587
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Polycyclic Aromatic Hydrocarbons: Occurrence, Electroanalysis, Challenges, and Future Outlooks

ORCID Icon, ORCID Icon, &
Pages 878-896 | Published online: 06 Nov 2020

References

  • Arey, J.; Atkinson, R. Photochemical Reactions of PAHs in the Atmosphere. In PAHs: Ecotoxicol. Perspective; Weeks, J. M., O'Hare, S., Rattner B.A., and Douben P.E.T., Eds.; Chichester: John Wiley & Sons, 2003, 47–63.
  • Broniatowski, M.; Binczycka, M.; Wójcik, A.; Flasiński, M.; Wydro, P. Polycyclic Aromatic Hydrocarbons in Model Bacterial membranes - Langmuir monolayer studies. Biochim. Biophys. Acta. Biomembr. 2017, 1859, 2402–2412. DOI: https://doi.org/10.1016/j.bbamem.2017.09.017.
  • Achten, C.; Andersson, J. T. Overview of Polycyclic Aromatic Compounds (PAC). Polycycl. Aromat. Compd. 2015, 35, 177–186. DOI: https://doi.org/10.1080/10406638.2014.994071.
  • Fang, G.-C.; Wu, Y.-S.; Chen, J.-C.; Chang, C.-N.; Ho, T.-T. Characteristic of Polycyclic Aromatic Hydrocarbon Concentrations and Source Identification for Fine and Coarse Particulates at Taichung Harbor near Taiwan Strait during 2004–2005. Sci. Total. Environ. 2006, 366, 729–738. DOI: https://doi.org/10.1016/j.scitotenv.2005.09.075.
  • Sverdrup, L. E.; Nielsen, T.; Krogh, P. H. Soil Ecotoxicity of Polycyclic Aromatic Hydrocarbons in Relation to Soil Sorption, Lipophilicity, and Water Solubility. Environ. Sci. Technol. 2002, 36, 2429–2435.
  • Wang, X.; Tao, S.; Dawson, R.; Xu, F. Characterizing and Comparing Risks of Polycyclic Aromatic Hydrocarbons in a Tianjin Wastewater-Irrigated Area. Environ. Res. 2002, 90, 201–206.
  • Pope, C. A.; III, Burnett, R. T.; Thun, M. J.; Calle, E. E.; Krewski, D.; Ito, K.; Thurston, G. D. Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution. Jama 2002, 287, 1132–1141. DOI: https://doi.org/10.1001/jama.287.9.1132.
  • Morris, J.; Seifter, E. The Role of Aromatic Hydrocarbons in the Genesis of Breast Cancer. Med. Hypotheses. 1992, 38, 177–184.
  • Li, D.; Wang, M.; Dhingra, K.; Hittelman, W. N. Aromatic DNA Adducts in Adjacent Tissues of Breast Cancer Patients: Clues to Breast Cancer Etiology. Cancer Res. 1996, 56, 287.
  • Ashraf, M. W.; Taqvi, S. I. H.; Solangi, A. R.; Qureshi, U. A. Distribution and Risk Assessment of Polycyclic Aromatic Hydrocarbons in Vegetables Grown in Pakistan. J. Chem. 2012, 2013, 1–5.
  • Boonyatumanond, R.; Murakami, M.; Wattayakorn, G.; Togo, A.; Takada, H. Sources of Polycyclic Aromatic Hydrocarbons (PAHs) in Street Dust in a Tropical Asian Mega-City, Bangkok, Thailand. Sci. Total Environ. 2007, 384, 420–432. DOI: https://doi.org/10.1016/j.scitotenv.2007.06.046.
  • Zeng, E. Y.; Vista, C. L. Organic Pollutants in the Coastal Environment off San Diego, California. 1. Source Identification and Assessment by Compositional Indices of Polycyclic Aromatic Hydrocarbons. Environ. Toxicol. Chem. 1997, 16, 179–188.
  • Venkatesan, M. Occurrence and Possible Sources of Perylene in Marine Sediments-A Review. Mar. Chem. 1988, 25, 1–27.
  • Neff, J. M. Polycyclic aromatic hydrocarbons in the aquatic environment. 1979.
  • Qari, H. A.; Hassan, I. A. Bioaccumulation of PAHs in Padina Boryana Alga Collected from a Contaminated Site on the Red Sea, Saudi Arabia. Pol. J. Environ. Stud. 2017, 26, 1.
  • Haiba, N.; Hassan, I. Monitoring and Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmosphere of Alexandria City, Egypt. Polycyclic Aromat. Compd. 2018, 38, 219–230.
  • Zhu, L.; Chen, B.; Wang, J.; Shen, H. Pollution Survey of Polycyclic Aromatic Hydrocarbons in Surface Water of Hangzhou, China. Chemosphere 2004, 56, 1085–1095. DOI: https://doi.org/10.1016/j.chemosphere.2004.05.025.
  • Sun, J.-H.; Wang, G.-L.; Chai, Y.; Zhang, G.; Li, J.; Feng, J. Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China. Ecotoxicol. Environ. Saf. 2009, 72, 1614–1624. DOI: https://doi.org/10.1016/j.ecoenv.2008.05.010.
  • Harrison, R. M.; Alam, M. S.; Dang, J.; Ismail, I.; Basahi, J.; Alghamdi, M. A.; Hassan, I.; Khoder, M. Relationship of Polycyclic Aromatic Hydrocarbons with oxy(quinone) and nitro derivatives during air mass transport. Sci. Total Environ. 2016, 572, 1175–1183. DOI: https://doi.org/10.1016/j.scitotenv.2016.08.030.
  • Harrison, R. M.; Alam, M. S.; Dang, J.; Basahi, J.; Alghamdi, M. A.; Ismail, I.; Khoder, M.; Hassan, I. Influence of Petrochemical Installations upon PAH Concentrations at Sites in Western Saudi Arabia. Atmos. Pollut. Res. 2016, 7, 954–960.
  • Klaassen, C. D.; Amdur, M. O. Casarett and Doull's Toxicology: The Basic Science of Poisons; McGraw-Hill: New York, 2013.
