562
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Molecularly Imprinted Solid Phase Extraction Aiding the Analysis of Disease Biomarkers

, ORCID Icon, , &
Pages 933-948 | Published online: 09 Nov 2020

References

  • World Health Organization. Biomarkers in Risk Assessment: Validity and Validation. World Health Organization & International Programme on Chemical Safety: Geneva, 2001, p 238.
  • Handbook of Molecularly Imprinted Polymers. Alvarez-Lorenzo, C., Concheiro, A., Eds.; Smithers Rapra: Shawbury, UK, 2013.
  • Lin, Z. T.; Demarr, V.; Bao, J.; Wu, T. Molecularly Imprinted Polymer-Based Biosensors: For the Early, Rapid Detection of Pathogens, Biomarkers, and Toxins in Clinical, Environmental, or Food Samples. IEEE Nanotechnol. Mag. 2018, 12, 6–13. DOI: 10.1109/MNANO.2017.2779718.
  • Selvolini, G.; Marrazza, G. MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination. Sensors 2017, 17, 718. DOI: 10.3390/s17040718.
  • Frasco, M.; Truta, L.; Sales, M.; Moreira, F. Imprinting Technology in Electrochemical Biomimetic Sensors. Sensors 2017, 17, 523. DOI: 10.3390/s17030523.
  • Turiel, E.; Martín-Esteban, A. Molecularly Imprinted Polymers for Sample Preparation: A Review. Anal. Chim. Acta. 2010, 668, 87–99. DOI: 10.1016/j.aca.2010.04.019.
  • Tamayo, F. G.; Turiel, E.; Martín-Esteban, A. Molecularly Imprinted Polymers for Solid-Phase Extraction and Solid-Phase Microextraction: Recent Developments and Future Trends. J. Chromatogr. A. 2007, 1152, 32–40. DOI: 10.1016/j.chroma.2006.08.095.
  • Gama, M. R.; Bottoli, C. B. G. Molecularly Imprinted Polymers for Bioanalytical Sample Preparation. J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci. 2017, 1043, 107–121. DOI: 10.1016/j.jchromb.2016.09.045.
  • Cruz-Vera, M.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Highly Selective and Non-Conventional Sorbents for the Determination of Biomarkers in Urine by Liquid Chromatography. Anal. Bioanal. Chem. 2010, 397, 1029–1038. DOI: 10.1007/s00216-010-3476-3.
  • Huang, S.; Chen, G.; Ye, N.; Kou, X.; Zhu, F.; Shen, J.; Ouyang, G. Solid-Phase Microextraction: An Appealing Alternative for the Determination of Endogenous Substances - A Review. Anal. Chim. Acta. 2019, 1077, 67–86. DOI: 10.1016/j.aca.2019.05.054.
  • Kataoka, H.; Saito, K. Recent Advances in SPME Techniques in Biomedical Analysis. J. Pharm. Biomed. Anal. 2011, 54, 926–950. DOI: 10.1016/j.jpba.2010.12.010.
  • Pereira, J.; Silva, C. L.; Perestrelo, R.; Gonçalves, J.; Alves, V.; Câmara, J. S. Re-Exploring the High-Throughput Potential of Microextraction Techniques, SPME and MEPS, as Powerful Strategies for Medical Diagnostic Purposes. Innovative Approaches, Recent Applications and Future Trends. Anal. Bioanal. Chem. 2014, 406, 2101–2122. DOI: 10.1007/s00216-013-7527-4.
  • Hu, Y.; Pan, J.; Zhang, K.; Lian, H.; Li, G. Novel Applications of Molecularly-Imprinted Polymers in Sample Preparation. TrAC - Trends Anal. Chem. 2013, 43, 37–52. DOI: 10.1016/j.trac.2012.08.014.
  • Behbahani, M.; Hassanlou, P. G.; Amini, M. M.; Moazami, H. R.; Abandansari, H. S.; Bagheri, A.; Zadeh, S. H. Selective Solid-Phase Extraction and Trace Monitoring of Lead Ions in Food and Water Samples Using New Lead-Imprinted Polymer Nanoparticles. Food Anal. Methods 2015, 8, 558–568. DOI: 10.1007/s12161-014-9924-5.
