488
Views
5
CrossRef citations to date
0
Altmetric
Review Article

A Critical Review of Biological Properties, Delivery Systems and Analytical/Bioanalytical Methods for Determination of Bevacizumab

, , , ORCID Icon, & ORCID Icon
Pages 445-453 | Published online: 15 Apr 2020

References

  • Muhsin, M.; Graham, J.; Kirkpatrick , P. Bevacizumab, J. Pharm. Policy Pract. 2004, 3, 1–2. DOI: 10.1038/nrd1583.
  • Gerber, H.; Ferrara, N. Pharmacology and Pharmacodynamics of Bevacizumab as Monotherapy or in Combination with Cytotoxic Therapy in Preclinical Studies. Cancer Res. 2005, 3, 671–681.
  • Terman, B. I.; Dougher-Vermazen, M.; Carrion, M. E.; Dimitrov, D.; Armellino, D. C.; Gospodarowicz, D.; Böhlen, P. Identification of the KDR Tyrosine Kinase as a Receptor for Vascular Endothelial Cell Growth Factor. Biochem. Biophys. Res. Commun. 1992, 187, 1579–1586. DOI: 10.1016/0006-291X(92)90483-2.
  • Gomes, E. C. L.; Cunha Junior, A. S.; Yoshida, M. I.; Jorge, R. Desenvolvimento e validação de método analítico Para quantificação do fármaco Bevacizumabe por cromatografia a líquido de ata eficiência. Quím. Nova 2012, 35, 608–611. DOI: 10.1590/S0100-40422012000300029.
  • Yamada, T.; Mizuno, H.; Min, J. Z.; Oka, T. T.; Todoroki, K. High Sensitivity and Precision High-Temperature Reversed-Phase LC Analysis of Bevacizumab for Intact Bioanalysis of Therapeutic Monoclonal Antibodies. Chromatography 2018, 39, 21–26. DOI: 10.15583/jpchrom.2017.014.
  • Chu, K. O.; T. D.; Liu, L.; Chan, K. P.; Yang, Y. P.; Hin, G.; Yam, F.; Rogers, M. S.; Pang, C. P. Quantification and Structure Elucidation of in Vivo Bevacizumab Modification in Rabbit Vitreous Humor after Intravitreal Injection. Mol. Pharmaceutics 2012, 9, 3422–3433. DOI: 10.1021/mp3005403.
  • Kamerud, J.; Abrams, M.; Klover, J. An ELISA for the Quantitative Determination of Free and Partially Bound Bevacizumab in Human Serum. Eurofins Bioanalytical Service T2047.
  • Mikačić, I.; Belužić, R.; Vugrek, O.; Plavljanić, Đ. A Proximity Extension Assay (PEA) -Based Method for Quantification of Bevacizumab. J. Pharmacol. Toxicol. Methods 2018, 92, 20–23. DOI: 10.1016/j.vascn.2018.02.008.
  • Sousa, F.; Gonçalves, V. M. F.; Sarmento, B. Development and Validation of a Rapid Reversed-Phase HPLC Method for the Quantification of Monoclonal Antibody Bevacizumab from Polyester-Based Nanoparticles. J. Pharm. Biomed. Anal. 2017, 142, 171–177. DOI: 10.1016/j.jpba.2017.05.015.
  • Ferrara, N.; Hillan, K. J.; Gerber, H.; Novotny, W. Discovery and Development of Bevacizumab, an Anti-VEGF Antibody for Treating Cancer. Nat. Rev. Drug Discov. 2004, 3, 391–400. DOI: 10.1038/nrd1381.
  • Ranieri, G.; Patruno, R.; Ruggieri, E.; Montemurro, S.; Valerio, P.; Ribatti, D. Vascular Endothelial Growth Factor (VEGF) as a Target of Bevacizumab in Cancer: From the Biology to the Clinic. Curr. Med. Chem. 2006, 13, 1845–1857. DOI: 10.2174/092986706777585059.
  • Kazazi-Hyseni, F.; Beijnen, J. H.; Schellens, J. H. M. Bevacizumab. Oncologist 2010, 15, 819–825. DOI: 10.1634/theoncologist.2009-0317.