  • Santos, L. O.; dos Anjos, J. P.; Ferreira, S. L.; de Andrade, J. B. Simultaneous Determination of PAHS, nitro-PAHS and Quinones in Surface and Groundwater Samples Using SDME/GC-MS. Microchem. J. 2017, 133, 431–440.
  • Dost, K.; İdeli, C. Determination of Polycyclic Aromatic Hydrocarbons in Edible Oils and Barbecued Food by HPLC/UV–Vis Detection. Food Chem. 2012, 133, 193–199.
  • Serpe, F. P.; Esposito, M.; Gallo, P.; Serpe, L. Optimisation and Validation of an HPLC Method for Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Mussels. Food Chem. 2010, 122, 920–925.
  • Bao, L.; Sheng, P.; Li, J.; Wu, S.; Cai, Q.; Yao, S. Surface Enhanced Raman Spectroscopic Detection of Polycyclic Aromatic Hydrocarbons (PAHs) Using a Gold Nanoparticles-Modified Alginate Gel Network. Analyst 2012, 137, 4010–4015. DOI: https://doi.org/10.1039/c2an35589b.
  • Pena, E. A.; Ridley, L. M.; Murphy, W. R.; Sowa, J. R.; Bentivegna, C. S. Detection of Polycyclic Aromatic Hydrocarbons (PAHs) in Raw Menhaden Fish Oil Using Fluorescence Spectroscopy: Method Development. Environ. Toxicol. Chem. 2015, 34, 1946–1958. DOI: https://doi.org/10.1002/etc.3015.
  • Zhang, M.; Zhang, X.; Shi, Y-e.; Liu, Z.; Zhan, J. Surface Enhanced Raman Spectroscopy Hyphenated with Surface Microextraction for in-Situ Detection of Polycyclic Aromatic Hydrocarbons on Food Contact Materials. Talanta 2016, 158, 322–329. DOI: https://doi.org/10.1016/j.talanta.2016.05.069.
  • Liu, L-b.; Yan, L.; Lin, J-m.; Ning, T.; Hayakawa, K.; Maeda, T. Development of Analytical Methods for Polycyclic Aromatic Hydrocarbons (PAHs) in Airborne Particulates: A Review. J. Environ. Sci. 2007, 19, 1–11.
  • Brett, C. M. Electroanalytical Techniques for the Future: The Challenges of Miniaturization and of Real‐Time Measurements. Electroanalysis: Int. J. Devoted Fundam. Pract. Aspects Electroanalysis 1999, 11, 1013–1016.
  • Senturk, Z. Analysis of Carcinogenic Polycyclic Aromatic Hydrocarbons (PAHs): An Overview of Modern Electroanalytical Techniques and Their Applications. Curr. Drug Delivery 2013, 10, 76–91.
  • Brett, C. M. Electrochemical Sensors for Environmental Monitoring. Strategy and Examples. Pure Appl. Chem. 2001, 73, 1969–1977.
  • Manoli, E.; Samara, C. Polycyclic Aromatic Hydrocarbons in Natural Waters: Sources, Occurrence and Analysis. TrAC Trends Anal. Chem. 1999, 18, 417–428.
  • Directive, C. On the Quality of Water Intended for Human Consumption. Off. J. Eur. Communities 1998, 330, 32.
  • World Health Organization. Guidelines for Drinking-Water Quality; World Health Organization, Geneva, 1993.
  • Nasr, I.; Arief, M.; Abdel-Aleem, A.; Malhat, F. Polycyclic Aromatic Hydrocarbons (PAHs) in Aquatic Environment at El Menofiya Governorate, Egypt. J. Appl. Sci. Res. 2010, 6, 13.
  • Qiu, Y.-W.; Zhang, G.; Liu, G.-Q.; Guo, L.-L.; Li, X.-D.; Wai, O. Polycyclic Aromatic Hydrocarbons (PAHs) in the Water Column and Sediment Core of Deep Bay, South China. Estuarine Coastal Shelf Sci. 2009, 83, 60–66.
  • Rhea, D. T.; Gale, R. W.; Orazio, C. E.; Peterman, P. H.; Harper, D. D.; Farag, A. M. Polycyclic Aromatic Hydrocarbons in Water, Sediment, and Snow, from Lakes in Grand Teton National Park, Wyoming. US. Geological Survey, Columbia Environmental Research Center (USGS-CERC), 2005.
  • Zhang, Y.; Tao, S. Global Atmospheric Emission Inventory of Polycyclic Aromatic Hydrocarbons (PAHs) for 2004. Atmos. Environ. 2009, 43, 812–819.
  • Yearbook, C. S. National Bureau of Statistics of China, China Statistical Yearbook, China Statistical Yearbook. Beijing, China Statistics press, 2012.
  • Zhang, Y.; Dou, H.; Chang, B.; Wei, Z.; Qiu, W.; Liu, S.; Liu, W.; Tao, S. Emission of Polycyclic Aromatic Hydrocarbons from Indoor Straw Burning and Emission Inventory Updating in China. Ann. N. Y. Acad. Sci. 2008, 1140, 218–227. DOI: https://doi.org/10.1196/annals.1454.006.
  • Zhang, Y.; Tao, S.; Cao, J.; Coveney, R. M. Emission of Polycyclic Aromatic Hydrocarbons in China by County. Environ. Sci. Technol. 2007, 41, 683–687. DOI: https://doi.org/10.1021/es061545h.
  • Halsall, C. J.; Barrie, L. A.; Fellin, P.; Muir, D.; Billeck, B.; Lockhart, L.; Rovinsky, F. Y.; Kononov, E. Y.; Pastukhov, B. Spatial and Temporal Variation of Polycyclic Aromatic Hydrocarbons in the Arctic Atmosphere. Environ. Sci. Technol. 1997, 31, 3593–3599.
  • Primbs, T.; Piekarz, A.; Wilson, G.; Schmedding, D.; Higginbotham, C.; Field, J.; Simonich, S. Influence of Asian and Western US Urban Areas and Fires on the Atmospheric Transport of PAHs, PCBs, and FTOHs in the Western US. Environ. Sci. Technol. 2008, 42, 6385–6391.