  • Pardeshi, S.; Singh, S. K. Precipitation Polymerization: A Versatile Tool for Preparing Molecularly Imprinted Polymer Beads for Chromatography Applications. RSC Adv. 2016, 6, 23525–23536. DOI: 10.1039/C6RA02784A.
  • Wackerlig, J.; Lieberzeit, P. A. Molecularly Imprinted Polymer Nanoparticles in Chemical Sensing – Synthesis, Characterisation and Application. Sensors Actuators B. Chem. 2015, 207, 144–157. DOI: 10.1016/j.snb.2014.09.094.
  • Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular Imprinting: Perspectives and Applications. Chem. Soc. Rev. 2016, 45, 2137–2211. DOI: 10.1039/C6CS00061D.
  • Fan, W.; He, M.; You, L.; Zhu, X.; Chen, B.; Hu, B. Water-Compatible Graphene Oxide/Molecularly Imprinted Polymer Coated Stir Bar Sorptive Extraction of Propranolol from Urine Samples Followed by High Performance Liquid Chromatography-Ultraviolet Detection. J. Chromatogr. A. 2016, 1443, 1–9. DOI: 10.1016/j.chroma.2016.03.017.
  • Zhou, T.; Ding, L.; Che, G.; Jiang, W.; Sang, L. Recent Advances and Trends of Molecularly Imprinted Polymers for Specific Recognition in Aqueous Matrix: Preparation and Application in Sample Pretreatment. TrAC Trends Anal. Chem. 2019, 114, 11–28. DOI: 10.1016/j.trac.2019.02.028.
  • Dabrowski, M.; Lach, P.; Cieplak, M.; Kutner, W. Nanostructured Molecularly Imprinted Polymers for Protein Chemosensing. Biosens. Bioelectron. 2018, 102, 17–26. DOI: 10.1016/j.bios.2017.10.045.
  • Ansari, S.; Masoum, S. Molecularly Imprinted Polymers for Capturing and Sensing Proteins: Current Progress and Future Implications. TrAC - Trends Anal. Chem. 2019, 114, 29–47. DOI: 10.1016/j.trac.2019.02.008.
  • Xiao, D.; Jiang, Y.; Bi, Y. Molecularly Imprinted Polymers for the Detection of Illegal Drugs and Additives: A Review. Microchim. Acta 2018, 185, 247. DOI: 10.1007/s00604-018-2735-4.
  • Bossi, A. M.; Sharma, P. S.; Montana, L.; Zoccatelli, G.; Laub, O.; Levi, R. Fingerprint-Imprinted Polymer: Rational Selection of Peptide Epitope Templates for the Determination of Proteins by Molecularly Imprinted Polymers. Anal. Chem. 2012, 84, 4036–4041. DOI: 10.1021/ac203422r.
  • Baydemir, G.; Denizli, A. Heparin Removal from Human Plasma Using Molecular Imprinted Cryogels. Artif. Cells. Nanomed. Biotechnol. 2015, 43, 403–412. DOI: 10.3109/21691401.2014.897631.
  • Wang, J.; Wang, Q.-M.; Tian, L.-L.; Yang, C.; Yu, S.-H.; Yang, C. Research Progress of the Molecularly Imprinted Cryogel. Chinese J. Anal. Chem. 2015, 43, 1777–1784. DOI: 10.1016/S1872-2040(15)60878-7.
  • Topçu, A. A.; Bereli, N.; Albayrak, İ.; Denizli, A. Creatinine Imprinted Poly(Hydroxyethyl Methacrylate) Based Cryogel Cartridges. J. Macromol. Sci. Part A Pure Appl. Chem. 2017, 54, 495–501. DOI: 10.1080/10601325.2017.1320756.
  • Dias, A. C. B.; Figueiredo, E. C.; Grassi, V.; Zagatto, E. A. G.; Arruda, M. A. Z. Molecularly Imprinted Polymer as a Solid Phase Extractor in Flow Analysis. Talanta 2008, 76, 988–996. DOI: 10.1016/j.talanta.2008.05.040.
  • Iacob, B.-C.; Bodoki, A. E.; Oprean, L.; Bodoki, E. Metal–Ligand Interactions in Molecular Imprinting. In Ligand; InTech: London, UK, 2018. DOI: 10.5772/intechopen.73407.
