1,396
Views
25
CrossRef citations to date
0
Altmetric
Review Article

Noble Metals Based Bimetallic and Trimetallic Nanoparticles: Controlled Synthesis, Antimicrobial and Anticancer Applications

ORCID Icon, , , ORCID Icon, , , , & show all
Pages 454-481 | Published online: 01 Apr 2020

References

  • Rai, M.; Ingle, A. P.; Birla, S.; Yadav, A.; Santos, C. A. D. Strategic Role of Selected Noble Metal Nanoparticles in Medicine. Crit. Rev. Microbiol. 2016, 42, 696–719. DOI: 10.3109/1040841X.2015.1018131
  • Xu, J.; Peng, C.; Yu, M.; Zheng, J. Renal Clearable Noble Metal Nanoparticles: Photoluminescence, Elimination, and Biomedical Applications. WIRES Nanomed. Nanobiotech. 2017, 9, 1453.
  • Elahi, N.; Kamali, M.; Baghersad, M. H. Recent Biomedical Applications of Gold Nanoparticles: A Review. Talanta 2018, 184, 537–556. DOI: 10.1016/j.talanta.2018.02.088.
  • Akhtar, M. S.; Panwar, J.; Yun, Y.-S. Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts. ACS Sustain. Chem. Eng. 2013, 1, 591–602. DOI: 10.1021/sc300118u.
  • Demirbas, A.; Yilmaz, V.; Ildiz, N.; Baldemir, A.; Ocsoy, I. Anthocyanins-Rich Berry Extracts Directed Formation of Ag NPs with the Investigation of Their Antioxidant and Antimicrobial Activities. J. Mol. Liq. 2017, 248, 1044–1049. DOI: 10.1016/j.molliq.2017.10.130.
  • Zhang, Q.; Xie, J.; Lee, J. Y.; Zhang, J.; Boothroyd, C. Synthesis of Ag@ AgAu Metal Core/Alloy Shell Bimetallic Nanoparticles with Tunable Shell Compositions by a Galvanic Replacement Reaction. Small 2008, 4, 1067–1071. DOI: 10.1002/smll.200701196.
  • Adekoya, J. A.; Dare, E. O.; Mesubi, M. A. Tunable Morphological Properties of Silver Enriched Platinum Allied Nanoparticles and Their Catalysed Reduction of p-Nitrophenol. Adv. Nat. Sci. Nanosci. 2014, 5, 035007. DOI: 10.1088/2043-6262/5/3/035007.
  • Srinoi, P.; Chen, Y.-T.; Vittur, V.; Marquez, M.; Lee, T. Bimetallic Nanoparticles: Enhanced Magnetic and Optical Properties for Emerging Biological Applications. Appl. Sci. 2018, 8, 1106. DOI: 10.3390/app8071106.
  • Liu, X.; Wang, D.; Li, Y. Synthesis and Catalytic Properties of Bimetallic Nanomaterials with Various Architectures. Nano Today 2012, 7, 448–466. DOI: 10.1016/j.nantod.2012.08.003.
  • Zhang, Z.; Ahn, J.; Kim, J.; Wu, Z.; Qin, D. Facet-Selective Deposition of Au and Pt on Ag Nanocubes for the Fabrication of Bifunctional Ag@ Au–Pt Nanocubes and Trimetallic Nanoboxes. Nanoscale 2018, 10, 8642–8649. DOI: 10.1039/C8NR01794H.
  • Akbarzadeh, H.; Abbaspour, M.; Mehrjouei, E.; Kamrani, M. AgPd@ Pt Nanoparticles with Different Morphologies of Cuboctahedron, Icosahedron, Decahedron, Octahedron, and Marks-Decahedron: Insights from Atomistic Simulations. Inorg. Chem. Front. 2018, 5, 870–878. DOI: 10.1039/C7QI00748E.
  • Carrillo-Torres, R.; García-Soto, M.; Morales-Chávez, S.; Garibay-Escobar, A.; Hernández-Paredes, J.; Guzman, R.; Barboza-Flores, M.; Álvarez-Ramos, M. Hollow Au–Ag Bimetallic Nanoparticles with High Photothermal Stability. RSC Adv. 2016, 6, 41304–41312. DOI: 10.1039/C5RA25821A.
  • Yu, Y.; Mok, B. Y.; Loh, X. J.; Tan, Y. N. Rational Design of Biomolecular Templates for Synthesizing Multifunctional Noble Metal Nanoclusters toward Personalized Theranostic Applications. Adv. Healthc. Mater. 2016, 5, 1844–1859. DOI: 10.1002/adhm.201600192.
  • Joseph, D.; Lee, H.; Huh, Y. S.; Han, Y.-K. Cylindrical Core-Shell Tween 80 Micelle Templated Green Synthesis of Gold-Silver Hollow Cubic Nanostructures as Efficient Nanocatalysts. Mater. Design 2018, 160, 169–178. DOI: 10.1016/j.matdes.2018.09.003.
  • Toshima, N.; Yonezawa, T. Bimetallic Nanoparticles—Novel Materials for Chemical and Physical Applications. New. J. Chem. 1998, 22, 1179–1201. DOI: 10.1039/a805753b.
  • Fauzia, V.; Irmavianti, D.; Roza, L.; Hafizah, M. A. E.; Imawan, C.; Umar, A. A. Bimetallic AuAg Sharp-Branch Mesoflowers as Catalyst for Hydrogenation of Acetone. Mater. Chem. Phys. 2019, 225, 443–450. DOI: 10.1016/j.matchemphys.2019.01.013.
  • Zhang, H.; Lu, L.; Cao, Y.; Du, S.; Cheng, Z.; Zhang, S. Fabrication of Catalytically Active Au/Pt/Pd Trimetallic Nanoparticles by Rapid Injection of NaBH4. Mater. Res. Bull. 2014, 49, 393–398. DOI: 10.1016/j.materresbull.2013.09.025.
  • Xu, H.; Xiao, Y.; Xu, M.; Cui, H.; Tan, L.; Feng, N.; Liu, X.; Qiu, G.; Dong, H.; Xie, J. Microbial Synthesis of Pd–Pt Alloy Nanoparticles Using Shewanella oneidensis MR-1 with Enhanced Catalytic Activity for Nitrophenol and Azo Dyes Reduction. Nanotechnology 2018, 30, 065607. DOI: 10.1088/1361-6528/aaf2a6.
  • Li, Y.; Liu, F.; Fan, Y.; Cheng, G.; Song, W.; Zhou, J. Silver Palladium Bimetallic Core-Shell Structure Catalyst Supported on TiO2 for Toluene Oxidation. Appl. Surf. Sci. 2018, 462, 207–212. DOI: 10.1016/j.apsusc.2018.08.023.
  • Pandey, P.; Pandey, G. One-Pot Two-Step Rapid Synthesis of 3-Aminopropyltrimethoxysilane-Mediated Highly Catalytic Ag@(PdAu) Trimetallic Nanoparticles. Catal. Sci. Technol. 2016, 6, 3911–3917. DOI: 10.1039/C5CY02040A.
  • Sahoo, A.; Tripathy, S. K.; Dehury, N.; Patra, S. A Porous Trimetallic Au@ Pd@ Ru Nanoparticle System: Synthesis, Characterisation and Efficient Dye Degradation and Removal. J. Mater. Chem. A 2015, 3, 19376–19383. DOI: 10.1039/C5TA03959B.
  • Huang, L.; Jiao, C.; Wang, L.; Huang, Z.; Liang, F.; Liu, S.; Wang, Y.; Zhang, H.; Zhang, S. Preparation of Rh/Ag Bimetallic Nanoparticles as Effective Catalyst for Hydrogen Generation from Hydrolysis of KBH4. Nanotechnology 2017, 29, 044002. DOI: 10.1088/1361-6528/aa9b19.
  • Yadav, N.; Jaiswal, A. K.; Dey, K. K.; Yadav, V. B.; Nath, G.; Srivastava, A. K.; Yadav, R. R. Trimetallic Au/Pt/Ag Based Nanofluid for Enhanced Antibacterial Response. Mater. Chem. Phys. 2018, 218, 10–17. DOI: 10.1016/j.matchemphys.2018.07.016.
  • Rodríguez-Proenza, C.; Palomares-Báez, J.; Chávez-Rojo, M.; García-Ruiz, A.; Azanza-Ricardo, C.; Santoveña-Uribe, A.; Luna-Bárcenas, G.; Rodríguez-López, J.; Esparza, R. Atomic Surface Segregation and Structural Characterization of PdPt Bimetallic Nanoparticles. Materials 2018, 11, 1882. DOI: 10.3390/ma11101882.
  • Zhai, Q.; Xing, H.; Fan, D.; Zhang, X.; Li, J.; Wang, E. Gold-Silver Bimetallic Nanoclusters with Enhanced Fluorescence for Highly Selective and Sensitive Detection of Glutathione. Sens. Actuat. B Chem. 2018, 273, 1827–1832. DOI: 10.1016/j.snb.2018.05.145.
  • Liu, Q.; Yan, X.; Lai, Q.; Su, X. Bimetallic Gold/Silver Nanoclusters-Gold Nanoparticles Based Fluorescent Sensing Platform via the Inner Filter Effect for Hyaluronidase Activity Detection. Sens. Actuat. B Chem. 2019, 282, 45–51. DOI: 10.1016/j.snb.2018.11.040.
  • Ge, S.; Zhang, Y.; Zhang, L.; Liang, L.; Liu, H.; Yan, M.; Huang, J.; Yu, J. Ultrasensitive Electrochemical Cancer Cells Sensor Based on Trimetallic Dendritic Au@ PtPd Nanoparticles for Signal Amplification on Lab-on-Paper Device. Sens. Actuat. B Chem. 2015, 220, 665–672.
  • Jiao, A.; Dong, X.; Zhang, H.; Xu, L.; Tian, Y.; Liu, X.; Chen, M. Construction of Pure Worm-like AuAg Nanochains for Ultrasensitive SERS Detection of Pesticide Residues on Apple Surfaces. Spectrochim. Acta A 2019, 209, 241–247.
