Osmosis: A New Concept for High-Speed Liquid Chromatography. J. Chromatogr. A 1974, 99, 23–30. DOI: 10.1016/S0021-9673(00)90842-2.
  • Sanyova, J. Mild Extraction of Dyes by Hydrofluoric Acid in Routine Analysis of Historical Paint Micro-Samples. Microchim. Acta 2008, 162, 361–370. DOI: 10.1007/s00604-007-0867-z.
  • Lingyi, Z.; Jie, Z.; Hui, W.; Lihua, Z.; Weibing, Z.; Yukui, Z. Analysis of Flavonoids in Leaves of Adinandra Nitida by Capillary Electrochromatography on Monolithic Columns with Stepwise Gradient Elution. J. Sep. Sci. 2005, 28, 774–779. DOI: 10.1002/jssc.200400080.
  • Chen, Z.; Cai, Y.; Cheng, J.; Zhang, L. Electrochromatographic Characterization of Methacrylate Ester-Based Monolith and Capillary Electrochromatography Separation of Flavonoids. J. Chromatogr. B 2010, 878, 2375–2378. DOI: 10.1016/j.jchromb.2010.07.005.
  • Ding, J.; Ning, B.; Fu, G.; Lu, Y.; Dong, S. Separation of Rhubarb Anthraquinones by Capillary Electrochromatography. Chromatographia 2000, 52, 285–288. DOI: 10.1007/BF02491018.
  • Li, Y.; Liu, H.; Ji, X.; Li, J. Optimized Separation of Pharmacologically Active Anthraquinones in Rhubarb by Capillary Electrochromatography. Electrophoresis 2000, 21, 3109–3115. DOI: 10.1002/1522-2683(20000901)21:15<3109::AID-ELPS3109>3.0.CO;2-Q.
  • Lü, H.; Wang, J.; Wang, X.; Lin, X.; Wu, X.; Xie, Z. Rapid Separation and Determination of Structurally Related Anthraquinones in Rhubarb by Pressurized Capillary Electrochromatography. J. Pharm. Biomed. Anal. 2007, 43, 352–357. DOI: 10.1016/j.jpba.2006.06.023.
  • Starkey, J. A.; Mechref, Y.; Byun, C. K.; Steinmetz, R.; Fuqua, J. S.; Pescovitz, O. H.; Novotny, M. V. Determination of Trace Isoflavone Phytoestrogens in Biological Materials by Capillary Electrochromatography. Anal. Chem. 2002, 74, 5998–6005. DOI: 10.1021/ac025929b.
  • Stöggl, W. M.; Huck, C. W.; Stecher, G.; Bonn, G. K. Capillary Electrochromatography of Biologically Relevant Flavonoids. Electrophoresis. 2006, 27, 787–792. DOI: 10.1002/elps.200500540.
  • Li, C.; Chen, A.; Chen, X.; Chen, X.; Hu, Z. Separation and Simultaneous Determination of Rutin, Puerarin, Daidzein, Esculin and Esculetin in Medicinal Preparations by Non-Aqueous Capillary. J. Pharm. Biomed. Anal. 2005, 39, 125–131. DOI: 10.1016/j.jpba.2005.03.018.
  • Li, Y.; Qi, S.; Chen, X.; Hu, Z. Separation and Determination of the Anthraquinones in Xanthophytum Attopvensis Pierre by Nonaqueous Capillary Electrophoresis. Talanta 2005, 65, 15–20. DOI: 10.1016/j.talanta.2004.04.019.
  • Lu, Y.; Jia, C.; Yao, Q.; Zhong, H.; Breadmore, M. C. Analysis of Flavonoids by Non-Aqueous Capillary Electrophoresis with 1-Ethyl-3-Methylimidazolium Ionic-Liquids as Background Electrolytes. J. Chromatogr. A 2013, 1319, 160–165. DOI: 10.1016/j.chroma.2013.10.014.
  • Qi, S.; Li, Y.; Wu, S.; Chen, X.; Hu, Z. Novel Nonaqueous Capillary Electrophoresis Separation and Determination of Bioactive Flavone Derivatives in Chinese Herbs. J. Sep. Sci. 2005, 28, 2180–2186. DOI: 10.1002/jssc.200500134.