  • Tiwari, A.; Uzun, L.; Advanced Molecularly Imprinting Materials; Tiwari, A. Uzun, L., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2016. DOI: 10.1002/9781119336181.
  • Liu, Z.; He, H. Synthesis and Applications of Boronate Affinity Materials: From Class Selectivity to Biomimetic Specificity. Acc. Chem. Res. 2017, 50, 2185–2193. DOI: 10.1021/acs.accounts.7b00179.
  • Bie, Z.; Chen, Y.; Ye, J.; Wang, S.; Liu, Z. Boronate-Affinity Glycan-Oriented Surface Imprinting: A New Strategy to Mimic Lectins for the Recognition of an Intact Glycoprotein and Its Characteristic Fragments. Angew. Chem. Int. Ed. Engl. 2015, 54, 10211–10215. DOI: 10.1002/anie.201503066.
  • Wang, S.; Ye, J.; Bie, Z.; Liu, Z. Affinity-Tunable Specific Recognition of Glycoproteins via Boronate Affinity-Based Controllable Oriented Surface Imprinting. Chem. Sci. 2014, 5, 1135–1140. DOI: 10.1039/c3sc52986j.
  • Xing, R.; Wang, S.; Bie, Z.; He, H.; Liu, Z. Preparation of Molecularly Imprinted Polymers Specific to Glycoproteins, Glycans and Monosaccharides via Boronate Affinity Controllable-Oriented Surface Imprinting. Nat. Protoc. 2017, 12, 964–987. DOI: 10.1038/nprot.2017.015.
  • Huang, J.; Wu, Y.; Cong, J.; Luo, J.; Liu, X. Selective and Sensitive Glycoprotein Detection via a Biomimetic Electrochemical Sensor Based on Surface Molecular Imprinting and Boronate-Modified Reduced Graphene Oxide. Sensors Actuators B. Chem. 2018, 259, 1–9. DOI: 10.1016/j.snb.2017.12.049.
  • de Faria, H. D.; Abrão, L. C.; de, C.; Santos, M. G.; Barbosa, A. F.; Figueiredo, E. C. New Advances in Restricted Access Materials for Sample Preparation: A Review. Anal. Chim. Acta. 2017, 959, 43–65. DOI: 10.1016/j.aca.2016.12.047.
  • Moraes, G.; de, O. I.; Silva, L. M. R.; da, Santos-Neto, Á. J.; dos, Florenzano, F. H.; Figueiredo, E. C.; de . A New Restricted Access Molecularly Imprinted Polymer Capped with Albumin for Direct Extraction of Drugs from Biological Matrices: The Case of Chlorpromazine in Human Plasma. Anal. Bioanal. Chem. 2013, 405, 7687–7696. DOI: 10.1007/s00216-013-7275-5.
  • Nazario, C. E. D.; Fumes, B. H.; da Silva, M. R.; Lanças, F. M. New Materials for Sample Preparation Techniques in Bioanalysis. J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci. 2017, 1043, 81–95. DOI: 10.1016/j.jchromb.2016.10.041.
  • Urraca, J. L.; Aureliano, C. S. A.; Schillinger, E.; Esselmann, H.; Wiltfang, J.; Sellergren, B. Polymeric Complements to the Alzheimer's disease biomarker β-amyloid isoforms Aβ1-40 and Aβ1-42 for blood serum analysis under denaturing conditions. J. Am. Chem. Soc. 2011, 133, 9220–9223. DOI: 10.1021/ja202908z.
  • Bousoumah, R.; Antignac, J. P.; Camel, V.; Grimaldi, M.; Balaguer, P.; Courant, F.; Bichon, E.; Morvan, M. L.; Le Bizec, B. Development of a Molecular Recognition Based Approach for Multi-Residue Extraction of Estrogenic Endocrine Disruptors from Biological Fluids Coupled to Liquid Chromatography-Tandem Mass Spectrometry Measurement. Anal. Bioanal. Chem. 2015, 407, 8713–8723. DOI: 10.1007/s00216-015-9024-4.
  • Li, D.; Yuan, Q.; Yang, W.; Yang, M.; Li, S.; Tu, T. Efficient Vitamin B12-Imprinted Boronate Affinity Magnetic Nanoparticles for the Specific Capture of Vitamin B12. Anal. Biochem. 2018, 561–562, 18–26. DOI: 10.1016/j.ab.2018.09.009.