  • Li, L.; Zheng, H.; Guo, L.; Qu, L.; Yu, L. Construction of Novel Electrochemical Sensors Based on Bimetallic Nanoparticle Functionalized Graphene for Determination of Sunset Yellow in Soft Drink. J. Electroanal. Chem. 2019, 833, 393–400. DOI: 10.1016/j.jelechem.2018.11.059.
  • Chakraborty, D.; Mohan, L.; Alex, S. A.; Chandrasekaran, N.; Mukherjee, A. Bimetallic Gold Nanorods with Enhanced Biocorona Formation for Doxorubicin Loading and Sustained Release. Biomater. Sci. 2019, 7, 63–75. DOI: 10.1039/C8BM01127C.
  • Li, X.; Du, X. Molybdenum Disulfide Nanosheets Supported Au-Pd Bimetallic Nanoparticles for Non-Enzymatic Electrochemical Sensing of Hydrogen Peroxide and Glucose. Sens. Actuat. B Chem. 2017, 239, 536–543. DOI: 10.1016/j.snb.2016.08.048.
  • Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev. 2008, 108, 845–910. DOI: 10.1021/cr040090g.
  • Zaleska-Medynska, A.; Marchelek, M.; Diak, M.; Grabowska, E. Noble Metal-Based Bimetallic Nanoparticles: The Effect of the Structure on the Optical, Catalytic and Photocatalytic Properties. Adv. Colloid Interfac. 2016, 229, 80–107. DOI: 10.1016/j.cis.2015.12.008.
  • Sau, T. K.; Rogach, A. L. Nonspherical Noble Metal Nanoparticles: Colloid‐Chemical Synthesis and Morphology Control. Adv. Mater. 2010, 22, 1781–1804. DOI: 10.1002/adma.200901271.
  • Sun, Y.; Xia, Y. Alloying and Dealloying Processes Involved in the Preparation of Metal Nanoshells through a Galvanic Replacement Reaction. Nano Lett. 2003, 3, 1569–1572. DOI: 10.1021/nl034765r.
  • Elemike, E. E.; Onwudiwe, D. C.; Fayemi, O. E.; Botha, T. L. Green Synthesis and Electrochemistry of Ag, Au, and Ag–Au Bimetallic Nanoparticles Using Golden Rod (Solidago Canadensis) Leaf Extract. Appl. Phys. A. 2019, 125, 42. DOI: 10.1007/s00339-018-2348-0.
  • Rao, C.; Kulkarni, G.; Thomas, P. J.; Edwards, P. P. Size‐Dependent Chemistry: Properties of Nanocrystals. Chem-Eur. J. 2002, 8, 28–35. DOI: 10.1002/1521-3765(20020104)8:1<28::aid-chem28>3.0.co;2-b.
  • Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles. Science 1996, 272, 1924–1925. DOI: 10.1126/science.272.5270.1924.
  • Lv, Z.-S.; Zhu, X.-Y.; Meng, H.-B.; Feng, J.-J.; Wang, A.-J. One-Pot Synthesis of Highly Branched Pt@ Ag Core-Shell Nanoparticles as a Recyclable Catalyst with Dramatically Boosting the Catalytic Performance for 4-Nitrophenol Reduction. J. Colloid Interfac. Sci. 2019, 538, 349–356. DOI: 10.1016/j.jcis.2018.11.109.
  • Malankowska, A.; Kobylanski, M. P.; Mikolajczyk, A.; Cavdar, O.; Nowaczyk, G.; Jarek, M.; Lisowski, W.; Michalska, M.; Kowalska, E.; Ohtani, B. TiO2 and NaTaO3 Decorated by Trimetallic Au/Pd/Pt Core–Shell Nanoparticles as Efficient Photocatalysts: Experimental and Computational Studies. ACS Sustain. Chem. Eng. 2018, 6, 16665–16682. DOI: 10.1021/acssuschemeng.8b03919.
  • Shi, Y.; Xu, H.; Wang, J.; Li, S.; Xiong, Z.; Yan, B.; Wang, C.; Du, Y. Visible Light Enhanced Electrochemical Detection of Caffeic Acid with Waxberry-like PtAuRu Nanoparticles Modified GCE. Sens. Actuat. B Chem. 2018, 272, 135–138. DOI: 10.1016/j.snb.2018.05.160.
  • Zhang, C.; Cheng, X.; Guo, Z.; Lv, Z. A Multi-Metal PtAgAu@ CeO 2 Core–Shell Nanocatalyst with Improved Catalytic Performance. New. J. Chem. 2019, 43, 561–563. DOI: 10.1039/C8NJ05695A.
  • Xu, Q.; Chen, W.; Yan, Y.; Wu, Z.; Jiang, Y.; Li, J.; Bian, T.; Zhang, H.; Wu, J.; Yang, D. Multimetallic AuPd@ Pd@ Pt Core-Interlayer-Shell Icosahedral Electrocatalysts for Highly Efficient Oxygen Reduction Reaction. Sci. Bull. 2018, 63, 494–501. DOI: 10.1016/j.scib.2018.03.013.
  • Zhang, L.; Niu, W.; Xu, G. Synthesis and Applications of Noble Metal Nanocrystals with High-Energy Facets. Nano Today 2012, 7, 586–605. DOI: 10.1016/j.nantod.2012.10.005.
  • Sharma, V. K.; Sayes, C. M.; Guo, B.; Pillai, S.; Parsons, J. G.; Wang, C.; Yan, B.; Ma, X. Interactions between Silver Nanoparticles and Other Metal Nanoparticles under Environmentally Relevant Conditions: A Review. Sci. Total Environ. 2019, 653, 1042–1051. DOI: 10.1016/j.scitotenv.2018.10.411.
  • Abbasi, E.; Milani, M.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A.; Tayefi Nasrabadi, H.; Nikasa, P.; Joo, S. W.; Hanifehpour, Y.; Nejati-Koshki, K. Silver Nanoparticles: Synthesis Methods, Bio-Applications and Properties. Crit. Rev. Microbiol. 2016, 42, 173–180. DOI: 10.3109/1040841X.2014.912200.
  • Song, C.; Sun, W.; Xiao, Y.; Shi, X. Ultrasmall Iron Oxide Nanoparticles: Synthesis, Surface Modification, Assembly, and Biomedical Applications. Drug Discov. Today 2019, 24, 835–844. DOI: 10.1016/j.drudis.2019.01.001.
  • Gawande, M. B.; Goswami, A.; Asefa, T.; Guo, H.; Biradar, A. V.; Peng, D.-L.; Zboril, R.; Varma, R. S. Core–Shell Nanoparticles: Synthesis and Applications in Catalysis and Electrocatalysis. Chem. Soc. Rev. 2015, 44, 7540–7590. DOI: 10.1039/C5CS00343A.
  • Rai, P. Plasmonic Noble Metal@ Metal Oxide Core–Shell Nanoparticles for Dye-Sensitized Solar Cell Applications. Sustain. Energy Fuels. 2019, 3, 63–91. DOI: 10.1039/C8SE00336J.
  • Nasrabadi, H. T.; Abbasi, E.; Davaran, S.; Kouhi, M.; Akbarzadeh, A. Bimetallic Nanoparticles: Preparation, Properties, and Biomedical Applications. Artif. Cells Nanomed. Biotechnol. 2016, 44, 376–380. DOI: 10.3109/21691401.2014.953632.
  • Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab J. Chem. 2017, 12, 908–931. DOI: 10.1016/j.arabjc.2017.05.011.
  • Ha, M.; Kim, J.-H.; You, M.; Li, Q.; Fan, C.; Nam, J.-M. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chem. Rev. 2019, 119, 12208–12278. DOI: 10.1021/acs.chemrev.9b00234.
  • Fu, H.; Yang, X.; Jiang, X.; Yu, A. Bimetallic Ag–Au Nanowires: Synthesis, Growth Mechanism, and Catalytic Properties. Langmuir 2013, 29, 7134–7142. DOI: 10.1021/la400753q.
  • Guisbiers, G. g.; Mendoza-Cruz, R. n.; Bazán-Díaz, L.; Velázquez-Salazar, J. J. s.; Mendoza-Perez, R.; Robledo-Torres, J. A.; Rodriguez-Lopez, J.-L.; Montejano-Carrizales, J. M.; Whetten, R. L.; José, Y.; M.; Electrum, the Gold–Silver Alloy, from the Bulk Scale to the Nanoscale: Synthesis, Properties, and Segregation Rules. ACS Nano 2015, 10, 188–198. DOI: 10.1021/acsnano.5b05755.
  • Teo, B. K. Cluster of Clusters: A New Series of High Nuclearity Au-Ag Clusters. Polyhedron 1988, 7, 2317–2320. DOI: 10.1016/S0277-5387(00)86348-2.
  • Tun-Dong, L.; Ji-Wen, Z.; Gui-Fang, S.; Tian-E, F.; Yu-Hua, W. Morphology and Structural Stability of Pt–Pd Bimetallic Nanoparticles. Chin. Phys. B. 2015, 24, 033601. DOI: 10.1088/1674-1056/24/3/033601.
  • Liao, T.-W.; Yadav, A.; Hu, K.-J.; van der Tol, J.; Cosentino, S.; D'Acapito, F.; Palmer, R. E.; Lenardi, C.; Ferrando, R.; Grandjean, D. Unravelling the Nucleation Mechanism of Bimetallic Nanoparticles with Composition-Tunable Core–Shell Arrangement. Nanoscale 2018, 10, 6684–6694. DOI: 10.1039/C8NR01481G.
  • Wang, Y.; He, J.; Liu, C.; Chong, W. H.; Chen, H. Thermodynamics versus Kinetics in Nanosynthesis. Angew. Chem. Int. Edit. 2015, 54, 2022–2051. DOI: 10.1002/anie.201402986.