  • Homsi, J.; Daud, A. I. Spectrum of Activity and Mechanism of Action of VEGF/PDGF Inhibitors. Cancer Control 2007, 14, 285–294. DOI: 10.1177/107327480701400312.
  • Mukherji, S. K. Bevacizumab (Avastin). AJNR Am. J. Neuroradiol. 2010, 31, 235–236. DOI: 10.3174/ajnr.A1987.
  • Ellis, L. M. Mechanisms of Action of Bevacizumab as a Component of Therapy for Metastatic Colorectal Cancer. Semin. Oncol. 2006, 33, S1–S7. DOI: 10.1053/j.seminoncol.2006.08.002.
  • Wang, C.; Hwang, Y.; Chiang, P.; Shen, C.; Hong, W.; Hsiue, G. Extended Release of Bevacizumab by Thermosensitive Biodegradable and Biocompatible Hydrogel. Biomacromolecules 2012, 13, 40–48. DOI: 10.1021/bm2009558.
  • Hainsworth, J. D.; Sosman, J. A.; Spigel, D. R.; Edwards, D. L.; Baughman, C.; Greco, A. Treatment of Metastatic Renal Cell Carcinoma with a Combination of Bevacizumab and Erlotinib. J. Clin. Oncol. 2005, 23, 7889–7896. DOI: 10.1200/JCO.2005.01.8234.
  • Verheul, H. M. W.; Lolkema, M. P. J.; Qian, D. Z.; Hilkes, Y. H. A.; Liapi, E.; Akkerman, J. N.; Pili, R.; Voest, E. E. Platelets Take up the Monoclonal Antibody Bevacizumab. Hum. Cancer Biol. 2007, 13, 5341–5348. DOI: 10.1158/1078-0432.CCR-07-0847.
  • Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S. K. Drug Delivery Systems : An Updated Review. Int. J. Pharma. Investig. 2012, 2, 2. DOI: 10.4103/2230-973X.96920.
  • Hanck-Silva, G.; Noboru, L.; Trevizan, F.; Petrilli, R.; De Lima, F. T.; Eloy, J. O. A Critical Review of Properties and Analytical/Bioanalytical Methods for Characterization of Cetuximab. Crit. Rev. Anal. Chem. 2020, 50, 125–111. DOI: 10.1080/10408347.2019.1581984.
  • Kuesters, G. M.; Campbell, R. B. Conjugation of Bevacizumab to Cationic Liposomes Enhances Their Tumor-Targeting Potential. Nanomedicine 2010, 5, 181–192. DOI: 10.2217/nnm.09.105.
  • Sousa, F.; Cruz, A.; Fonte, P.; Pinto, I. M.; Neves-Petersen, M. T.; Sarmento, B. A New Paradigm for Antiangiogenic Therapy through Controlled Release of Bevacizumab from PLGA Nanoparticles. Sci. Rep. 2017, 7, 3736–3713. 1- DOI: 10.1038/s41598-017-03959-4.
  • Li, F.; Hurley, B.; Liu, Y.; Leonard, B.; Griffith, M. Controlled Release of Bevacizumab through Nanospheres for Extended Treatment of Age-Related Macular Degeneration. Open Ophthalmol J. 2012, 6, 54–58. DOI: 10.2174/1874364101206010054.
  • Eloy, J. O.; Petrilli, R.; Noboru, L.; Trevizan, F.; Chorilli, M. Immunoliposomes: A Review on Functionalization Strategies and Targets for Drug Delivery. Colloids Surf. B 2017, 159, 454–453. DOI: 10.1016/j.colsurfb.2017.07.085.
  • Chorilli, M.; Calixto, G.; Rimério, T. C.; Scarpa, M. V. Caffeine Encapsulated in Small Unilamellar Liposomes : Characterization and in Vitro Release Profile. J. Dispers. Sci. Technol. 2013, 34, 1465–1470. DOI: 10.1080/01932691.2012.739535.
  • Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S. W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 2013, 8, 102. DOI: 10.1186/1556-276X-8-102.
  • Karumanchi, D. K.; Skrypai, Y.; Thomas, A.; Gaillard, E. R. Rational Design of Liposomes for Sustained Release Drug Delivery of Bevacizumab to Treat Ocular Angiogenesis. J. Drug Deliv. Sci. Technol. 2018, 47, 275–233. DOI: 10.1016/j.jddst.2018.07.003.