  • Becerra, C. G.; Baez, F.; Lucangioli, S.; Flor, S.; Tripodi, V. Miniaturized Imprinted Solid Phase Extraction to the Selective Analysis of Coenzyme Q10 in Urine. J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci. 2019, 1116, 24–29. DOI: 10.1016/j.jchromb.2019.03.029.
  • Lei, Y.; Xu, G.; Wei, F.; Yang, J.; Hu, Q. Preparation of a Stir Bar Coated with Molecularly Imprinted Polymer and Its Application in Analysis of Dopamine in Urine. J. Pharm. Biomed. Anal. 2014, 94, 118–124. DOI: 10.1016/j.jpba.2014.01.041.
  • de Oliveira, H. L.; Pires, B. C.; Teixeira, L. S.; Dinali, L. A. F.; Simões, N. S.; Borges, W.; de, S.; Borges, K. B. Novel Restricted Access Material Combined to Molecularly Imprinted Polymer for Selective Magnetic Solid-Phase Extraction of Estrogens from Human Urine. Microchem. J. 2019, 149, 104043. DOI: 10.1016/j.microc.2019.104043.
  • Bie, Z.; Xing, R.; He, X.; Ma, Y.; Chen, Y.; Liu, Z. Precision Imprinting of Glycopeptides for Facile Preparation of Glycan-Specific Artificial Antibodies. Anal. Chem. 2018, 90, 9845–9852. DOI: 10.1021/acs.analchem.8b01903.
  • Bagán, H.; Zhou, T.; Eriksson, N. L.; Bülow, L.; Ye, L. and Characterization of Epitope-Imprinted Polymers for Purification of Human Hemoglobin. RSC Adv. 2017, 7, 41705–41712. DOI: 10.1039/C7RA07674F.
  • Cenci, L.; Piotto, C.; Bettotti, P.; Bossi, A. M. Study on Molecularly Imprinted Nanoparticle Modified Microplates for Pseudo-ELISA Assays. Talanta 2018, 178, 772–779. DOI: 10.1016/j.talanta.2017.10.018.
  • Li, S.; Yang, K.; Liu, J.; Jiang, B.; Zhang, L.; Zhang, Y. Surface-Imprinted Nanoparticles Prepared with a His-Tag-Anchored Epitope as the Template. Anal. Chem. 2015, 87, 4617–4620. DOI: 10.1021/ac5047246.
  • Madhumanchi, S.; Jadda, R.; Suedee, R. Efficient Adsorptive Extraction Materials by Surface Protein-Imprinted Polymer over Silica Gel for Selective Recognition/Separation of Human Serum Albumin from Urine. J. Appl. Polym. Sci. 2019, 136, 46894. DOI: 10.1002/app.46894.
  • Liu, L.; Zhong, T.; Xu, Q.; Chen, Y. Efficient Molecular Imprinting Strategy for Quantitative Targeted Proteomics of Human Transferrin Receptor in Depleted Human Serum. Anal. Chem. 2015, 87, 10910–10919. DOI: 10.1021/acs.analchem.5b02633.
  • Bertolla, M.; Cenci, L.; Anesi, A.; Ambrosi, E.; Tagliaro, F.; Vanzetti, L.; Guella, G.; Bossi, A. M. Solvent-Responsive Molecularly Imprinted Nanogels for Targeted Protein Analysis in MALDI-TOF Mass Spectrometry. ACS Appl. Mater. Interfaces 2017, 9, 6908–6915. DOI: 10.1021/acsami.6b16291.
  • Xu, J.; Ambrosini, S.; Tamahkar, E.; Rossi, C.; Haupt, K.; Tse Sum Bui, B. Toward a Universal Method for Preparing Molecularly Imprinted Polymer Nanoparticles with Antibody-like Affinity for Proteins. Biomacromolecules 2016, 17, 345–353. DOI: 10.1021/acs.biomac.5b01454.
  • Mergola, L.; Orabona, C.; Albini, E.; Vasapollo, G.; Scorrano, S.; Del Sole, R. Urinary L-Kynurenine Quantification and Selective Extraction through a Molecularly Imprinted Solid-Phase Extraction Device. J. Sep. Sci. 2018, 41, 3204–3212. DOI: 10.1002/jssc.201800458.