  • Lang, C.; Tao, S.; Zhang, G.; Fu, J.; Simonich, S. Outflow of Polycyclic Aromatic Hydrocarbons from Guangdong, Southern China. Environ. Sci. Technol. 2007, 41, 8370–8375. DOI: https://doi.org/10.1021/es071853v.
  • Primbs, T.; Simonich, S.; Schmedding, D.; Wilson, G.; Jaffe, D.; Takami, A.; Kato, S.; Hatakeyama, S.; Kajii, Y. Atmospheric Outflow of Anthropogenic Semivolatile Organic Compounds from East Asia in Spring 2004. Environ. Sci. Technol. 2007, 41, 3551–3558.
  • Lee, J. Y.; Kim, Y. P.; Kang, C. H.; Ghim, Y. S.; Kaneyasu, N. Temporal Trend and Long‐Range Transport of Particulate Polycyclic Aromatic Hydrocarbons at Gosan in Northeast Asia between 2001 and 2004. J. Geophys. Res. 2006, 111, 1–11. DOI: https://doi.org/10.1029/2005JD006537.
  • Killin, R. K.; Simonich, S. L.; Jaffe, D. A.; DeForest, C. L.; Wilson, G. R. Transpacific and Regional Atmospheric Transport of Anthropogenic Semivolatile Organic Compounds to Cheeka Peak Observatory during the Spring of 2002. J. Geophys. Res.: Atmos. 2004, 109, D23S15. DOI:https://doi.org/10.1029/2003JD004386.
  • Wang, C.; Zhou, S.; Wu, S.; Song, J.; Shi, Y.; Li, B.; Chen, H. Surface Water Polycyclic Aromatic Hydrocarbons (PAH) in Urban Areas of Nanjing, China. Water Sci. Technol. 2017, 76, 2150–2157. DOI: https://doi.org/10.2166/wst.2017.387.
  • Nagy, A. S.; Szabó, J.; Vass, I. Occurrence and Distribution of Polycyclic Aromatic Hydrocarbons in Surface Water of the Raba River, Hungary. J. Environ. Sci. Health A 2013, 48, 1190–1200. DOI: https://doi.org/10.1080/10934529.2013.776455.
  • Zhao, X.; Qiu, H.; Zhao, Y.; Shen, J.; Chen, Z.; Chen, J. Distribution of Polycyclic Aromatic Hydrocarbons in Surface Water from the Upper Reach of the Yellow River, Northwestern China. Environ. Sci. Pollut. Res. Int. 2015, 22, 6950–6956. DOI: https://doi.org/10.1007/s11356-014-3846-z.
  • Paatero, P.; Tapper, U. Positive Matrix Factorization: A Non‐Negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics 1994, 5, 111–126.
  • Li, Q.; Xu, X.; Sen-Chun, L. F.; Wang, X. Determination of Trace PAHs in Seawater and Sediment Pore-Water by Solid-Phase Microextraction (SPME) Coupled with GC/MS. Sci. China Ser. B 2006, 49, 481–491.
  • Scoggins, M.; McClintock, N.; Gosselink, L.; Bryer, P. Occurrence of Polycyclic Aromatic Hydrocarbons below Coal-Tar-Sealed Parking Lots and Effects on Stream Benthic Macroinvertebrate Communities. J. North Am. Benthol. Soc. 2007, 26, 694–707.
  • Mahler, B. J.; Van Metre, P. C.; Bashara, T. J.; Wilson, J. T.; Johns, D. A. Parking Lot Sealcoat: An Unrecognized Source of Urban Polycyclic Aromatic Hydrocarbons. Environ. Sci. Technol. 2005, 39, 5560–5566. DOI: https://doi.org/10.1021/es0501565.
  • Dubey, G. Understanding How Sealcoating Works… and How It Can Save You Money. http://pavementpro.org/understanding.htm.
  • Metre, P. C. V.; Mahler, B. J.; Wilson, J. T. PAHs Underfoot: Contaminated Dust from Coal-Tar Sealcoated Pavement is Widespread in the United States. Environ. Sci. Technol. 2009, 43, 20–25. DOI: https://doi.org/10.1021/es802119h.
  • Liu, D.; Xu, Y.; Chaemfa, C.; Tian, C.; Li, J.; Luo, C.; Zhang, G. Concentrations, Seasonal Variations, and Outflow of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) at Ningbo Site, Eastern China. Atmos. Pollut. Res. 2014, 5, 203–209.
  • Gong, P.; Wang, X.; Sheng, J.; Wang, H.; Yuan, X.; He, Y.; Qian, Y.; Yao, T. Seasonal Variations and Sources of Atmospheric Polycyclic Aromatic Hydrocarbons and Organochlorine Compounds in a High-Altitude City: Evidence from Four-Year Observations. Environ. Pollut. 2018, 233, 1188–1197. DOI: https://doi.org/10.1016/j.envpol.2017.10.064.
  • Kubo, T.; Bai, W.; Nagae, M.; Takao, Y. Seasonal Fluctuation of Polycyclic Aromatic Hydrocarbons and Aerosol Genotoxicity in Long-Range Transported Air Mass Observed at the Western End of Japan. Int. J. Environ. Res. Public Health 2020, 17, 1210.
  • Manoli, E.; Kouras, A.; Samara, C. Profile Analysis of Ambient and Source Emitted Particle-Bound Polycyclic Aromatic Hydrocarbons from Three Sites in Northern Greece. Chemosphere 2004, 56, 867–878. DOI: https://doi.org/10.1016/j.chemosphere.2004.03.013.
  • Li, Z.; Porter, E. N.; Sjödin, A.; Needham, L. L.; Lee, S.; Russell, A. G.; Mulholland, J. A. Characterization of PM2. 5-Bound Polycyclic Aromatic Hydrocarbons in Atlanta—Seasonal Variations at Urban, Suburban, and Rural Ambient Air Monitoring Sites. Atmos. Environ. 2009, 43, 4187–4193.