  • Thongthai, K.; Pakawanit, P.; Chanlek, N.; Kim, J.-H.; Ananta, S.; Srisombat, L. Ag/Au/Pt Trimetallic Nanoparticles with Defects: Preparation, Characterization, and Electrocatalytic Activity in Methanol Oxidation. Nanotechnology 2017, 28, 375602. DOI: 10.1088/1361-6528/aa846b.
  • Leteba, G.; Lang, C. Synthesis of Bimetallic Platinum Nanoparticles for Biosensors. Sens. 2013, 13, 10358–10369. DOI: 10.3390/s130810358.
  • Roopan, S. M.; Surendra, T. V.; Elango, G.; Kumar, S. H. S. Biosynthetic Trends and Future Aspects of Bimetallic Nanoparticles and Its Medicinal Applications. Appl. Microbiol. Biotechnol. 2014, 98, 5289–5300. DOI: 10.1007/s00253-014-5736-1.
  • Dong, W.; Ren, Y.; Bai, Z.; Yang, Y.; Wang, Z.; Zhang, C.; Chen, Q. Trimetallic AuPtPd Nanocomposites Platform on Graphene: Applied to Electrochemical Detection and Breast Cancer Diagnosis. Talanta 2018, 189, 79–85. DOI: 10.1016/j.talanta.2018.06.067.
  • Prabhawathi, V.; Sivakumar, P. M.; Boobalan, T.; Manohar, C. M.; Doble, M. Design of Antimicrobial Polycaprolactam Nanocomposite by Immobilizing Subtilisin Conjugated Au/Ag Core-Shell Nanoparticles for Biomedical Applications. Mat. Sci. Eng. C. 2019, 94, 656–665. DOI: 10.1016/j.msec.2018.10.020.
  • Fakhri, A.; Tahami, S.; Naji, M. Synthesis and Characterization of Core-Shell Bimetallic Nanoparticles for Synergistic Antimicrobial Effect Studies in Combination with Doxycycline on Burn Specific Pathogens. J. Photochem. Photobiol. B. 2017, 169, 21–26. DOI: 10.1016/j.jphotobiol.2017.02.014.
  • Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J.; Lucas, C. A.; Wang, G.; Ross, P. N.; Markovic, N. M. Trends in Electrocatalysis on Extended and Nanoscale Pt-Bimetallic Alloy Surfaces. Nat. Mater. 2007, 6, 241. DOI: 10.1038/nmat1840.
  • Mazumder, V.; Chi, M.; More, K. L.; Sun, S. Synthesis and Characterization of Multimetallic Pd/Au and Pd/Au/FePt Core/Shell Nanoparticles. Angew. Chem. 2010, 122, 9558–9562. DOI: 10.1002/ange.201003903.
  • Sharma, G.; Kumar, D.; Kumar, A.; A.; H.; Pathania, D.; Naushad, M.; Mola, G. T. Revolution from Monometallic to Trimetallic Nanoparticle Composites, Various Synthesis Methods and Their Applications: A Review. Mat. Sci. Eng. C 2017, 71, 1216–1230. DOI: 10.1016/j.msec.2016.11.002.
  • Khatami, M.; Alijani, H. Q.; Sharifi, I. Biosynthesis of Bimetallic and Core–Shell Nanoparticles: Their Biomedical Applications–a Review. IET Nanobiotechnol. 2018, 12, 879–887. DOI: 10.1049/iet-nbt.2017.0308.
  • Tripathi, R.; Chung, S. J. Biogenic Nanomaterials: Synthesis, Characterization, Growth Mechanism, and Biomedical Applications. J. Microbiol. Meth. 2018, 157, 65–80. DOI: 10.1016/j.mimet.2018.12.008.
  • Pan, Y.; Xue, P.; Liu, S.; Zhang, L.; Guan, Q.; Zhu, J.; Tian, X. Metal-Based Hybrid Nanoparticles as Radiosensitizers in Cancer Therapy. Colloids Interface Sci. Commun. 2018, 23, 45–51. DOI: 10.1016/j.colcom.2018.01.004.
  • Yilmaz, B.; Alshemary, A. Z.; Evis, Z. Co-Doped Hydroxyapatites as Potential Materials for Biomedical Applications. Microchem. J. 2018, 144, 443–453. DOI: 10.1016/j.microc.2018.10.007.
  • Iqbal, P.; Preece, J. A.; Mendes, P. M. Nanotechnology: The “Top‐down” and “Bottom‐up” Approaches. Supramol. Chem. 2012, 1–14.
  • Karatoprak, G. Ş.; Aydin, G.; Altinsoy, B.; Altinkaynak, C.; Koşar, M.; Ocsoy, I. The Effect of Pelargonium Endlicherianum Fenzl. root Extracts on Formation of Nanoparticles and Their Antimicrobial Activities. Enzyme Microb. Tech. 2017, 97, 21–26. DOI: 10.1016/j.enzmictec.2016.10.019.
  • Ocsoy, I.; Temiz, M.; Celik, C.; Altinsoy, B.; Yilmaz, V.; Duman, F. A Green Approach for Formation of Silver Nanoparticles on Magnetic Graphene Oxide and Highly Effective Antimicrobial Activity and Reusability. J. Mol. Liq 2017, 227, 147–152. DOI: 10.1016/j.molliq.2016.12.015.
  • Ocsoy, I.; Tasdemir, D.; Mazicioglu, S.; Celik, C.; Katı, A.; Ulgen, F. Biomolecules Incorporated Metallic Nanoparticles Synthesis and Their Biomedical Applications. Mater. Lett. 2018, 212, 45–50. DOI: 10.1016/j.matlet.2017.10.068.
  • Ocsoy, I.; Tasdemir, D.; Mazicioglu, S.; Tan, W. Nanotechnology in Plants. In Plant Genetics and Molecular Biology; Springer International Publishing AG, 2018; pp. 263–275.
  • Tian, N.; Zhou, Z.-Y.; Sun, S.-G. Electrochemical Preparation of Pd Nanorods with High-Index Facets. Chem. Commun. 2009, 12, 1502–1504. DOI: 10.1039/b819751b.
  • Tian, N.; Zhou, Z.-Y.; Yu, N.-F.; Wang, L.-Y.; Sun, S.-G. Direct Electrodeposition of Tetrahexahedral Pd Nanocrystals with High-Index Facets and High Catalytic Activity for Ethanol Electrooxidation. J. Am. Chem. Soc. 2010, 132, 7580–7581. DOI: 10.1021/ja102177r.
  • Dauthal, P.; Mukhopadhyay, M. Noble Metal Nanoparticles: Plant-Mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications. Ind. Eng. Chem. Res. 2016, 55, 9557–9577. DOI: 10.1021/acs.iecr.6b00861.
  • Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological Synthesis of Triangular Gold Nanoprisms. Nat. Mater. 2004, 3, 482. DOI: 10.1038/nmat1152.
  • Duran, N.; Seabra, A. B. Biogenic Synthesized Ag/Au Nanoparticles: Production, Characterization, and Applications. Curr. Nanosci. 2018, 14, 82–94.
  • Mizukoshi, Y.; Okitsu, K.; Maeda, Y.; Yamamoto, T. A.; Oshima, R.; Nagata, Y. Sonochemical Preparation of Bimetallic Nanoparticles of Gold/Palladium in Aqueous Solution. J. Phys. Chem. B. 1997, 101, 7033–7037. DOI: 10.1021/jp9638090.
  • Kan, C.; Cai, W.; Li, C.; Zhang, L.; Hofmeister, H. Ultrasonic Synthesis and Optical Properties of Au/Pd Bimetallic Nanoparticles in Ethylene Glycol. J. Phys. D. Appl. Phys. 2003, 36, 1609. DOI: 10.1088/0022-3727/36/13/328.
  • Shim, K.; Lee, W.-C.; Park, M.-S.; Shahabuddin, M.; Yamauchi, Y.; Hossain, M. S. A.; Shim, Y.-B.; Kim, J. H. Au Decorated Core-Shell Structured Au@ Pt for the Glucose Oxidation Reaction. Sensor Actuat. B-Chem 2019, 278, 88–96. DOI: 10.1016/j.snb.2018.09.048.
  • Ueji, M.; Harada, M.; Kimura, Y. Synthesis of Pt/Ru Bimetallic Nanoparticles in High-Temperature and High-Pressure Fluids. J. Colloid Interf. Sci. 2008, 322, 358–363. DOI: 10.1016/j.jcis.2008.02.056.
  • Treguer, M.; de Cointet, C.; Remita, H.; Khatouri, J.; Mostafavi, M.; Amblard, J.; Belloni, J.; De Keyzer, R. Dose Rate Effects on Radiolytic Synthesis of Gold − Silver Bimetallic Clusters in Solution. J. Phys. Chem. B. 1998, 102, 4310–4321. DOI: 10.1021/jp981467n.
  • Harpeness, R.; Gedanken, A. Microwave Synthesis of Core − Shell Gold/Palladium Bimetallic Nanoparticles. Langmuir 2004, 20, 3431–3434. DOI: 10.1021/la035978z.
  • Chen, P.-C.; Liu, G.; Zhou, Y.; Brown, K. A.; Chernyak, N.; Hedrick, J. L.; He, S.; Xie, Z.; Lin, Q.-Y.; Dravid, V. P. Tip-Directed Synthesis of Multimetallic Nanoparticles. J. Am. Chem. Soc. 2015, 137, 9167–9173.
  • Mandal, R.; Baranwal, A.; Srivastava, A.; Chandra, P. Evolving Trends in Bio/Chemical Sensors Fabrication Incorporating Bimetallic Nanoparticles. Biosens. Bioelectron. 2018, 117, 546–561. DOI: 10.1016/j.bios.2018.06.039.
  • Ocsoy, I.; Demirbas, A.; McLamore, E. S.; Altinsoy, B.; Ildiz, N.; Baldemir, A. Green Synthesis with Incorporated Hydrothermal Approaches for Silver Nanoparticles Formation and Enhanced Antimicrobial Activity against Bacterial and Fungal Pathogens. J. Mol. Liq. 2017, 238, 263–269. DOI: 10.1016/j.molliq.2017.05.012.