  • De Freitas, L. M.; Calixto, G. M. F.; Chorilli, M.; Giusti, J. S. M.; Bagnato, V. S.; Soukos, N. S.; Amiji, M. M.; Fontana, C. R. Polymeric Nanoparticle-Based Photodynamic Therapy for Chronic Periodontitis in Vivo. Int. J. Mol. Sci. 2016, 17, 769. DOI: 10.3390/ijms17050769.
  • Formariz, T. P.; Urban, M. C. C.; Silva Júnior, A. A.; Gremião, M. P. D.; De Oliveira, A. G. Microemulsões e fases líquidas cristalinas como sistemas de liberação de fármacos. Braz. J. Pharm. Sci. 2005, 41, 301–313. DOI: 10.1590/S1516-93322005000300003.
  • Santos, K. C.; Da Silva, M. F. G. F.; Pereira-Filho, E. R.; Fernandes, J. B.; Polikarpov, I.; Forim, M. R. Polymeric Nanoparticles Loaded with 3,5,3’-Triiodothyroacetic Acid (Triac), a Thyroid Hormone : Factorial Design, Characterization, and Release Kinetics. Nanotechnol. Sci. Appl. 2012, 5, 37–48. DOI: 10.2147/NSA.S32837.
  • Jawahar, N.; Meyyanathan, S. N. Polymeric Nanoparticles for Drug Delivery and Targeting : A Comprehensive Review. Int. J. Health Allied Sci. 2012, 1, 217–223. DOI:0.4103/2278-344X.107832. DOI: 10.4103/2278-344X.107832.
  • Pandit, J.; Sultana, Y.; Aqil, M. Chitosan-Coated PLGA Nanoparticles of Bevacizumab as Novel Drug Delivery to Target Retina: Optimization, Characterization, and in Vitro Toxicity Evaluation. Artif. Cells Nanomed. Biotechonol. 2017, 45, 1397–1311. DOI: 10.1080/21691401.2016.1243545.
  • Yandrapu, S. K.; Upadhyay, A. K.; Petrash, J. M.; Kompella, U. B. Nanoparticles in Porous Microparticles Prepared by Supercritical Infusion and Pressure Quench Technology for Sustained Delivery of Bevacizumab. Mol. Pharm. 2013, 10, 4676–4639. DOI:021/mp400487f. DOI: 10.1021/mp400487f.
  • Sun, J. Q.; Jiang, Q.; Zhang, X. P.; Shan, K.; Liu, B.; Zhao, C.; Yan, B. Mesoporous Silica Nanoparticles as a Delivery System for Improving Antiangiogenic Therapy. Int. J. Nanomed. 2019, 14, 1489–1501. DOI: 10.2147/IJN.S195504.
  • Battaglia, L.; Gallarate, M.; Peira, E.; Chirio, D.; Solazzi, I.; Marzia, S.; Giordano, A.; Gigliotti, C. L.; Riganti, C.; Dianzani, C. Bevacizumab Loaded Solid Lipid Nanoparticles Prepared by the Coacervation Technique : Preliminary in Vitro Studies. Nanotechnology 2015, 26, 255102. DOI: 10.1088/0957-4484///.
  • Hoffman, A. S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. DOI: 10.1016/j.addr.2012.09.010.
  • Yu, Y.; Chi, L.; Lau, M.; Lo, A. C.; Chau, Y. Injectable Chemically Crosslinked Hydrogel for the Controlled Release of Bevacizumab in Vitreous : A 6-Month in Vivo Study. Trans. Vis. Sci. Technol. 2015, 4, 5–11. DOI: 10.1167/tvst.4.2.5.
  • Hu, C.-C.; Chaw, J.-R.; Chen, C.-F.; Liu, H.-W. Controlled Release Bevacizumab in Thermoresponsive Hydrogel Found to Inhibit Angiogenesis. Bio-Med. Mater. Eng. 2014, 24, 1941–1950. DOI: 10.3233/BME-141003.
  • Akbas, S.; Sahin, A.; Calis, S.; Oncel, H.; Capan, Y. Characterization of Bevacizumab by Dynamic Light Scattering While Maintaining Its Native Structure. Pharmazie 2018, 73, 369–374. DOI: 10.1691/ph.2018.8024.