  • Rehwagen, M.; Müller, A.; Massolo, L.; Herbarth, O.; Ronco, A. Polycyclic Aromatic Hydrocarbons Associated with Particles in Ambient Air from Urban and Industrial Areas. Sci. Total Environ. 2005, 348, 199–210. DOI: https://doi.org/10.1016/j.scitotenv.2004.12.050.
  • Karyab, H.; Yunesian, M.; Nasseri, S.; Mahvi, A. H.; Ahmadkhaniha, R.; Rastkari, N.; Nabizadeh, R. Polycyclic Aromatic Hydrocarbons in Drinking Water of Tehran, Iran. J. Environ. Health Sci. Eng. 2013, 11, 25. DOI: https://doi.org/10.1186/2052-336X-11-25.
  • Said, T. O.; Agroudy, N. A. E. Assessment of PAHs in Water and Fish Tissues from Great Bitter and El Temsah Lakes, Suez Canal, as Chemical Markers of Pollution Sources. Chem. Ecol. 2006, 22, 159–173.
  • El-Naggar, N. A.; Emara, H. I.; Moawad, M. N.; Soliman, Y. A.; El-Sayed, A. A. Detection of Polycyclic Aromatic Hydrocarbons along Alexandria’s Coastal Water, Egyptian Mediterranean Sea. Egypt. J. Aquat. Res. 2018, 44, 9–14.
  • Nasher, E.; Heng, L. Y.; Zakaria, Z.; Surif, S. Concentrations and Sources of Polycyclic Aromatic Hydrocarbons in the Seawater around Langkawi Island, Malaysia. J. Chem. 2013, 2013, 1–10.
  • Moon, H. B.; Kang, S. K.; Kim, H. S.; Choi, M. K.; Yu, J.; Choi, H. G.; and J. S. Park. Polycyclic Aromatic Hydrocarbons (PAHs) in Seawater and Marine Sediments from Mokpo Coast in Korea. J. Korean Soc. Environ. Anal., 2007, 10, 83-90.
  • Hayakawa, K.; Makino, F.; Yasuma, M.; Yoshida, S.; Chondo, Y.; Toriba, A.; Kameda, T.; Tang, N.; Kunugi, M.; Nakase, H.; et al. Polycyclic Aromatic Hydrocarbons in Surface Water of the Southeastern Japan Sea. Chem. Pharm. Bull. (Tokyo) 2016, 64, 625–631., DOI: https://doi.org/10.1248/cpb.c16-00063.
  • Malik, A.; Verma, P.; Singh, A. K.; Singh, K. P. Distribution of Polycyclic Aromatic Hydrocarbons in Water and Bed Sediments of the Gomti River, India. Environ. Monit. Assess. 2011, 172, 529–545. DOI: https://doi.org/10.1007/s10661-010-1352-4.
  • Huang, J.; Zhang, Z.; Yu, G. Occurrence of Dissolved PAHs in the Jinsha River (Panzhihua)-upper reaches of the Yangtze River, Southwest China . J. Environ. Monit. 2003, 5, 604–609. DOI: https://doi.org/10.1039/b210670a.
  • Maskaoui, K.; Zhou, J.; Hong, H.; Zhang, Z. Contamination by Polycyclic Aromatic Hydrocarbons in the Jiulong River Estuary and Western Xiamen Sea, China. Environ. Pollut. 2002, 118, 109–122.
  • Guo, W.; He, M.; Yang, Z.; Lin, C.; Quan, X.; Wang, H. Distribution of Polycyclic Aromatic Hydrocarbons in Water, Suspended Particulate Matter and Sediment from Daliao River Watershed, China. Chemosphere 2007, 68, 93–104. DOI: https://doi.org/10.1016/j.chemosphere.2006.12.072.
  • Doong, R.-A.; Lin, Y.-T. Characterization and Distribution of Polycyclic Aromatic Hydrocarbon Contaminations in Surface Sediment and Water from Gao-Ping River, Taiwan. Water Res. 2004, 38, 1733–1744.
  • Sarria-Villa, R.; Ocampo-Duque, W.; Páez, M.; Schuhmacher, M. Presence of PAHs in Water and Sediments of the Colombian Cauca River during Heavy Rain Episodes, and Implications for Risk Assessment. Sci. Total Environ. 2016, 540, 455–465. DOI: https://doi.org/10.1016/j.scitotenv.2015.07.020.
  • Santana, J. L.; Massone, C. G.; Valdés, M.; Vazquez, R.; Lima, L. A.; Olivares-Rieumont, S. Occurrence and Source Appraisal of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Waters of the Almendares River, Cuba. Arch. Environ. Contam. Toxicol. 2015, 69, 143–152. DOI: https://doi.org/10.1007/s00244-015-0136-9.
  • Gustafson, K. E.; Dickhut, R. M. Distribution of Polycyclic Aromatic Hydrocarbons in Southern Chesapeake Bay Surface Water: Evaluation of Three Methods for Determining Freely Dissolved Water Concentrations. Environ. Toxicol. Chem. 1997, 16, 452–461.
  • Del Carlo, M.; Di Marcello, M.; Perugini, M.; Ponzielli, V.; Sergi, M.; Mascini, M.; Compagnone, D. Electrochemical DNA Biosensor for Polycyclic Aromatic Hydrocarbon Detection. Microchim. Acta 2008, 163, 163–169.
  • Zhang, X.; Li, L.; Li, L.; Chen, J.; Zou, G.; Si, Z.; Jin, W. Ultrasensitive Electrochemical DNA Assay Based on Counting of Single Magnetic Nanobeads by a Combination of DNA Amplification and Enzyme Amplification. Anal. Chem. 2009, 81, 1826–1832. DOI: https://doi.org/10.1021/ac802183u.
  • Ahmad, A.; Moore, E. Electrochemical Immunosensor Modified with self-assembled monolayer of 11-mercaptoundecanoic acid on gold electrodes for detection of benzo[a]pyrene in water. Analyst 2012, 137, 5839–5844. DOI: https://doi.org/10.1039/c2an35236b.
  • Settle, F. A. Handbook of Instrumental Techniques for Analytical Chemistry; Prentice Hall PTR: Upper Saddle River, New Jersey, 1997.
