511
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Characteristics, Properties and Analytical/Bioanalytical Methods of 5-Aminosalicylic Acid: A Review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1000-1014 | Published online: 01 Dec 2020

References

  • Moura, R. M.; Hartmann, R. M.; Licks, F.; Schemitt, E. G.; Colares, J. R.; do Couto Soares, M.; Fillmann, L. S.; Fillmann, H. S.; Marroni, N. P. Antioxidant Effect of Mesalazine in the Experimental Colitis Model Induced by Acetic Acid. J. Coloproctol. 2016, 36, 139–148. DOI: 10.1016/j.jcol.2016.03.003.
  • Franzosa, E. A.; Sirota-Madi, A.; Avila-Pacheco, J.; Fornelos, N.; Haiser, H. J.; Reinker, S.; Vatanen, T.; Hall, A. B.; Mallick, H.; McIver, L. J.; et al. Gut Microbiome Structure and Metabolic Activity in Inflammatory Bowel Disease. Nat. Microbiol. 2019, 4, 293–305. DOI: 10.1038/s41564-018-0306-4.
  • Collnot, E.-M.; Ali, H.; Lehr, C.-M. Nano- and Microparticulate Drug Carriers for Targeting of the Inflamed Intestinal Mucosa. J. Control Release 2012, 161, 235–246. DOI: 10.1016/j.jconrel.2012.01.028.
  • Younis, N.; Zarif, R.; Mahfouz, R. Inflammatory Bowel Disease: Between Genetics and Microbiota. Mol. Biol. Rep. 2020, 47, 3053–3063. DOI: 10.1007/s11033-020-05318-5.
  • Popova, M.; Trendafilova, I.; Zgureva, D.; Kalvachev, Y.; Boycheva, S.; Novak Tušar, N.; Szegedi, A. Polymer-Coated Mesoporous Silica Nanoparticles for Controlled Release of the Prodrug Sulfasalazine. J. Drug Deliv. Sci. Technol. 2018, 44, 415–420. DOI:10.1016/j.jddst.2018.01.020.
  • Shahdadi Sardo, H.; Saremnejad, F.; Bagheri, S.; Akhgari, A.; Afrasiabi Garekani, H.; Sadeghi, F. A Review on 5-Aminosalicylic Acid Colon-Targeted Oral Drug Delivery Systems. Int. J. Pharm. 2019, 558, 367–379. DOI: 10.1016/j.ijpharm.2019.01.022.
  • Nakagawa, S.; Okaniwa, N.; Mizuno, M.; Sugiyama, T.; Yamaguchi, Y.; Tamura, Y.; Izawa, S.; Hijikata, Y.; Ebi, M.; Ogasawara, N.; et al. Treatment Adherence in Patients with Ulcerative Colitis Is Dependent on the Formulation of 5-Aminosalicylic Acid. Digestion 2019, 99, 133–139. DOI: 10.1159/000489878.
  • Gisbert, J. P.; Gomollón, F.; Maté, J.; Pajares, J. M. Role of 5-Aminosalicylic Acid (5-ASA) in Treatment of Inflammatory Bowel Disease: A Systematic Review. Dig. Dis. Sci. 2002, 47, 471–488. DOI: 10.1023/A:1017987229718.
  • National Center for Biotechnology Information. Mesalamine, CID = 4075. https://pubchem.ncbi.nlm.nih.gov/compound/Mesalamine (accessed September 4, 2020).
  • Sehgal, P.; Colombel, J. F.; Aboubakr, A.; Narula, N. Systematic Review: Safety of Mesalazine in Ulcerative Colitis. Aliment. Pharmacol. Ther. 2018, 47, 1597–1609. DOI: 10.1111/apt.14688.
  • Palma, E.; Costa, N.; Molinaro, R.; Francardi, M.; Paolino, D.; Cosco, D.; Fresta, M. Improvement of the Therapeutic Treatment of Inflammatory Bowel Diseases following Rectal Administration of Mesalazine-Loaded Chitosan Microparticles vs Asamax®®. Carbohydr. Polym. 2019, 212, 430–438. DOI: 10.1016/j.carbpol.2019.02.049.
  • Jiang, X. E.; Yang, S. M.; Zhou, X. J.; Zhang, Y. Effects of Mesalazine Combined with Bifid Triple Viable on Intestinal Flora, Immunoglobulin and Levels of Cal, MMP-9, and MPO in Feces of Patients with Ulcerative Colitis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 935–942. DOI: 10.26355/eurrev_202001_20079.
  • Radhakrishnan, S. T.; Mohanaruban, A.; Hoque, S. Mesalazine-Induced Myocarditis: A Case Report. J. Med. Case Rep. 2018, 12, 10–12. DOI: 10.1186/s13256-017-1557-z.
  • Davit, B. M.; Conner, D. P. The United States of America. In Bioequivalence Requirements in Various Global Jurisdictions; Kanfer, I., Ed.; AAPS Advances in the Pharmaceutical Sciences Series; Springer International Publishing: Cham, 2017; Vol. 28, 269–305. DOI: 10.1007/978-3-319-68078-1.