  • Daniel, M.-C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346.
  • Oh, S.-K.; Kim, Y.-G.; Ye, H.; Crooks, R. M. Synthesis, Characterization, and Surface Immobilization of Metal Nanoparticles Encapsulated within Bifunctionalized Dendrimers. Langmuir 2003, 19, 10420–10425. DOI: 10.1021/la0353778.
  • Faraday, M. The Bakerian Lecture.—Experimental Relations of Gold (and Other Metals) to Light. Philos. T. R. Soc. 1857, 147, 145–181. DOI: 10.1098/rstl.1857.0011.
  • Turkevich, J.; Stevenson, P. C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss Faraday Soc. 1951, 11, 55–75. DOI: 10.1039/df9511100055.
  • Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sc 1973, 241, 20. DOI: 10.1038/physci241020a0.
  • Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich Method for Gold Nanoparticle Synthesis Revisited. J. Phys. Chem. B. 2006, 110, 15700–15707. DOI: 10.1021/jp061667w.
  • Personick, M. L.; Langille, M. R.; Zhang, J.; Mirkin, C. A. Shape Control of Gold Nanoparticles by Silver Underpotential Deposition. Nano. Lett. 2011, 11, 3394–3398. DOI: 10.1021/nl201796s.
  • Xia, X.; Zeng, J.; Oetjen, L. K.; Li, Q.; Xia, Y. Quantitative Analysis of the Role Played by Poly (Vinylpyrrolidone) in Seed-Mediated Growth of Ag Nanocrystals. J. Am. Chem. Soc. 2012, 134, 1793–1801. DOI: 10.1021/ja210047e.
  • Chen, H.-Y.; Wang, A.-J.; Zhang, L.; Yuan, J.; Zhang, Q.-L.; Feng, J.-J. One-Pot Wet-Chemical Synthesis of Uniform AuPtPd Nanodendrites as Efficient Electrocatalyst for Boosting Hydrogen Evolution and Oxygen Reduction Reactions. Int. J. Hydrogen Energy 2018, 43, 22187–22194. DOI: 10.1016/j.ijhydene.2018.10.120.
  • Zhang, H.; Jin, M.; Liu, H.; Wang, J.; Kim, M. J.; Yang, D.; Xie, Z.; Liu, J.; Xia, Y. Facile Synthesis of Pd–Pt Alloy Nanocages and Their Enhanced Performance for Preferential Oxidation of CO in Excess Hydrogen. ACS Nano 2011, 5, 8212–8222. DOI: 10.1021/nn202896q.
  • Wen, Y.; Ren, F.; Bai, T.; Xu, H.; Du, Y. Facile Construction of Trimetallic PtAuRu Nanostructures with Highly Porous Features and Perpendicular Pore Channels as Enhanced Formic Acid Catalysts. Colloid Surface A 2018, 537, 418–424. DOI: 10.1016/j.colsurfa.2017.10.049.
  • Rao, C. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Metal Nanoparticles and Their Assemblies. Chem. Soc. Rev. 2000, 29, 27–35. DOI: 10.1039/a904518j.
  • Wu, J.; Gross, A.; Yang, H. Shape and Composition-Controlled Platinum Alloy Nanocrystals Using Carbon Monoxide as Reducing Agent. Nano. Lett. 2011, 11, 798–802. DOI: 10.1021/nl104094p.
  • Wang, X-y.; Zhu, G-b.; Liu, Z.; J.; Pan, C-g.; Hu, W-j.; Zhao, W-y.; Sun, J-f. A Novel Ratiometric Fluorescent Probe for the Detection of Uric Acid in Human Blood Based on H2O2-Mediated Fluorescence Quenching of Gold/Silver Nanoclusters. Talanta 2019, 191, 46–53. DOI: 10.1016/j.talanta.2018.08.015.
  • Ma, R.; He, Y.; Feng, J.; Hu, Z.-Y.; Van Tendeloo, G.; Li, D. A Facile Synthesis of Ag@ PdAg Core-Shell Architecture for Efficient Purification of Ethene Feedstock. J. Catal. 2019, 369, 440–449.
  • Sun, S.; Anders, S.; Thomson, T.; Baglin, J.; Toney, M. F.; Hamann, H. F.; Murray, C.; Terris, B. D. Controlled Synthesis and Assembly of FePt Nanoparticles. J. Phys. Chem. B 2003, 107, 5419–5425. DOI: 10.1021/jp027314o.
  • Guo, H.; Chen, Y.; Ping, H.; Wang, L.; Peng, D.-L. One-Pot Synthesis of Hexagonal and Triangular Nickel–Copper Alloy Nanoplates and Their Magnetic and Catalytic Properties. J. Mater. Chem 2012, 22, 8336–8344. DOI: 10.1039/c2jm16095a.
  • Song, P.; Xu, H.; Wang, J.; Zhang, Y.; Gao, F.; Ren, F.; Shiraishi, Y.; Wang, C.; Du, Y. Visible-Light-Driven Trimetallic Pt-Ag-Ni Alloy Nanoparticles for Efficient Nanoelectrocatalytic Oxidation of Alcohols. J. Taiwan Inst. Chem. E. 2018, 93, 616–624. DOI: 10.1016/j.jtice.2018.09.007.
  • Link, S.; Wang, Z. L.; El-Sayed, M. Alloy Formation of Gold − Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition. J. Phys. Chem. B. 1999, 103, 3529–3533. DOI: 10.1021/jp990387w.
  • Toshima, N.; Harada, M.; Yamazaki, Y.; Asakura, K. Catalytic Activity and Structural Analysis of Polymer-Protected Gold-Palladium Bimetallic Clusters Prepared by the Simultaneous Reduction of Hydrogen Tetrachloroaurate and Palladium Dichloride. J. Phys. Chem. 1992, 96, 9927–9933. DOI: 10.1021/j100203a064.
  • Sagitha, P.; Sarada, K.; Muraleedharan, K. One-Pot Synthesis of Poly Vinyl Alcohol (PVA) Supported Silver Nanoparticles and Its Efficiency in Catalytic Reduction of Methylene Blue. T. Nonferr. Metal. Soc. 2016, 26, 2693–2700. DOI: 10.1016/S1003-6326(16)64397-2.
  • Yonezawa, T.; Toshima, N. Polymer-and Micelle-Protected Gold/Platinum Bimetallic Systems. Preparation, Application to Catalysis for Visible-Light-Induced Hydrogen Evolution, and Analysis of Formation Process with Optical Methods. J. Mol. Catal. 1993, 83, 167–181. DOI: 10.1016/0304-5102(93)87017-3.
  • Feng, T.; Chen, Y.; Feng, B.; Yan, J.; Di, J. Fluorescence Red-Shift of Gold-Silver Nanoclusters upon Interaction with Cysteine and Its Application. Spectrochim. Acta A. 2019, 206, 97–103. DOI: 10.1016/j.saa.2018.07.087.
  • Goia, D. V.; Matijević, E. Preparation of Monodispersed Metal Particles. New. J. Chem. 1998, 22, 1203–1215. DOI: 10.1039/a709236i.
  • Gao, J.; Ren, X.; Chen, D.; Tang, F.; Ren, J. Bimetallic Ag–Pt Hollow Nanoparticles: Synthesis and Tunable Surface Plasmon Resonance. Scripta Mater. 2007, 57, 687–690. DOI: 10.1016/j.scriptamat.2007.06.049.
  • Ongartkit, A.; Ananta, S.; Srisombat, L. Preparation of Ag/Au/Pt Nanoparticles and Their Catalytic Properties. Chem. Phys. Lett. 2014, 605, 85–88. DOI: 10.1016/j.cplett.2014.05.023.
  • Wang, Y.; Zeng, Y.; Fu, W.; Zhang, P.; Li, L.; Ye, C.; Yu, L.; Zhu, X.; Zhao, S. Seed-Mediated Growth of Au@ Ag Core-Shell Nanorods for the Detection of Ellagic Acid in Whitening Cosmetics. Anal. Chim. Acta 2018, 1002, 97–104. DOI: 10.1016/j.aca.2017.11.067.
  • Michel, J.; Schwartz, J. Controlled Preparation of Monodisperse Bimetallic Pd-Au Colloids with Three Different Microstructures and Their Use in Preparing Supported Bimetallic Catalysts. Stud. Surf. Sci. Catal. 1987, 31, 669–687.
  • Henglein, F.; Henglein, A.; Mulvaney, P. Surface Chemistry of Colloidal Gold: Deposition and Reoxidation of Pb, Cd, and Tl. Ber. Bunsenges. Phys. Chem. 1994, 98, 180–189. DOI: 10.1002/bbpc.19940980208.
  • Ge, J.; Li, Z.; Hong, X.; Li, Y. Surface Atomic Regulation of Core − Shell Noble Metal Catalysts. Chem-Eur. J. 2018, 25, 5113–5127. DOI: 10.1002/chem.201805332.
  • Hu, P.; Morabito, J. V.; Tsung, C.-K. Core–Shell Catalysts of Metal Nanoparticle Core and Metal–Organic Framework Shell. ACS Catal. 2014, 4, 4409–4419. DOI: 10.1021/cs5012662.
  • Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q. Surface-Enhanced Raman Scattering of Core-Shell Au@ Ag Nanoparticles Aggregates for Rapid Detection of Difenoconazole in Grapes. Talanta 2019, 191, 449–456. DOI: 10.1016/j.talanta.2018.08.005.
  • Joseph, D.; Kwak, C. H.; Huh, Y. S.; Han, Y.-K. Synthesis of AuAg@ Ag Core@ Shell Hollow Cubic Nanostructures as SERS Substrates for Attomolar Chemical Sensing. Sens. Actuat. B-Chem. 2019, 281, 471–477. DOI: 10.1016/j.snb.2018.10.092.
  • Burrows, N. D.; Harvey, S.; Idesis, F. A.; Murphy, C. J. Understanding the Seed-Mediated Growth of Gold Nanorods through a Fractional Factorial Design of Experiments. Langmuir 2016, 33, 1891–1907. DOI: 10.1021/acs.langmuir.6b03606.