  • Chen, X.; Wang, Y.; Zhang, Y.; Chen, Z.; Liu, Y.; Li, Z.; Li, J. Sensitive Electrochemical Aptamer Biosensor for Dynamic Cell Surface N-glycan evaluation featuring multivalent recognition and signal amplification on a dendrimer-graphene electrode interface. Anal. Chem. 2014, 86, 4278–4286. DOI: https://doi.org/10.1021/ac404070m.
  • Fang, X.; Liu, J.; Wang, J.; Zhao, H.; Ren, H.; Li, Z. Dual Signal Amplification Strategy of Au Nanopaticles/ZnO Nanorods Hybridized Reduced Graphene Nanosheet and Multienzyme Functionalized Au@ZnO composites for ultrasensitive electrochemical detection of tumor biomarker. Biosens. Bioelectron. 2017, 97, 218–225. DOI: https://doi.org/10.1016/j.bios.2017.05.055.
  • Kiranmai, S.; Reddy, Y. V. M.; Venu, M.; Madhuri, C.; Anitha, K.; Madhavi, G.; Reddy, A. V. Determination of Terazosin by Using Poly (Congo Red) Modified Carbon Paste Electrode. Anal. Bioanal. Electrochem. 2017, 9, 154.
  • Hanssen, B. L.; Siraj, S.; Wong, D. K. Recent Strategies to Minimise Fouling in Electrochemical Detection Systems. Rev. Anal. Chem. 2016, 35, 1–28.
  • Manica, D. P.; Mitsumori, Y.; Ewing, A. G. Characterization of Electrode Fouling and Surface Regeneration for a Platinum Electrode on an Electrophoresis Microchip. Anal. Chem. 2003, 75, 4572–4577. DOI: https://doi.org/10.1021/ac034235f.
  • Wilson, C. J.; Clegg, R. E.; Leavesley, D. I.; Pearcy, M. J. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Eng. 2005, 11, 1–18. DOI: https://doi.org/10.1089/ten.2005.11.1.
  • Zhuiykov, S.; Kalantar-Zadeh, K. Development of Antifouling of Electrochemical Solid-State Dissolved Oxygen Sensors Based on Nanostructured Cu0. 4Ru3. 4O7+ RuO2 Sensing Electrodes. Electrochim. Acta 2012, 73, 105–111.
  • Brown, K. L. Electrochemical Preparation and Characterization of Chemically Modified Electrodes. In Voltammetry; Maxakato, N. W., Gwebu, S. S., Mhlongo, G. H., Eds.; IntechOpen: London, 2018, pp 1–15.
  • Yomthiangthae, P.; Kondo, T.; Chailapakul, O.; Siangproh, W. The Effects of the Supporting Electrolyte on the Simultaneous Determination of Vitamin B 2, Vitamin B 6, and Vitamin C Using a Modification-Free Screen-Printed Carbon Electrode. New J. Chem. 2020, 44, 12603–12612.
  • Creager, S. Solvents and Supporting Electrolytes. In Handbook of Electrochemistry; Zoski. C. G., Ed.; Elsevier: Amsterdam, 2007; 57–72.
  • Robinson, R.; Stokes, R. Electrolyte Solutions. Appendix 12 I, p. 496; Butterworths Scientific Publ.: London, 1955.
  • Rajeshwar, K.; Ibanez, J. G. Environmental Electrochemistry: Fundamentals and Applications in Pollution Sensors and Abatement: Elsevier: Amsterdam, 1997.
  • Drogui, P.; Blais, J.-F.; Mercier, G. Review of Electrochemical Technologies for Environmental Applications. Recent Pat. Eng. 2007, 1, 257–272.
  • Comninellis, C. Electrocatalysis in the Electrochemical Conversion/Combustion of Organic Pollutants for Waste Water Treatment. Electrochim. Acta 1994, 39, 1857–1862.
  • Gandini, D.; Comninellis, C.; Tahar, N. B.; Savall, A. Électrodépollution: Traitement Électrochimique Des Eaux Résiduaires Chargées en Matières Organiques Toxiques. Actualité Chimique 1998, 10, 68.
  • Pulgarin, C.; Adler, N.; Peringer, P.; Comninellis, C. Electrochemical Detoxification of a 1, 4-Benzoquinone Solution in Wastewater Treatment. Water Res. 1994, 28, 887–893.
  • Morao, A.; Lopes, A.; de Amorim, M. P.; Gonçalves, I. Degradation of Mixtures of Phenols Using Boron Doped Diamond Electrodes for Wastewater Treatment. Electrochim. Acta 2004, 49, 1587–1595.
  • Panizza, M.; Michaud, P.; Cerisola, G.; Comninellis, C. Anodic Oxidation of 2-Naphthol at Boron-Doped Diamond Electrodes. Electroanal. Chem. 2001, 507, 206–214.
  • Yaqub, A.; Isa, M.; and S. Kutty, Electrochemical Oxidation of PAHs in Aqueous Solution. In Developments in Sustainable Chemical and Bioprocess Technology; Pogaku R., Bono A., Chu C., Eds., Springer: Boston, 2013.
  • Yaqub, A.; Isa, M. H.; Kutty, S. R. M.; Ajab, H. Electrochemical Degradation of PAHs in Produced Water Using Ti/Sb2O5-SnO2-IrO2 Anode. Electrochemistry 2014, 82, 979–984.
  • Rajasekhar, B.; Nambi, I. M.; Govindarajan, S. K. Investigating the Degradation of nC12 to nC23 Alkanes and PAHs in Petroleum-Contaminated Water by Electrochemical Advanced Oxidation Process Using an Inexpensive Ti/Sb-SnO2/PbO2 Anode. Chem. Eng. J. 2021, 404, 125268.
  • Garcia-Segura, S.; Ocon, J. D.; Chong, M. N. Electrochemical Oxidation Remediation of Real Wastewater Effluents—A Review. Process Saf. Environ. Prot. 2018, 113, 48–67.
  • Moreira, F. C.; Boaventura, R. A.; Brillas, E.; Vilar, V. J. Electrochemical Advanced Oxidation Processes: A Review on Their Application to Synthetic and Real Wastewaters. Appl. Catal. B. 2017, 202, 217–261.