  • Balaji, J.; Shivashankar, M. Development and Validation of RP-UHPLC Procedure for Estimation of 5-Amino Salicyclic Acid in 5-Amino Salicyclic Acid Rectal Suppositories. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 1–7. DOI: 10.1088/1757-899X/263/2/022025.
  • Banda, J.; Lakshmanan, R.; Katepalli, R. B.; Reddy Venati, U. K.; Koppula, R.; Shiva Prasad, V. V. S. Determination of Mesalazine, a Low Bioavailability Olsalazine Metabolite in Human Plasma by UHPLC-MS/MS: Application to a Pharmacokinetic Study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1008, 1–10. DOI: 10.1016/j.jchromb.2015.11.001.
  • Anumolu, P. D.; Gurrala, S.; Gellaboina, A.; Mangipudi, D. G.; Menkana, S.; Chakka, R. Spectrophotometric Quantification of Anti-Inflammatory Drugs by Application of Chromogenic Reagents. Turk. J. Pharm. Sci. 2019, 16, 410–415. DOI: 10.4274/tjps.galenos.2018.07830.
  • Zawada, E.; Pirianowicz-Chaber, E.; Somogi, A.; Pawiński, T. Development and Validation of Bromatometric, Diazotization and Vis-Spectrophotometric Methods for the Determination of Mesalazine in Pharmaceutical Formulation. Acta Pol. Pharm. Drug Res. 2017, 74, 401–404.
  • Elbashir, A. A.; Altayib Alasha Abdalla, F.; Aboul-Enein, H. Y. Host-Guest Inclusion Complex of Mesalazine and β-Cyclodextrin and Spectrofluorometric Determination of Mesalazine. Luminescence 2015, 30, 444–450. DOI: 10.1002/bio.2758.
  • Elbashir, A. A.; Abdalla, F. A. A.; Aboul-Enein, H. Y. Supramolecular Interaction of 18-Crown-6 Ether with Mesalazine and Spectrofluorimetric Determination of Mesalazine in Pharmaceutical Formulations. Luminescence 2015, 30, 1250–1256. DOI: 10.1002/bio.2888.
  • Ebrahimi, S.; Afkhami, A.; Madrakian, T. Enhanced Electrochemical Responses at Supramolecularly Modified Graphene: Simultaneous Determination of Sulphasalazine and Its Metabolite 5-Aminosalicylic Acid. J. Electroanal. Chem. 2019, 838, 186–194. (December 2018), DOI: 10.1016/j.jelechem.2019.03.001.
  • Nigović, B.; Mornar, A.; Brusač, E.; Jeličić, M.-L. Selective Sensor for Simultaneous Determination of Mesalazine and Folic Acid Using Chitosan Coated Carbon Nanotubes Functionalized with Amino Groups. J. Electroanal. Chem. 2019, 851, 1–8. DOI: 10.1016/j.jelechem.2019.113450.
  • Akkaya, A.; Altug, C.; Pazarlioglu, N. K.; Dinckaya, E. Determination of 5-Aminosalicylic Acid by Catalase-Peroxidase Based Biosensor. Electroanalysis 2009, 21, 1805–1810. DOI: 10.1002/elan.200904606.
  • Palsmeier, R. K.; Radzik, D. M.; Lunte, C. E. Investigation of the Degradation Mechanism of 5-Aminosalicylic Acid in Aqueous Solution. Pharmaceut. Res. 1992, 09, 933–938. DOI: 10.1023/A:1015813302412.
  • Jensen, J.; Cornett, C.; Olsen, C. E.; Tjørnelund, J.; Hansen, S. H. Identification of Major Degradation Products of 5-Aminosalicylic Acid Formed in Aqueous Solutions and in Pharmaceuticals. Int. J. Pharm. 1992, 88, 177–187. DOI: 10.1016/0378-5173(92)90315-S.
  • Trivedi, R. K.; Patel, M. C.; Kharkar, A. R. Determination of Mesalamine Related Impurities from Drug Product by Reversed Phase Validated UPLC Method. E J. Chem. 2011, 8, 131–148. DOI: 10.1155/2011/382137.
  • Novak, P.; Tepeš, P.; Fistrić, I.; Bratoš, I.; Gabelica, V. The Application of LC-NMR and LC-MS for the Separation and Rapid Structure Elucidation of an Unknown Impurity in 5-Aminosalicylic Acid. J. Pharm. Biomed. Anal. 2006, 40, 1268–1272. DOI: 10.1016/j.jpba.2005.09.002.
  • Gotti, R.; Pomponio, R.; Bertucci, C.; Cavrini, V. Determination of 5-Aminosalicylic Acid Related Impurities by Micellar Electrokinetic Chromatography with an Ion-Pair Reagent. J. Chromatogr. A. 2001, 916, 175–183. DOI: 10.1016/S0021-9673(00)01097-9.
  • Katzung, B. G.; Masters, S. B.; Trevor, A. J. Basic & Clinical Pharmacology; McGraw-Hill Education: New York, 2012.
  • Qureshi, A. I.; Cohen, R. D. Mesalamine Delivery Systems: Do They Really Make Much Difference? Adv. Drug Deliv. Rev. 2005, 57, 281–302. DOI: 10.1016/j.addr.2004.08.008.