  • Zhang, J.; Xi, C.; Feng, C.; Xia, H.; Wang, D.; Tao, X. High Yield Seedless Synthesis of High-Quality Gold Nanocrystals with Various Shapes. Langmuir 2014, 30, 2480–2489. DOI: 10.1021/la404602h.
  • Khan, Z.; Al-Thabaiti, S. A.; Obaid, A. Y.; Al-Youbi, A. Preparation and Characterization of Silver Nanoparticles by Chemical Reduction Method. Colloid Surface B 2011, 82, 513–517. DOI: 10.1016/j.colsurfb.2010.10.008.
  • Wang, H.; Qiao, X.; Chen, J.; Ding, S. Preparation of Silver Nanoparticles by Chemical Reduction Method. Colloid Surface A 2005, 256, 111–115. DOI: 10.1016/j.colsurfa.2004.12.058.
  • Schmid, G.; Lehnert, A.; Malm, J. O.; Bovin, J. O. Ligand‐Stabilized Bimetallic Colloids Identified by HRTEM and EDX. Angew. Chem. Int. Edit. 1991, 30, 874–876. DOI: 10.1002/anie.199108741.
  • Hund, J.; Bertino, M.; Zhang, G.; Sotiriou-Leventis, C.; Leventis, N. Synthesis of Homogeneous Alloy Metal Nanoparticles in Silica Aerogels. J. Non-Cryst. Solids 2004, 350, 9–13. DOI: 10.1016/j.jnoncrysol.2004.06.037.
  • Lee, P.; Meisel, D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. J. Phys. Chem. 1982, 86, 3391–3395. DOI: 10.1021/j100214a025.
  • Nadagouda, M. N.; Varma, R. S. A Greener Synthesis of Core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) Nanocrystals Using Aqueous Vitamin C. Cryst. Growth Des. 2007, 7, 2582–2587. DOI: 10.1021/cg070554e.
  • Chen, D.; Cui, P.; He, H.; Liu, H.; Yang, J. Highly Catalytic Hollow Palladium Nanoparticles Derived from Silver@ Silver–Palladium Core–Shell Nanostructures for the Oxidation of Formic Acid. J. Power Sources 2014, 272, 152–159. DOI: 10.1016/j.jpowsour.2014.08.059.
  • Nayak, C.; Bhattacharyya, D.; Bhattacharyya, K.; Tripathi, A.; Bapat, R.; Jha, S.; Sahoo, N. Insight into Growth of Au–Pt Bimetallic Nanoparticles: An in Situ XAS Study. J. Synchrotron Radiat. 2017, 24, 825–835. DOI: 10.1107/S1600577517006257.
  • Yang, J.; Wang, X.-Y.; Zhou, L.; Lu, F.; Cai, N.; Li, J.-M. Highly Sensitive SERS Monitoring of Catalytic Reaction by Bifunctional Ag-Pd Triangular Nanoplates. J. Saudi Chem. Soc. 2019, 23, 887–895. DOI: 10.1016/j.jscs.2019.01.007.
  • Dutta, S.; Ray, C.; Sasmal, A. K.; Negishi, Y.; Pal, T. Fabrication of Dog-Bone Shaped Au NR Core–Pt/Pd Shell Trimetallic Nanoparticle-Decorated Reduced Graphene Oxide Nanosheets for Excellent Electrocatalysis. J. Mater. Chem. A 2016, 4, 3765–3776. DOI: 10.1039/C6TA00379F.
  • Jing, H.; Wang, H. Structural Evolution of Ag–Pd Bimetallic Nanoparticles through Controlled Galvanic Replacement: Effects of Mild Reducing Agents. Hem. Mater. 2015, 27, 2172–2180. DOI: 10.1021/acs.chemmater.5b00199.
  • Xu, H.; Yan, B.; Zhang, K.; Wang, J.; Li, S.; Wang, C.; Shiraishi, Y.; Du, Y.; Yang, P. Eco-Friendly and Facile Synthesis of Novel Bayberry-like PtRu Alloy as Efficient Catalysts for Ethylene Glycol Electrooxidation. Int. J. Hydrogen Energy 2017, 42, 20720–20728. DOI: 10.1016/j.ijhydene.2017.06.238.
  • Zhou, Y.; Shen, Y.; Xi, J. Seed-Mediated Synthesis of PtxAuy@ Ag Electrocatalysts for the Selective Oxidation of Glycerol. Appl. Catal. B-Environ. 2019, 245, 604–612. DOI: 10.1016/j.apcatb.2019.01.009.
  • Yang, H.; He, L.-Q.; Wang, Z.-H.; Zheng, Y.-Y.; Lu, X.; Li, G.-R.; Fang, P.-P.; Chen, J.; Tong, Y. Surface Plasmon Resonance Promoted Photoelectrocatalyst by Visible Light from Au Core Pd Shell Pt Cluster Nanoparticles. Electrochim. Acta 2016, 209, 591–598. DOI: 10.1016/j.electacta.2016.05.120.
  • Xia, X.; Xie, S.; Liu, M.; Peng, H.-C.; Lu, N.; Wang, J.; Kim, M. J.; Xia, Y. On the Role of Surface Diffusion in Determining the Shape or Morphology of Noble-Metal Nanocrystals. P. Natl. Acad. Sci. 2013, 110, 6669–6673. DOI: 10.1073/pnas.1222109110.
  • Pathak, P. K.; Kumar, A.; Prasad, B. B. Functionalized Nitrogen Doped Graphene Quantum Dots and Bimetallic Au/Ag Core-Shell Decorated Imprinted Polymer for Electrochemical Sensing of Anticancerous Hydroxyurea. Biosens. Bioelectron. 2019, 127, 10–18. DOI: 10.1016/j.bios.2018.11.055.
  • Weiner, R. G.; Skrabalak, S. E. Seed-Mediated Co-Reduction as a Route to Shape-Controlled Trimetallic Nanocrystals. Hem. Mater. 2016, 28, 4139–4142. DOI: 10.1021/acs.chemmater.6b01715.
  • Quyen, T. T. B.; Su, W.-N.; Chen, C.-H.; Rick, J.; Liu, J.-Y.; Hwang, B.-J. Novel Ag/Au/Pt Trimetallic Nanocages Used with Surface-Enhanced Raman Scattering for Trace Fluorescent Dye Detection. J. Mater. Chem. B 2014, 2, 5550–5557. DOI: 10.1039/C4TB00569D.
  • He, Y.; Liu, D.; He, X.; Cui, H. One-Pot Synthesis of Luminol Functionalized Silver Nanoparticles with Chemiluminescence Activity for Ultrasensitive DNA Sensing. Chem. Commun. 2011, 47, 10692–10694. DOI: 10.1039/c1cc14389a.
  • Yu, H.; He, Y. Seed-Assisted Synthesis of Dendritic Au–Ag Bimetallic Nanoparticles with Chemiluminescence Activity and Their Application in Glucose Detection. Sens. Actuat. B-Chem. 2015, 209, 877–882. DOI: 10.1016/j.snb.2014.12.058.
  • Al-Saidi, W.; Feng, H.; Fichthorn, K. A. Adsorption of Polyvinylpyrrolidone on Ag Surfaces: Insight into a Structure-Directing Agent. Nano Lett. 2012, 12, 997–1001. DOI: 10.1021/nl2041113.
  • Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies. Taylor & Francis Group: Boca Raton, 2007; pp. 1–347.
  • Xia, Y.; Xia, X.; Peng, H. C. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic Versus Kinetic Products. J. Am. Chem. Soc. 2015, 137, 7947–7966. DOI: 10.1021/jacs.5b04641.
  • Kijima, T.; Yoshimura, T.; Uota, M.; Ikeda, T.; Fujikawa, D.; Mouri, S.; Uoyama, S. Noble‐Metal Nanotubes (Pt, Pd, Ag) from Lyotropic Mixed‐Surfactant Liquid‐Crystal Templates. Angew. Chem. Int. Edit. 2004, 43, 228–232. DOI: 10.1002/anie.200352630.
  • Liu, X.; Wang, A.; Yang, X.; Zhang, T.; Mou, C.-Y.; Su, D.-S.; Li, J. Synthesis of Thermally Stable and Highly Active Bimetallic Au − Ag Nanoparticles on Inert Supports. Hem. Mater. 2008, 21, 410–418. DOI: 10.1021/cm8027725.
  • Emam, H. E.; El-Zawahry, M. M.; Ahmed, H. B. One-Pot Fabrication of AgNPs, AuNPs and Ag-Au Nano-Alloy Using Cellulosic Solid Support for Catalytic Reduction Application. Carbohyd. Polym. 2017, 166, 1–13. DOI: 10.1016/j.carbpol.2017.02.091.
  • Fan, T.-E.; Liu, T.-D.; Zheng, J.-W.; Shao, G.-F.; Wen, Y.-H. Structural Optimization of Pt–Pd–Au Trimetallic Nanoparticles by Discrete Particle Swarm Algorithms. J. Mater. Sci. 2015, 50, 3308–3319. DOI: 10.1007/s10853-015-8880-9.
  • Fan, T.-E.; Liu, T.-D.; Zheng, J.-W.; Shao, G.-F.; Wen, Y.-H. Structure and Stability of Fe-Pt Bimetallic Nanoparticles: Initial Structure, Composition and Shape Effects. J. Alloy. Compd. 2016, 685, 1008–1015. DOI: 10.1016/j.jallcom.2016.06.281.
  • Gielen, M.; E. R. Metallotherapeutic, T. Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine. John Wiley & Sons: Chichester, 2005.
  • Huaizhi, Z.; Yuantao, N. China’s Ancient Gold Drugs. Gold Bull. 2001, 34, 24–29. DOI: 10.1007/BF03214805.