  • Barazesh, J. M.; Prasse, C.; Sedlak, D. L. Electrochemical Transformation of Trace Organic Contaminants in the Presence of Halide and Carbonate Ions. Environ. Sci. Technol. 2016, 50, 10143–10152. DOI: https://doi.org/10.1021/acs.est.6b02232.
  • Mostafa, E.; Reinsberg, P.; Garcia-Segura, S.; Baltruschat, H. Chlorine Species Evolution during Electrochlorination on Boron-Doped Diamond Anodes: In-Situ Electrogeneration of Cl2, Cl2O and ClO2. Electrochim. Acta 2018, 281, 831–840.
  • Xie, W.-H.; Shiu, W.-Y.; Mackay, D. A Review of the Effect of Salts on the Solubility of Organic Compounds in Seawater. Mar. Environ. Res. 1997, 44, 429–444.
  • Endo, S.; Pfennigsdorff, A.; Goss, K.-U. Salting-out Effect in Aqueous NaCl Solutions: Trends with Size and Polarity of Solute Molecules. Environ. Sci. Technol. 2012, 46, 1496–1503. DOI: https://doi.org/10.1021/es203183z.
  • Gao, Z.; Ivaska, A. Electrochemical Behaviour of Dopamine and Ascorbic Acid at Overoxidized Polypyrrole (Dodecyl Sulphate) Film-Coated Electrodes. Anal. Chim. Acta 1993, 284, 393–404.
  • Mailu, S. N.; Waryo, T. T.; Ndangili, P. M.; Ngece, F. R.; Baleg, A. A.; Baker, P. G.; Iwuoha, E. I. Determination of Anthracene on Ag-Au Alloy Nanoparticles/Overoxidized-Polypyrrole Composite Modified Glassy Carbon Electrodes. Sensors (Basel) 2010, 10, 9449–9465. DOI: https://doi.org/10.3390/s101009449.
  • Ballarin, B.; Cassani, M. C.; Scavetta, E.; Tonelli, D. Self-Assembled Gold Nanoparticles Modified ITO Electrodes: The Monolayer Binder Molecule Effect. Electrochim. Acta 2008, 53, 8034–8044.
  • Li, J.; Lin, X.-Q. Electrodeposition of Gold Nanoclusters on Overoxidized Polypyrrole Film Modified Glassy Carbon Electrode and Its Application for the Simultaneous Determination of Epinephrine and Uric Acid under Coexistence of Ascorbic Acid. Anal. Chim. Acta 2007, 596, 222–230. DOI: https://doi.org/10.1016/j.aca.2007.05.057.
  • Tovide, O.; Jahed, N.; Sunday, C. E.; Pokpas, K.; Ajayi, R. F.; Makelane, H. R.; Molapo, K. M.; John, S. V.; Baker, P. G.; Iwuoha, E. I. Electro-Oxidation of Anthracene on Polyanilino-Graphene Composite Electrode. Sens. Actuators B 2014, 205, 184–192.
  • Dhawan, S.; Kumar, D.; Ram, M.; Chandra, S.; Trivedi, D. Application of Conducting Polyaniline as Sensor Material for Ammonia. Sens. Actuators B 1997, 40, 99–103.
  • Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Progress in Preparation, Processing and Applications of Polyaniline. Prog. Polym. Sci. 2009, 34, 783–810.
  • Vallés, C.; Jiménez, P.; Munoz, E.; Benito, A. M.; Maser, W. K. Simultaneous Reduction of Graphene Oxide and Polyaniline: Doping-Assisted Formation of a Solid-State Charge-Transfer Complex. J. Phys. Chem. C 2011, 115, 10468–10474.
  • Wei, M.; Duan, S.; Liu, S.; Zheng, X.; Xia, F.; Zhou, C. Electrochemical Determination of Phenanthrene Based on Anthraquinone Sulfonate and Poly Diallyldimethylammonium Chloride Modified Indium–Tin Oxide Electrode. RSC Adv. 2015, 5, 48811–48815.
  • Liu, S.; Wei, M.; Zheng, X.; Xu, S.; Zhou, C. Highly Sensitive and Selective Sensing Platform Based on π-π interaction between tricyclic aromatic hydrocarbons with thionine-graphene composite. Anal. Chim. Acta 2014, 826, 21–27. DOI: https://doi.org/10.1016/j.aca.2014.04.010.
  • Jiang, S.; Hua, E.; Liang, M.; Liu, B.; Xie, G. A Novel Immunosensor for Detecting toxoplasma gondii-Specific IgM Based on Goldmag Nanoparticles and Graphene Sheets. Colloids Surf B Biointerfaces 2013, 101, 481–486. DOI: https://doi.org/10.1016/j.colsurfb.2012.07.021.
  • Zhu, L.; Luo, L.; Wang, Z. DNA Electrochemical Biosensor Based on Thionine-Graphene Nanocomposite. Biosens. Bioelectron. 2012, 35, 507–511. DOI: https://doi.org/10.1016/j.bios.2012.03.026.
  • Wang, L.-R.; Wang, Y.; Chen, J.-W.; Guo, L.-H. A Structure-Based Investigation on the Binding Interaction of Hydroxylated Polycyclic Aromatic Hydrocarbons with DNA. Toxicology 2009, 262, 250–257. DOI: https://doi.org/10.1016/j.tox.2009.06.015.
  • Zainal, P. N. S.; Ahmad, S. A. A.; Ngee, L. H. Surface Modification of Screen-Printed Carbon Electrode (SPCE) with Calixarene-Functionalized Electrochemically Reduced Graphene Oxide (ERGO/C4) in the Electrochemical Detection of Anthracene. J. Electrochem. Soc. 2019, 166, B110–B116.
  • Gutsche, C. D. Calixarenes: An Introduction; Royal Society of Chemistry: Cambridge, UK, 2008.
  • Leyton, P.; Sanchez-Cortes, S.; Garcia-Ramos, J.; Domingo, C.; Campos-Vallette, M.; Saitz, C.; Clavijo, R. Selective Molecular Recognition of Polycyclic Aromatic Hydrocarbons (PAHs) on Calix [4] Arene-Functionalized Ag Nanoparticles by Surface-Enhanced Raman Scattering. J. Phys. Chem. B 2004, 108, 17484–17490.