  • Ertürk, G.; Bereli, N.; Ramteke, P. W.; Denizli, A. Molecularly Imprinted Supermacroporous Cryogels for Myoglobin Recognition. Appl. Biochem. Biotechnol. 2014, 173, 1250–1262. DOI: 10.1007/s12010-014-0844-z.
  • Dolak, İ.; Keçili, R.; Onat, R.; Ziyadanoğulları, B.; Ersöz, A.; Say, R. Molecularly Imprinted Affinity Cryogels for the Selective Recognition of Myoglobin in Blood Serum. J. Mol. Struct. 2018, 1174, 171–176. DOI: 10.1016/j.molstruc.2018.03.126.
  • Wen, L.; Tan, X.; Sun, Q.; Svec, F.; Lv, Y. “Smart” molecularly imprinted monoliths for the selective capture and easy release of proteins. J. Sep. Sci. 2016, 39, 3267–3273. DOI: 10.1002/jssc.201600576.
  • Qader, A. A.; Urraca, J.; Torsetnes, S. B.; Tønnesen, F.; Reubsaet, L.; Sellergren, B. Peptide Imprinted Receptors for the Determination of the Small Cell Lung Cancer Associated Biomarker Progastrin Releasing Peptide. J. Chromatogr. A. 2014, 1370, 56–62. DOI: 10.1016/j.chroma.2014.10.023.
  • Demirci, B.; Bereli, N.; Aslıyüce, S.; Baydemir, G.; Denizli, A. Protein C Recognition by Ion-Coordinated Imprinted Monolithic Cryogels. J. Sep. Sci. 2017, 40, 1610–1620. DOI: 10.1002/jssc.201600992.
  • Xu, L.; Hu, Y.; Shen, F.; Li, Q.; Ren, X. Specific Recognition of Tyrosine-Phosphorylated Peptides by Epitope Imprinting of Phenylphosphonic Acid. J. Chromatogr. A. 2013, 1293, 85–91. DOI: 10.1016/j.chroma.2013.04.013.
  • Li, D.; Bie, Z.; Wang, F.; Guo, E. Efficient Synthesis of Riboflavin-Imprinted Magnetic Nanoparticles by Boronate Affinity-Based Surface Imprinting for the Selective Recognition of Riboflavin. Analyst 2018, 143, 4936–4943. DOI: 10.1039/c8an01044g.
  • Xu, J.; Haupt, K.; Tse Sum Bui, B. Core-Shell Molecularly Imprinted Polymer Nanoparticles as Synthetic Antibodies in a Sandwich Fluoroimmunoassay for Trypsin Determination in Human Serum. ACS Appl. Mater. Interfaces 2017, 9, 24476–24483. DOI: 10.1021/acsami.7b05844.
  • Turan, E. His‐Tag‐Epitope Imprinted Thermoresponsive Magnetic Nanoparticles for Recognition and Separation Thyroid Peroxidase Antigens from Whole Blood Samples. ChemSelect 2018, 3, 11963–11969. DOI: 10.1002/slct.201801557.
  • Chianella, I.; Guerreiro, A.; Moczko, E.; Caygill, J. S.; Piletska, E. V.; De Vargas Sansalvador, I. M. P.; Whitcombe, M. J.; Piletsky, S. A. Direct Replacement of Antibodies with Molecularly Imprinted Polymer Nanoparticles in ELISA-development of a novel assay for vancomycin. Anal. Chem. 2013, 85, 8462–8468. DOI: 10.1021/ac402102j.
  • Tang, J.; Wang, J.; Shi, S.; Hu, S.; Yuan, L. Determination of β-Agonist Residues in Animal-Derived Food by a Liquid Chromatography-Tandem Mass Spectrometric Method Combined with Molecularly Imprinted Stir Bar Sorptive Extraction. J. Anal. Methods Chem. 2018, 2018, 9053561–9053510. DOI: 10.1155/2018/9053561.
  • Luo, X.; Li, G.; Hu, Y. In-Tube Solid-Phase Microextraction Based on NH2-MIL-53(Al)-polymer monolithic column for online coupling with high-performance liquid chromatography for directly sensitive analysis of estrogens in human urine. Talanta 2017, 165, 377–383. DOI: 10.1016/j.talanta.2016.12.050.