  • Arvizo, R. R.; Bhattacharyya, S.; Kudgus, R. A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Intrinsic Therapeutic Applications of Noble Metal Nanoparticles: Past, Present and Future. Chem. Soc. Rev. 2012, 41, 2943–2970. DOI: 10.1039/c2cs15355f.
  • Higby, G. J. Gold in Medicine. Gold Bull. 1982, 15, 130–140. DOI: 10.1007/bf03214618.
  • Barillo, D. J.; Marx, D. E. Silver in Medicine: A Brief History BC 335 to Present. Burns 2014, 40, S3–S8. DOI: 10.1016/j.burns.2014.09.009.
  • Xi, Z.; Ye, H.; Xia, X. Engineered Noble-Metal Nanostructures for in Vitro Diagnostics. Hem. Mater. 2018, 30, 8391–8414. DOI: 10.1021/acs.chemmater.8b04152.
  • Jiang, X.; Du, B.; Huang, Y.; Zheng, J. Ultrasmall Noble Metal Nanoparticles: Breakthroughs and Biomedical Implications. Nano Today 2018, 21, 106–125. DOI: 10.1016/j.nantod.2018.06.006.
  • Klębowski, B.; Depciuch, J.; Parlińska-Wojtan, M.; Baran, J. Applications of Noble Metal-Based Nanoparticles in Medicine. Int. J. Mol. Sci. 2018, 19, 4031. DOI: 10.3390/ijms19124031.
  • Wang, Q.; Wang, S.; Hu, X.; Li, F.; Ling, D. Controlled Synthesis and Assembly of Ultra-Small Nanoclusters for Biomedical Applications. Biomater. Sci. 2019, 7, 480–489. DOI: 10.1039/C8BM01200H.
  • Yamada, M.; Foote, M.; Prow, T. W. Therapeutic Gold, Silver, and Platinum Nanoparticles. WIRES Nanomed. Nanobiotech. 2015, 7, 428–445. DOI: 10.1002/wnan.1322.
  • Sivamaruthi, B. S.; Ramkumar, V. S.; Archunan, G.; Chaiyasut, C.; Suganthy, N. Biogenic Synthesis of Silver Palladium Bimetallic Nanoparticles from Fruit Extract of Terminalia Chebula–in Vitro Evaluation of Anticancer and Antimicrobial Activity. J. Drug. Deliv. Sci. Tech. 2019, 51, 139–151. DOI: 10.1016/j.jddst.2019.02.024.
  • Banerjee, M.; Sharma, S.; Chattopadhyay, A.; Ghosh, S. S. Enhanced Antibacterial Activity of Bimetallic Gold-Silver Core–Shell Nanoparticles at Low Silver Concentration. Nanoscale 2011, 3, 5120–5125. DOI: 10.1039/c1nr10703h.
  • Ramasamy, M.; Lee, J.-H.; Lee, J. Potent Antimicrobial and Antibiofilm Activities of Bacteriogenically Synthesized Gold–Silver Nanoparticles against Pathogenic Bacteria and Their Physiochemical Characterizations. J. Biomater. Appl. 2016, 31, 366–378. DOI: 10.1177/0885328216646910.
  • Dos Santos, M. M.; Queiroz, M. J.; Baptista, P. V. Enhancement of Antibiotic Effect via Gold: Silver-Alloy Nanoparticles. J. Nanopart. Res. 2012, 14, 859.
  • Ali, G. W.; El-Hotaby, W.; Hemdan, B.; Abdel-Fattah, W. I. Thermosensitive Chitosan/Phosphate Hydrogel-Composites Fortified with Ag versus Ag@ Pd for Biomedical Applications. Life Sci. 2018, 194, 185–195. DOI: 10.1016/j.lfs.2017.12.021.
  • Holden, M. S.; Black, J.; Lewis, A.; Boutrin, M.-C.; Walemba, E.; Sabir, T. S.; Boskovic, D. S.; Wilson, A.; Fletcher, H. M.; Perry, C. C. Antibacterial Activity of Partially Oxidized Ag/Au Nanoparticles against the Oral Pathogen Porphyromonas gingivalis W83. J. Nanomater. 2016, 2016, 53. DOI: 10.1155/2016/9605906.
  • Yang, L.; Yan, W.; Wang, H.; Zhuang, H.; Zhang, J. Shell Thickness-Dependent Antibacterial Activity and Biocompatibility of Gold@ Silver Core–Shell Nanoparticles. RSC Adv. 2017, 7, 11355–11361. DOI: 10.1039/C7RA00485K.
  • Abdel-Fattah, W. I.; Eid, M.; El-Moez, S. I. A.; Mohamed, E.; Ali, G. W. Synthesis of Biogenic Ag@ Pd Core-Shell Nanoparticles Having anti-Cancer/anti-Microbial Functions. Life Sci. 2017, 183, 28–36. DOI: 10.1016/j.lfs.2017.06.017.
  • Fasciani, C.; Silvero, M. J.; Anghel, M. A.; Arguello, G. A.; Becerra, M. C.; Scaiano, J. C. Aspartame-Stabilized Gold–Silver Bimetallic Biocompatible Nanostructures with Plasmonic Photothermal Properties, Antibacterial Activity, and Long-Term Stability. J. Am. Chem. Soc. 2014, 136, 17394–17397. DOI: 10.1021/ja510435u.
  • Ahmed, H. B. Cluster Growth Adaptor for Generation of Bactericide Ag-Au Bimetallic Nanostructures: Substantiation through Spectral Mapping Data. Int. J. Biol. Macromol. 2019, 121, 774–783. DOI: 10.1016/j.ijbiomac.2018.10.088.
  • Dou, B.; Yang, J.; Yuan, R.; Xiang, Y. Trimetallic Hybrid Nanoflower-Decorated MoS2 Nanosheet Sensor for Direct in Situ Monitoring of H2O2 Secreted from Live Cancer Cells. Anal. Chem. 2018, 90, 5945–5950. DOI: 10.1021/acs.analchem.8b00894.
  • Ma, H.; Zhang, X.; Li, X.; Li, R.; Du, B.; Wei, Q. Electrochemical Immunosensor for Detecting Typical Bladder Cancer Biomarker Based on Reduced Graphene Oxide–Tetraethylene Pentamine and Trimetallic AuPdPt Nanoparticles. Talanta 2015, 143, 77–82. DOI: 10.1016/j.talanta.2015.05.029.
  • Elemike, E. E.; Onwudiwe, D. C.; Nundkumar, N.; Singh, M.; Iyekowa, O. Green Synthesis of Ag, Au and Ag-Au Bimetallic Nanoparticles Using Stigmaphyllon Ovatum Leaf Extract and Their in Vitro Anticancer Potential. Mater. Lett. 2019, 243, 148–152. DOI: 10.1016/j.matlet.2019.02.049.
  • Deng, Y.; Tian, X.; Lu, S.; Xie, M.; Hu, H.; Zhang, R.; Lv, F.; Cheng, L.; Gu, H.; Zhao, Y. Fabrication of Multifoliate PtRu Bimetallic Nanocomplexes for Computed Tomography Imaging and Enhanced Synergistic Thermoradiotherapy. ACS Appl. Mater. Inter. 2018, 10, 31106–31113. DOI: 10.1021/acsami.8b11507.
  • Sivashanmugan, K.; Huang, W.-L.; Lin, C.-H.; Liao, J.-D.; Lin, C.-C.; Su, W.-C.; Wen, T.-C. Bimetallic Nanoplasmonic Gap-Mode SERS Substrate for Lung Normal and Cancer-Derived Exosomes Detection. J. Taiwan Inst. Chem. E 2017, 80, 149–155. DOI: 10.1016/j.jtice.2017.09.026.
  • Liu, R.-S.; Cheng, L.-C.; Huang, J.-H.; Chen, H. M.; Lai, T.-C.; Hsiao, M.; Chen, C.-H.; Yang, K.-Y.; Tsai, D. P.; Her, L.-J. Highly Efficient Urchin-like Bimetallic Nanoparticles for Photothermal Cancer Therapy. SPIE Newsroom 2013, 2–4. DOI: 10.1117/2.1201301.004676.
  • Darabdhara, G.; Das, M. R.; Turcheniuk, V.; Turcheniuk, K.; Zaitsev, V.; Boukherroub, R.; Szunerits, S. Reduced Graphene Oxide Nanosheets Decorated with AuPd Bimetallic Nanoparticles: A Multifunctional Material for Photothermal Therapy of Cancer Cells. J. Mater. Chem. B 2015, 3, 8366–8374. DOI: 10.1039/C5TB01704A.
  • Amoli-Diva, M.; Sadighi-Bonabi, R.; Pourghazi, K.; Hadilou, N. Tunable Surface Plasmon Resonance–Based Remote Actuation of Bimetallic Core–Shell Nanoparticle-Coated Stimuli Responsive Polymer for Switchable Chemo-Photothermal Synergistic Cancer Therapy. J. Pharm. Sci. 2018, 107, 2618–2627. DOI: 10.1016/j.xphs.2018.05.025.
  • Zhu, R.; Li, Y.; Zhang, X.; Bian, K.; Yang, M.; Cong, C.; Cheng, X.; Zhao, S.; Li, X.; Gao, D. Vapreotide-Mediated Hierarchical Mineralized Ag/Au Nanoshells for Photothermal anti-Tumor Therapy. Nanotechnology 2018, 30, 055602. DOI: 10.1088/1361-6528/aaf0db.
  • Katifelis, H.; Lyberopoulou, A.; Mukha, I.; Vityuk, N.; Grodzyuk, G.; Theodoropoulos, G. E.; Fstathopoulos, E. P.; Gazouli, M. Ag/Au Bimetallic Nanoparticles Induce Apoptosis in Human Cancer Cell Lines via P53, CASPASE-3 and BAX/BCL-2 Pathways. Artif. Cells Nanomed. Biotechnol. 2018, 46, S389–S398. DOI: 10.1080/21691401.2018.1495645.