  • Patil, R.; Deshmukh, T.; Patil, V.; Khandelwal, K. Review on Analytical Method Development and Validation. Res. Rev. J. Pharm. Anal. 2014, 3, 3.
  • Siddiqui, M. R.; AlOthman, Z. A.; Rahman, N. Analytical Techniques in Pharmaceutical Analysis : A Review. Arabian J. Chem. 2017, 10, S1409–S1421. DOI: 10.1016/j.arabjc.2013.04.016.
  • Rodríguez, M. P.; Pezza, H. R.; Pezza, L. Simple and Clean Determination of Tetracyclines by Flow Injection Analysis. Spectrochim. Acta. Part A 2016, 153, 386–392. DOI: 10.1016/j.saa.2015.08.048.
  • Martínez-Ortega, A.; Herrera, A.; Salmerón-Garcia, A.; Cabeza, J.; Cuadros-Rodríguez, L.; Navas, N. Validated Reverse Phase HPLC Diode Array Method for the Quantification of Intact Bevacizumab, Infliximab and Trastuzumab for Long-Term Stability Study. Biol. Macromol. 2018, 1–47. DOI: 10.1016/j.ijbiomac.2018.05.142.
  • Legeron, R.; Xuereb, F.; Chaignepain, S.; Gadeau, A.; Claverol, S.; Dupuy, J.; Djabarouti, S.; Couffinhal, T.; Schmitter, J.; Breilh, D. A New Reliable, Transposable and Cost-effective Assay for Absolute Quantification of Total Plasmatic Bevacizumab by LC – MS/MS in Human Plasma Comparing Two Internal Standard Calibration Approaches. J. Chromatogr. B 2017, 1070, 43–11. DOI: 10.1016/j.jchromb.2017.10.042.
  • Todoroki, K.; Nakano, T.; Eda, Y.; Ohyama, K.; Hayashi, H.; Tsuji, D.; Min, J. Z.; Inoue, K.; Iwamoto, N.; Kawakami, A.; et al. Bioanalysis of Bevacizumab and Infliximab by High-Temperature Reversed-Phase Liquid Chromatography with Fluorescence Detection after Immunoaffinity Magnetic Purification. Anal. Chim. Acta 2016, 916, 112–119. DOI: 10.1016/j.aca.2016.02.029.
  • Lame, M.; Yang, H.; Naughton, S.; Chambers, E. Simple, Standardized, and Sensitive Quantification of Bevacizumab (Avastin) Using ProteinWorks eXpress Digest Kits. Waters the Science of What’s Possible 2020, 1–7.
  • Suárez, I.; Salmerón-García, A.; Cabeza, J.; Capitán-Vallvey, L. F.; Navas, N. Development and Use of Specific ELISA Methods for Quantifying the Biological Activity of Bevacizumab, Cetuximab and Trastuzumab in Stability Studies. J. Chromatogr. B 2016, 1032, 155–142. DOI: 10.1016/j.jchromb.2016.05.045.
  • Rauck, B. M.; Friberg, T. R.; Mendez, C. A. M.; Park, D.; Shah, V.; Bilonick, R. A.; Wang, Y. Biocompatible Reverse Thermal Gel Sustains the Release of Intravitreal Bevacizumab in Vivo. Invest. Ophthalmol. Visual Sci. 2014, 55, 459–476. DOI: 10.1167/iovs.13-13120.
  • Abrishami, M.; Ganavati, S. Z.; Soroush, D.; Jaafari, M. R. Preparation, Characterization, and in Vivo Evaluation of Nanoliposomes-Encapsulated Bevacizumab (Avastin) for Intravitreal Administration. Retina 2009, 29, 699–703. DOI: 10.1097/IAE.0b013e3181a2f42a.
  • Varshochian, R.; Riazi-Esfahani, M.; Jeddi-Tehrani, M.; Mahmoudi, A.; Aghazadeh, S.; Mahbod, M.; Movassat, M.; Atyabi, F.; Sabzevari, A.; Dinarvand, R. Albuminated PLGA Nanoparticles Containing Bevacizumab Intended for Ocular Neovascularization Treatment. J. Biomed. Mater. Res. 2015, 103, A3148–A3156. DOI: 10.1002/jbm.a.35446.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.