  • Costa Queiroz, M. E.; Donizeti de Souza, I.; Marchioni, C. Current Advances and Applications of in-Tube Solid-Phase Microextraction. TrAC - Trends Anal. Chem. 2019, 111, 261–278. DOI: 10.1016/j.trac.2018.12.018.
  • Lequin, R. M. Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA). Clin. Chem. 2005, 51, 2415–2418. DOI: 10.1373/clinchem.2005.051532.
  • Moczko, E.; Richard, D.; Bernabé, R.; Camilo, G.; Eduardo, P.; Sergey, P.; César, C. Molecularly Imprinted Nanoparticles Assay (MINA) in Pseudo ELISA: An Alternative to Detect and Quantify Octopamine InWater and Human Urine Samples. Polymers (Basel) 2019, 11, 1497–1413. DOI: 10.3390/polym11091497.
  • Bi, X.; Liu, Z. Facile Preparation of Glycoprotein-Imprinted 96-Well Microplates for Enzyme-Linked Immunosorbent Assay by Boronate Affinity-Based Oriented Surface Imprinting. Anal. Chem. 2014, 86, 959–966. DOI: 10.1021/ac403736y.
  • Cáceres, C.; Canfarotta, F.; Chianella, I.; Pereira, E.; Moczko, E.; Esen, C.; Guerreiro, A.; Piletska, E.; Whitcombe, M. J.; Piletsky, S. A. Does Size Matter? Study of Performance of Pseudo-ELISAs Based on Molecularly Imprinted Polymer Nanoparticles Prepared for Analytes of Different Sizes. Analyst 2016, 141, 1405–1412. DOI: 10.1039/c5an02018b.
  • Shi, W.; Zhang, S. Q.; Li, K.; Bin; Jia, W. P.; Han, D. M. Integration of Mixed-Mode Chromatography and Molecular Imprinting Technology for Double Recognition and Selective Separation of Proteins. Sep. Purif. Technol. 2018, 202, 165–173. DOI: 10.1016/j.seppur.2018.03.057.
  • Yang, C.; Liu, Y.-R.; Zhang, Y.; Wang, J.; Tian, L.-L.; Yan, Y.-N.; Cao, W.-Q.; Wang, Y.-Y. Depletion of Abundant Human Serum Proteins by per Se Imprinted Cryogels Based on Sample Heterogeneity. Proteomics 2017, 17, 1600284. DOI: 10.1002/pmic.201600284.
  • Santos, M. G.; Tavares, I. M. C.; Barbosa, A. F.; Bettini, J.; Figueiredo, E. C. Analysis of Tricyclic Antidepressants in Human Plasma Using Online-Restricted Access Molecularly Imprinted Solid Phase Extraction Followed by Direct Mass Spectrometry Identification/Quantification. Talanta 2017, 163, 8–16. DOI: 10.1016/j.talanta.2016.10.047.
  • Jagadeesan, K. K.; Rossetti, C.; Abdel Qader, A.; Reubsaet, L.; Sellergren, B.; Laurell, T.; Ekström, S. Filter Plate-Based Screening of MIP SPE Materials for Capture of the Biomarker Pro-Gastrin-Releasing Peptide. SLAS Discov. 2017, 22, 1253–1261. DOI: 10.1177/2472555216689494.
  • Aebersold, R.; Mann, M. Mass-Spectrometric Exploration of Proteome Structure and Function. Nature 2016, 537, 347–355. DOI: 10.1038/nature19949.
  • Zhao, Y. Sequence-Selective Recognition of Peptides in Aqueous Solution: A Supramolecular Approach through Micellar Imprinting. Chemistry 2018, 24, 14001–14009. DOI: 10.1002/chem.201801401.
  • Awino, J. K.; Zhao, Y. Imprinted Micelles for Chiral Recognition in Water: Shape, Depth, and Number of Recognition Sites. Org. Biomol. Chem. 2017, 15, 4851–4858. DOI: 10.1039/c7ob00764g.
  • Abrão, L. C. C.; Figueiredo, E. C. A New Restricted Access Molecularly Imprinted Fiber for Direct Solid Phase Microextraction of Benzodiazepines from Plasma Samples. Analyst 2019, 144, 4320–4330. DOI: 10.1039/C9AN00444K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.