  • Yang, Q.; Peng, J.; Xiao, Y.; Li, W.; Tan, L.; Xu, X.; Qian, Z. Porous Au@ Pt Nanoparticles: Therapeutic Platform for Tumor Chemo-Photothermal co-Therapy and Alleviating Doxorubicin-Induced Oxidative Damage. ACS Appl. Mater. Inter. 2017, 10, 150–164. DOI: 10.1021/acsami.7b14705.
  • Mukha, I.; Vityuk, N.; Grodzyuk, G.; Shcherbakov, S.; Lyberopoulou, A.; Efstathopoulos, E. P.; Gazouli, M. Anticancer Effect of Ag, Au, and Ag/Au Bimetallic Nanoparticles Prepared in the Presence of Tryptophan. J. Nanosci. Nanotechnol. 2017, 17, 8987–8994. DOI: 10.1166/jnn.2017.14106.
  • Medici, S.; Peana, M.; Nurchi, V. M.; Lachowicz, J. I.; Crisponi, G.; Zoroddu, M. A. Noble Metals in Medicine: Latest Advances. Coordin. Chem. Rev. 2015, 284, 329–350. DOI: 10.1016/j.ccr.2014.08.002.
  • Prakash, J.; Sun, S.; Swart, H. C.; Gupta, R. K. Noble metals-TiO2 Nanocomposites: From Fundamental Mechanisms to Photocatalysis, Surface Enhanced Raman Scattering and Antibacterial Applications. Appl. Mater. Today 2018, 11, 82–135. DOI: 10.1016/j.apmt.2018.02.002.
  • Kishorea, S.; Radhika, P. Review on the Antimicrobial and Anticancer Properties of Noble Metal Nanoparticles Synthesized Using Variety of Plant Extracts: A Green Strategic Approach. Res. J. Biotechnol. 2016, 11, 136–158.
  • Zhang, J.; Lakowicz, J. R. Emerging Applications of Colloidal Noble Metals in Cancer Nanomedicine. Future Med. 2012, 1–5. DOI: 10.2217/EBO.12.87.
  • Rostek, A.; Breisch, M.; Pappert, K.; Loza, K.; Heggen, M.; Köller, M.; Sengstock, C.; Epple, M. Comparative Biological Effects of Spherical Noble Metal Nanoparticles (Rh, Pd, Ag, Pt, Au) with 4–8 nm Diameter. Beilstein J. Nanotech. 2018, 9, 2763. DOI: 10.3762/bjnano.9.258.
  • Liu, Y.; Zhang, X.; Luo, L.; Li, L.; He, Y.; An, J.; Gao, D. Self-Assembly of Stimuli-Responsive Au–Pd Bimetallic Nanoflowers Based on Betulinic Acid Liposomes for Synergistic Chemo-Photothermal Cancer Therapy. ACS Biomater-Sci. Eng. 2018, 4, 2911–2921. DOI: 10.1021/acsbiomaterials.8b00766.
  • Fadeel, B.; Garcia-Bennett, A. E. Better Safe than Sorry: Understanding the Toxicological Properties of Inorganic Nanoparticles Manufactured for Biomedical Applications. Adv. Drug. Deliver. Rev. 2010, 62, 362–374. DOI: 10.1016/j.addr.2009.11.008.
  • Ocsoy, I.; Paret, M. L.; Ocsoy, M. A.; Kunwar, S.; Chen, T.; You, M.; Tan, W. Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial against Xanthomonas perforans. ACS Nano 2013, 7, 8972–8980. DOI: 10.1021/nn4034794.
  • Adams, C. P.; Walker, K. A.; Obare, S. O.; Docherty, K. M. Size-Dependent Antimicrobial Effects of Novel Palladium Nanoparticles. Plos One 2014, 9, 85981. DOI: 10.1371/journal.pone.0085981.
  • Puja, P.; Kumar, P. A Perspective on Biogenic Synthesis of Platinum Nanoparticles and Their Biomedical Applications. Spectrochim. Acta A 2018, 211, 94–99. DOI: 10.1016/j.saa.2018.11.047.
  • Endo, M.; Janczarek, M.; Wei, Z.; Wang, K.; Markowska-Szczupak, A.; Ohtani, B.; Kowalska, E. Bactericidal Properties of Plasmonic Photocatalysts Composed of Noble Metal Nanoparticles on Faceted Anatase Titania. J. Nanosci. Nanotechnol. 2019, 19, 442–452. DOI: 10.1166/jnn.2019.15780.
  • Rai, M.; Ingle, A. P.; Gupta, I.; Brandelli, A. Bioactivity of Noble Metal Nanoparticles Decorated with Biopolymers and Their Application in Drug Delivery. Int. J. Pharm 2015, 496, 159–172. DOI: 10.1016/j.ijpharm.2015.10.059.
  • Shah, M. R.; Ali, S.; Ateeq, M.; Perveen, S.; Ahmed, S.; Bertino, M. F.; Ali, M. Morphological Analysis of the Antimicrobial Action of Silver and Gold Nanoparticles Stabilized with Ceftriaxone on Escherichia coli Using Atomic Force Microscopy. New J. Chem. 2014, 38, 5633–5640. DOI: 10.1039/C4NJ00751D.
  • Ellis, T.; Chiappi, M.; García-Trenco, A.; Al-Ejji, M.; Sarkar, S.; Georgiou, T. K.; Shaffer, M. S.; Tetley, T. D.; Schwander, S.; Ryan, M. P. Multimetallic Microparticles Increase the Potency of Rifampicin against Intracellular Mycobacterium tuberculosis. ACS Nano 2018, 12, 5228–5240. DOI: 10.1021/acsnano.7b08264.
  • Perdikaki, A.; Galeou, A.; Pilatos, G.; Karatasios, I.; Kanellopoulos, N. K.; Prombona, A.; Karanikolos, G. N. Ag and Cu Monometallic and Ag/Cu Bimetallic Nanoparticle–Graphene Composites with Enhanced Antibacterial Performance. ACS Appl. Mater. Inter 2016, 8, 27498–27510. DOI: 10.1021/acsami.6b08403.
  • Strayer, A.; Ocsoy, I.; Tan, W.; Jones, J.; Paret, M. Low Concentrations of a Silver-Based Nanocomposite to Manage Bacterial Spot of Tomato in the Greenhouse. Plant Dis. 2016, 100, 1460–1465. DOI: 10.1094/PDIS-05-15-0580-RE.
  • Dogru, E.; Demirbas, A.; Altinsoy, B.; Duman, F. Ocsoy, I. Formation of Matricaria Chamomilla Extract-Incorporated Ag Nanoparticles and Size-Dependent Enhanced Antimicrobial Property. J. Photochem. Photobiotech. B 2017, 174, 78–83. DOI: 10.1016/j.jphotobiol.2017.07.024.
  • Ocsoy, I.; Yusufbeyoglu, S.; Yılmaz, V.; McLamore, E. S.; Ildız, N.; Ülgen, A. DNA Aptamer Functionalized Gold Nanostructures for Molecular Recognition and Photothermal Inactivation of methicillin-Resistant Staphylococcus aureus. Colloid Surface B 2017, 159, 16–22. DOI: 10.1016/j.colsurfb.2017.07.056.
  • Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017, 12, 1227. DOI: 10.2147/IJN.S121956.
  • Tabrizi, N.; Tazikeh, M.; Shahgholi, N. Antibacterial Properties of Au-Ag Alloy Nanoparticles. Int. J. Green Nanotechnol. 2012, 4, 489–494. DOI: 10.1080/19430892.2012.739461.
  • Fu, G.; Vary, P. S.; Lin, C.-T. Anatase TiO2 Nanocomposites for Antimicrobial Coatings. J. Phys. Chem. B 2005, 109, 8889–8898. DOI: 10.1021/jp0502196.
  • Page, K.; Palgrave, R. G.; Parkin, I. P.; Wilson, M.; Savin, S. L.; Chadwick, A. V. Titania and Silver–Titania Composite Films on Glass—Potent Antimicrobial Coatings. J. Mater. Chem. 2007, 17, 95–104. DOI: 10.1039/B611740F.
  • Mabey, T.; Andrea Cristaldi, D.; Oyston, P.; Lymer, K. P.; Stulz, E.; Wilks, S.; William Keevil, C.; Zhang, X. Bacteria and Nanosilver: The Quest for Optimal Production. Crit. Rev. Biotechnol. 2019, 39, 272–287. DOI: 10.1080/07388551.2018.1555130.
  • Jabir, N. R.; Tabrez, S.; Ashraf, G. M.; Shakil, S.; Damanhouri, G. A.; Kamal, M. A. Nanotechnology-Based Approaches in Anticancer Research. Int. J. Nanomed 2012, 7, 4391.
  • Patel, S. P.; Patel, P. B.; Parekh, B. B. Application of Nanotechnology in Cancers Prevention, Early Detection and Treatment. J. Cancer Res. Ther. 2014, 10, 479.
  • Azharuddin, M.; Zhu, G. H.; Das, D.; Ozgur, E.; Uzun, L.; Turner, A. P.; Patra, H. K. A Repertoire of Biomedical Applications of Noble Metal Nanoparticles. Chem. Commun. 2019, 55, 6964–6996. DOI: 10.1039/C9CC01741K.
  • Li, C.; Chen, T.; Ocsoy, I.; Zhu, G.; Yasun, E.; You, M.; Wu, C.; Zheng, J.; Song, E.; Huang, C. Z. Gold‐Coated Fe3O4 Nanoroses with Five Unique Functions for Cancer Cell Targeting, Imaging, and Therapy. Adv. Funct. Mater. 2014, 24, 1772–1780. DOI: 10.1002/adfm.201301659.
  • Zhang, L.-N.; Deng, H.-H.; Lin, F.-L.; Xu, X.-W.; Weng, S.-H.; Liu, A.-L.; Lin, X.-H.; Xia, X.-H.; Chen, W. In Situ Growth of Porous Platinum Nanoparticles on Graphene Oxide for Colorimetric Detection of Cancer Cells. Anal. Chem. 2014, 86, 2711–2718. DOI: 10.1021/ac404104j.