  • De Flora, S.; Scarfì, S.; Izzotti, A.; D'Agostini, F.; Chang, C.-C.; Bagnasco, M.; De Flora, A.; Trosko, J. E. Induction by 7, 12-Dimethylbenz (a) Anthracene of Molecular and Biochemical Alterations in Transformed Human Mammary Epithelial Stem Cells, and Protection by N-Acetylcysteine. Int. J. Oncol. 2006, 29, 521–529.
  • Kerdelhué, B.; Forest, C.; Coumoul, X. Dimethyl-Benz(a)anthracene: A mammary carcinogen and a neuroendocrine disruptor . Biochim. Open. 2016, 3, 49–55. DOI: https://doi.org/10.1016/j.biopen.2016.09.003.
  • Brookes, P.; Lawley, P. D. Evidence for the Binding of Polynuclear Aromatic Hydrocarbons to the Nucleic Acids of Mouse Skin: Relation between Carcinogenic Power of Hydrocarbons and Their Binding to Deoxyribonucleic Acid. Nature 1964, 202, 781–784. DOI: https://doi.org/10.1038/202781a0.
  • Fojta, M. Electrochemical Sensors for DNA Interactions and Damage. Electroanalysis: Int. J. Devoted Fundam. Pract. Aspects Electroanalysis 2002, 14, 1449–1463.
  • Fojta, M.; Havran, L.; Fulnečková, J.; Kubičárová, T. Adsorptive Transfer Stripping AC Voltammetry of DNA Complexes with Intercalators. Electroanalysis: Int. J. Devoted Fundam. Pract. Aspects Electroanalysis 2000, 12, 926–934.
  • Klajnert, B.; Bryszewska, M. Dendrimers: Properties and Applications. Acta Biochim. Polonica 2001, 48, 199–208.
  • Makelane, H.; Waryo, T.; Feleni, U.; Iwuoha, E. Dendritic Copolymer Electrode for Second Harmonic Alternating Current Voltammetric Signalling of Pyrene in Oil-Polluted Wastewater. Talanta 2019, 196, 204–210. DOI: https://doi.org/10.1016/j.talanta.2018.12.038.
  • Makelane, H. R.; John, S. V.; Waryo, T. T.; Baleg, A.; Mayedwa, N.; Rassie, C.; Wilson, L.; Baker, P.; Iwuoha, E. I. AC Voltammetric Transductions and Sensor Application of a Novel Dendritic Poly (Propylene Thiophenoimine)-co-Poly (3-Hexylthiophene) Star co-Polymer. Sens. Actuators B. 2016, 227, 320–327.
  • Ehli, C.; Rahman, G. M. A.; Jux, N.; Balbinot, D.; Guldi, D. M.; Paolucci, F.; Marcaccio, M.; Paolucci, D.; Melle-Franco, M.; Zerbetto, F.; et al. Interactions in Single Wall Carbon Nanotubes/Pyrene/Porphyrin Nanohybrids. J. Am. Chem. Soc. 2006, 128, 11222–11231., DOI: https://doi.org/10.1021/ja0624974.
  • Boikanyo, D.; Adekunle, A. S.; Ebenso, E. E. Electrochemical Study of Pyrene on Glassy Carbon Electrode Modified with Metal-Oxide Nanoparticles and Graphene Oxide/Multi-Walled Carbon Nanotubes Nanoplatform. J. Nano Res. 2016, 44, 158–195.
  • Munawar, H.; Mankar, J. S.; Sharma, M. D.; Garcia-Cruz, A.; Fernandes, L. A. L.; Peacock, M.; Krupadam, R. J. Highly Selective Electrochemical Nanofilm Sensor for Detection of Carcinogenic PAHs in Environmental Samples. Talanta 2020, 219, 121273.
  • Ghadimi, H.; Tehrani, R. M.; Basirun, W. J.; Ab Aziz, N. J.; Mohamed, N.; Ab Ghani, S. Electrochemical Determination of Aspirin and Caffeine at MWCNTs-Poly-4-Vinylpyridine Composite Modified Electrode. J. Taiwan Inst. Chem. Eng. 2016, 65, 101–109.
  • Ghadimi, H.; Tehrani, R. M.; Ali, A. S. M.; Mohamed, N.; Ab Ghani, S. Sensitive Voltammetric Determination of Paracetamol by Poly (4-Vinylpyridine)/Multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode. Anal. Chim. Acta 2013, 765, 70–76. DOI: https://doi.org/10.1016/j.aca.2012.12.039.
  • Ling, J. L. W.; Ab Ghani, S. Poly (4-Vinylpyridine-co-Aniline)-Modified Electrode—Synthesis, Characterization, and Application as Cadmium (II) Ion Sensor. J. Solid State Electrochem. 2013, 17, 681–690.
  • Padros, J.; Pelletier, E. In Vivo Formation of (+)-anti-Benzo [a] Pyrene Diol-Epoxide–Plasma Albumin Adducts in Fish. Mar. Environ. Res. 2000, 50, 347–351.
  • Ni, Y.; Wang, P.; Song, H.; Lin, X.; Kokot, S. Electrochemical Detection of benzo(a)pyrene and related DNA damage using DNA/hemin/nafion-graphene biosensor . Anal. Chim. Acta. 2014, 821, 34–40. DOI: https://doi.org/10.1016/j.aca.2014.03.006.
  • Lin, M.; Liu, Y.; Sun, Z.; Zhang, S.; Yang, Z.; Ni, C. Electrochemical Immunoassay of benzo[a]pyrene based on dual amplification strategy of electron-accelerated Fe3O4/polyaniline platform and multi-enzyme-functionalized carbon sphere label . Anal. Chim. Acta. 2012, 722, 100–106. DOI: https://doi.org/10.1016/j.aca.2012.01.059.
  • Barasch, D.; Zipori, O.; Ringel, I.; Ginsburg, I.; Samuni, A.; Katzhendler, J. Novel Anthraquinone Derivatives with Redox-Active Functional Groups Capable of Producing Free Radicals by Metabolism: Are Free Radicals Essential for Cytotoxicity? Eur. J. Med. Chem. 1999, 34, 597–615.