  • Shukoor, M. I.; Altman, M. O.; Han, D.; Bayrac, A. T.; Ocsoy, I.; Zhu, Z.; Tan, W. Aptamer-Nanoparticle Assembly for Logic-Based Detection. ACS Appl. Mater. Inter. 2012, 4, 3007–3011. DOI: 10.1021/am300374q.
  • Ocsoy, I.; Gulbakan, B.; Shukoor, M. I.; Xiong, X.; Chen, T.; Powell, D. H.; Tan, W. Aptamer-Conjugated Multifunctional Nanoflowers as a Platform for Targeting, Capture, and Detection in Laser Desorption Ionization Mass Spectrometry. ACS Nano 2012, 7, 417–427. DOI: 10.1021/nn304458m.
  • Yang, M.; Wang, J.; F. Biomarker, Z. Detections Using Functional Noble Metal Nanoparticles. In Functional Nanoparticles for Bioanalysis, Nanomedicine, and Bioelectronic Devices; ACS Publications: Washington, 2012; vol. 1, pp. 177–205.
  • Zhang, Y.; Zhan, X.; Xiong, J.; Peng, S.; Huang, W.; Joshi, R.; Cai, Y.; Liu, Y.; Li, R.; Yuan, K. Temperature-Dependent Cell Death Patterns Induced by Functionalized Gold Nanoparticle Photothermal Therapy in Melanoma Cells. Sci. Rep. 2018, 8, 8720.
  • Hirsch, L. R.; Stafford, R. J.; Bankson, J.; Sershen, S. R.; Rivera, B.; Price, R.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-Mediated near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance. P. Natl. Acad. Sci. 2003, 100, 13549–13554. DOI: 10.1073/pnas.2232479100.
  • Yu, M.; Zheng, J. Clearance Pathways and Tumor Targeting of Imaging Nanoparticles. ACS Nano 2015, 9, 6655–6674. DOI: 10.1021/acsnano.5b01320.
  • Fang, J.; Nakamura, H.; Maeda, H. The EPR Effect: Unique Features of Tumor Blood Vessels for Drug Delivery, Factors Involved, and Limitations and Augmentation of the Effect. Adv. Drug Deliver. Rev. 2011, 63, 136–151. DOI: 10.1016/j.addr.2010.04.009.
  • Tavangar, A.; Premnath, P.; Tan, B.; Venkatakrishnan, K. Noble Hybrid Nanostructures as Efficient anti-Proliferative Platforms for Human Breast Cancer Cell. ACS Appl. Mater. Inter. 2016, 8, 10253–10265. DOI: 10.1021/acsami.6b02720.
  • Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional Nanomaterials for Phototherapies of Cancer. Chem. Rev. 2014, 114, 10869–10939. DOI: 10.1021/cr400532z.
  • Akhavan, O.; Ghaderi, E. Graphene Nanomesh Promises Extremely Efficient in Vivo Photothermal Therapy. Small 2013, 9, 3593–3601. DOI: 10.1002/smll.201203106.
  • Sperling, R. A.; Parak, W. J. Surface Modification, Functionalization and Bioconjugation of Colloidal Inorganic Nanoparticles. Philos. T. Roy. Soc. A 2010, 368, 1333–1383. DOI: 10.1098/rsta.2009.0273.
  • Liu, X.; Zhang, X.; Zhu, M.; Lin, G.; Liu, J.; Zhou, Z.; Tian, X.; Pan, Y. PEGylated Au@ Pt Nanodendrites as Novel Theranostic Agents for Computed Tomography Imaging and Photothermal/Radiation Synergistic Therapy. ACS Appl. Mater. Inter. 2016, 9, 279–285. DOI: 10.1021/acsami.6b15183.
  • Chen, Y.-S.; Hung, Y.-C.; Liau, I.; Huang, G. S. Assessment of the in Vivo Toxicity of Gold Nanoparticles. Nanoscale Res. Lett. 2009, 4, 858. DOI: 10.1007/s11671-009-9334-6.
  • Ali, S.; Perveen, S.; Ali, M.; Jiao, T.; Sharma, A. S.; Hassan, H.; Devaraj, S.; Li, H.; Chen, Q. Bioinspired Morphology-Controlled Silver Nanoparticles for Antimicrobial Application. Mater. Sci. Eng. C 2020, 108, 110421.
  • Li, J. J.; Hartono, D.; Ong, C.-N.; Bay, B.-H.; Yung, L.-Y. L. Autophagy and Oxidative Stress Associated with Gold Nanoparticles. Biomaterials 2010, 31, 5996–6003. DOI: 10.1016/j.biomaterials.2010.04.014.
  • Ali, S.; Perveen, S.; Ali, M.; Shah, M. R.; Khan, E.; Sharma, A. S.; Li, H.; Chen, Q. Nano-Conjugates of Cefadroxil as Efficient Antibacterial Agent against Staphylococcus aureus ATCC 11632. J. Clust. Sci. 2019, 1–11.
  • Katifelis, H.; Lyberopoulou, A.; Mukha, I.; Vityuk, N.; Grodzyuk, G.; Theodoropoulos, G. E.; Efstathopoulos, E. P.; Gazouli, M. Ag/Au Bimetallic Nanoparticles Induce Apoptosis in Human Cancer Cell Lines via P53, CASPASE-3 and BAX/BCL-2 Pathways. Artif. Cells Nanomed. Biotechnol. 2018, 46, 389–398.
  • Soulé, S.; Bulteau, A.-L.; Faucher, S.; Haye, B.; Aimé, C.; Allouche, J.; Dupin, J.-C.; Lespes, G.; Coradin, T.; Martinez, H. Design and Cellular Fate of Bioinspired Au–Ag Nanoshells@ Hybrid Silica Nanoparticles. Langmuir 2016, 32, 10073–10082. DOI: 10.1021/acs.langmuir.6b02810.
  • McLamore, E.; Convertino, M.; Ocsoy, I.; Vanegas, D.; Taguchi, M.; Rong, Y.; Gomes, C.; Chaturvedi, P.; Claussen, J. Biomimetic Fractal Nanometals as a Transducer Layer in Electrochemical Biosensing. Semiconductor Based Sens.. Sci. 2017, 2, 35–67.
  • Steed, J. W. Coordination and Organometallic Compounds as Anion Receptors and Sensors. Chem. Soc. Rev. 2009, 38, 506–519. DOI: 10.1039/b810364j.
  • Pricker, S. P. Medical Uses of Gold Compounds: Past, Present and Future. Gold Bull. 1996, 29, 53–60. DOI: 10.1007/BF03215464.
  • Shaw, C. F. Gold-Based Therapeutic Agents. Chem. Rev. 1999, 99, 2589–2600. DOI: 10.1021/cr980431o.
  • Hu, J.; Zhang, H.; Cao, M.; Wang, L.; Wu, S.; Fang, B. Auranofin Enhances Ibrutinib's Anticancer Activity in EGFR-Mutant Lung Adenocarcinoma. Mol. Cancer. Ther. 2018, 17, 2156–2163. DOI: 10.1158/1535-7163.MCT-17-1173.
  • Schwietert, C. W.; McCue, J. P. Coordination Compounds in Medicinal Chemistry. Coordin. Chem. Rev. 1999, 184, 67–89. DOI: 10.1016/S0010-8545(98)00205-7.
  • Alama, A.; Tasso, B.; Novelli, F.; Sparatore, F. Organometallic Compounds in Oncology: Implications of Novel Organotins as Antitumor Agents. Drug Discov. Today 2009, 14, 500–508. DOI: 10.1016/j.drudis.2009.02.002.
  • Murray, B. S.; Dyson, P. J. Recent Progress in the Development of Organometallics for the Treatment of Cancer. Curr. Opin. Chem. Biol. 2020, 56, 28–34. DOI: 10.1016/j.cbpa.2019.11.001.
  • Parveen, S.; Arjmand, F.; Tabassum, S. Development and Future Prospects of Selective Organometallic Compounds as Anticancer Drug Candidates Exhibiting Novel Modes of Action. Eur. J. Med. Chem. 2019, 175, 269–286. DOI: 10.1016/j.ejmech.2019.04.062.
  • Galuppo, C.; Alvarenga, J.; Queiroz, A. C.; Messias, I.; Nagao, R.; Abbehausen, C. The Electrosynthesis of Gold (I) Complexes: A Clean, One-Pot Method. Electrochem. Commun. 2020, 110, 106620. DOI: 10.1016/j.elecom.2019.106620.
  • Trudu, F.; Amato, F.; Vaňhara, P.; Pivetta, T.; Peña-Méndez, E.; Havel, J. Coordination Compounds in Cancer: Past, Present and Perspectives. J. Appl. Biomed. 2015, 13, 79–103. DOI: 10.1016/j.jab.2015.03.003.
  • Jain, K. Nanotechnology-Based Drug Delivery for Cancer. Technol. Cancer. Res. T. 2005, 4, 407–416. DOI: 10.1177/153303460500400408.
  • Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an Emerging Platform for Cancer Therapy. Nat. Nanotechnol. 2007, 2, 751. DOI: 10.1038/nnano.2007.387.
  • Sokolov, K.; Follen, M.; Aaron, J.; Pavlova, I.; Malpica, A.; Lotan, R.; Richards-Kortum, R. Real-Time Vital Optical Imaging of Precancer Using anti-Epidermal Growth Factor Receptor Antibodies Conjugated to Gold Nanoparticles. Cancer Res. 2003, 63, 1999–2004.
  • Dong, B.; Hadinoto, K. Direct Comparison between Millifluidic and Bulk-Mixing Platform in the Synthesis of Amorphous Drug-Polysaccharide Nanoparticle Complex. Int. J. Pharm 2017, 523, 42–51. DOI: 10.1016/j.ijpharm.2017.03.021.
  • Zhang, L.; Pornpattananangkul, D.; Hu, C.-M.; Huang, C.-M. Development of Nanoparticles for Antimicrobial Drug Delivery. Curr. Med. Chem. 2010, 17, 585–594. DOI: 10.2174/092986710790416290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.