  • Zheng, X.; Tian, D.; Duan, S.; Wei, M.; Liu, S.; Zhou, C.; Li, Q.; Wu, G. Polypyrrole Composite Film for Highly Sensitive and Selective Electrochemical Determination Sensors. Electrochim. Acta 2014, 130, 187–193.
  • Alexandrov, K.; Rojas, M.; Satarug, S. The Critical DNA Damage by benzo(a)pyrene in lung tissues of smokers and approaches to preventing its formation. Toxicol. Lett. 2010, 198, 63–68. DOI: https://doi.org/10.1016/j.toxlet.2010.04.009.
  • Ramos, K. S.; Moorthy, B. Bioactivation of Polycyclic Aromatic Hydrocarbon Carcinogens within the Vascular Wall: Implications for Human Atherogenesis. Drug Metab. Rev. 2005, 37, 595–610. DOI: https://doi.org/10.1080/03602530500251253.
  • Rybicki, B. A.; Nock, N. L.; Savera, A. T.; Tang, D.; Rundle, A. Polycyclic Aromatic hydrocarbon-DNA Adduct Formation in Prostate Carcinogenesis. Cancer Lett. 2006, 239, 157–167. DOI: https://doi.org/10.1016/j.canlet.2005.07.029.
  • Berge, G.; Mollerup, S.; Øvrebø, S.; Hewer, A.; Phillips, D. H.; Eilertsen, E.; Haugen, A. Role of Estrogen Receptor in Regulation of Polycyclic Aromatic Hydrocarbon Metabolic Activation in Lung. Lung Cancer 2004, 45, 289–297. DOI: https://doi.org/10.1016/j.lungcan.2004.02.014.
  • Käfferlein, H. U.; Marczynski, B.; Mensing, T.; Brüning, T. Albumin and Hemoglobin Adducts of Benzo[a]pyrene in Humans-Analytical Methods, Exposure Assessment, and Recommendations for Future Directions. Crit. Rev. Toxicol. 2010, 40, 126–150. DOI: https://doi.org/10.3109/10408440903283633.
  • Kwack, S. J.; Lee, B. M. Correlation between DNA or Protein Adducts and Benzo[a]pyrene Diol Epoxide I-Triglyceride Adduct Detected in Vitro and in Vivo. Carcinogenesis 2000, 21, 629–632. DOI: https://doi.org/10.1093/carcin/21.4.629.
  • Jacob, J.; Seidel, A. Biomonitoring of Polycyclic Aromatic Hydrocarbons in Human Urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 778, 31–47.
  • Shen, X.; Cui, Y.; Pang, Y.; Qian, H. Graphene Oxide Nanoribbon and Polyhedral Oligomeric Silsesquioxane Assembled Composite Frameworks for Pre-Concentrating and Electrochemical Sensing of 1-Hydroxypyrene. Electrochim. Acta 2012, 59, 91–99.
  • Yang, D.-H.; Lee, C.-S.; Jeon, B.-H.; Choi, S. M.; Kim, Y.-D.; Shin, J. S.; Kim, H. An Electrochemical Nanofilm Sensor for Determination of 1-Hydroxypyrene Using Molecularly Imprinted Receptors. J. Ind. Eng. Chem. 2017, 51, 106–112.
  • Li, Y.; Li, Y.; Wang, Y.; Ma, G.; Liu, X.; Li, Y.; Soar, J. Application of Zeolitic Imidazolate Frameworks (ZIF-8)/Ionic Liquid Composites Modified Nano-Carbon Paste Electrode as Sensor for Electroanalytical Sensing of 1-Hydroxypyrene. Microchem. J. 2020, 159, 105433.
  • Ma, Q.; Zong, J.; Cheng, Y.; Alfredo, A. L.; Jia, Y.; Chen, G.; Sun, C. Modeling Study on Absorption-Adsorption of Gas in ZIF-8/Absorbent Slurry System. Fluid Phase Equilib. 2020, 506, 112396.
  • Boudjema, L.; Long, J.; Petitjean, H.; Larionova, J.; Guari, Y.; Trens, P.; Salles, F. Adsorption of Volatile Organic Compounds by ZIF-8, Cu-BTC and a Prussian Blue Analogue: A Comparative Study. Inorg. Chim. Acta 2020, 501, 119316.
  • Pang, Y.; Huang, Y.; Li, W.; Feng, L.; Shen, X. Conjugated Polyelectrolyte/Graphene Multilayer Films for Simultaneous Electrochemical Sensing of Three Monohydroxylated Polycyclic Aromatic Hydrocarbons. ACS Appl. Nano Mater. 2019, 2, 7785–7794.
  • Tan, Y.; Chen, L.; Wu, F.; Huang, B.; Liao, Z.; Yu, Z.; Hu, L.; Zhou, Y.; Chen, Y. Regulation of the Polar Groups in n-Type Conjugated Polyelectrolytes as Electron Transfer Layer for Inverted Polymer Solar Cells. Macromolecules 2018, 51, 8197–8204.
  • Yardim, Y.; Keskin, E.; Levent, A.; Ozsöz, M.; Sentürk, Z. Voltammetric Studies on the Potent Carcinogen, 7,12-Dimethylbenz[a]anthracene: Adsorptive Stripping Voltammetric Determination in Bulk Aqueous Forms and Human Urine Samples and Detection of DNA Interaction on Pencil Graphite Electrode. Talanta 2010, 80, 1347–1355. DOI: https://doi.org/10.1016/j.talanta.2009.09.035.
  • Monzó, J.; Insua, I.; Fernandez-Trillo, F.; Rodriguez, P. Fundamentals, Achievements and Challenges in the Electrochemical Sensing of Pathogens. Analyst 2015, 140, 7116–7128. DOI: https://doi.org/10.1039/c5an01330e.
  • Mishra, G. K.; Barfidokht, A.; Tehrani, F.; Mishra, R. K. Food Safety Analysis Using Electrochemical Biosensors. Foods 2018, 7, 141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.