  • Berends, S. E.; Strik, A. S.; Löwenberg, M.; D'Haens, G. R.; Mathôt, R. A. A. Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Treatment of Ulcerative Colitis. Clin. Pharmacokinet. 2019, 58, 15–37. DOI: 10.1007/s40262-018-0676-z.
  • Caprilli, R.; Cesarini, M.; Angelucci, E.; Frieri, G. The Long Journey of Salicylates in Ulcerative Colitis: The Past and the Future. J. Crohns. Colitis 2009, 3, 149–156. DOI: 10.1016/j.crohns.2009.05.001.
  • Campregher, C.; Gasche, C. Aminosalicylates. Best Pract. Res. Clin. Gastroenterol. 2011, 25, 535–546. DOI: 10.1016/j.bpg.2011.10.013.
  • Hanck-Silva, G.; Fatori Trevizan, L. N.; Petrilli, R.; de Lima, F. T.; Eloy, J. O.; Chorilli, M. A Critical Review of Properties and Analytical/Bioanalytical Methods for Characterization of Cetuximab. Crit. Rev. Anal. Chem. 2020, 50, 125–135. DOI: 10.1080/10408347.2019.1581984.
  • Cesar, A. L. A.; Abrantes, F. A.; Farah, L.; Castilho, R. O.; Cardoso, V.; Fernandes, S. O.; Araújo, I. D.; Faraco, A. A. G. New Mesalamine Polymeric Conjugate for Controlled Release: Preparation, Characterization and Biodistribution Study. Eur. J. Pharm. Sci. 2018, 111, 57–64. DOI: 10.1016/j.ejps.2017.09.037.
  • Karkossa, F.; Klein, S. A Biopredictive In Vitro Comparison of Oral Locally Acting Mesalazine Formulations by a Novel Dissolution Model for Assessing Intraluminal Drug Release in Individual Subjects. J. Pharm. Sci. 2018, 107, 1680–1689. DOI: 10.1016/j.xphs.2018.02.016.
  • Günter, E. A.; Markov, P. A.; Melekhin, A. K.; Belozerov, V. S.; Martinson, E. A.; Litvinets, S. G.; Popov, S. V. Preparation and Release Characteristics of Mesalazine Loaded Calcium Pectin-Silica Gel Beads Based on Callus Cultures Pectins for Colon-Targeted Drug Delivery. Int. J. Biol. Macromol. 2018, 120, 2225–2233. DOI: 10.1016/j.ijbiomac.2018.07.078.
  • Canevari, M.; Castagliuolo, I.; Brun, P.; Cardin, M.; Schiavon, M.; Pasut, G.; Veronese, F. M. Poly(Ethylene Glycol)-Mesalazine Conjugate for Colon Specific Delivery. Int. J. Pharm. 2009, 368, 171–177. DOI: 10.1016/j.ijpharm.2008.09.058.
  • Sharma, N.; Sharma, A.; Bhatnagar, A.; Nishad, D.; Karwasra, R.; Khanna, K.; Sharma, D.; Kumar, N.; Jain, G. K. Novel Gum Acacia Based Macroparticles for Colon Delivery of Mesalazine: Development and Gammascintigraphy Study. J. Drug Deliv. Sci. Technol. 2019, 54, 101224. DOI: 10.1016/j.jddst.2019.101224.
  • Moustafine, R. I.; Viktorova, A. S.; Khutoryanskiy, V. V. Interpolymer Complexes of Carbopol® 971 and Poly(2-Ethyl-2-Oxazoline): Physicochemical Studies of Complexation and Formulations for Oral Drug Delivery. Int. J. Pharm. 2019, 558, 53–62. DOI: 10.1016/j.ijpharm.2019.01.002.
  • Tuğcu-Demiröz, F.; Acartürk, F.; Takka, S.; Konuş-Boyunağa, Ö. Evaluation of Alginate Based Mesalazine Tablets for Intestinal Drug Delivery. Eur. J. Pharm. Biopharm. 2007, 67, 491–497. DOI: 10.1016/j.ejpb.2007.03.003.
  • Tuğcu-Demiröz, F.; Acartürk, F.; Takka, S.; Konuş-Boyunağa, Ö. In-Vitro and In-Vivo Evaluation of Mesalazine-Guar Gum Matrix Tablets for Colonic Drug Delivery. J. Drug Target. 2004, 12, 105–112. DOI: 10.1080/10611860410001693751.
  • Foppoli, A.; Maroni, A.; Moutaharrik, S.; Melocchi, A.; Zema, L.; Palugan, L.; Cerea, M.; Gazzaniga, A. In Vitro and Human Pharmacoscintigraphic Evaluation of an Oral 5-ASA Delivery System for Colonic Release. Int. J. Pharm. 2019, 572, 118723. DOI: 10.1016/j.ijpharm.2019.118723.
  • Gareb, B.; Eissens, A. C.; Kosterink, J. G. W.; Frijlink, H. W. Development of a Zero-Order Sustained-Release Tablet Containing Mesalazine and Budesonide Intended to Treat the Distal Gastrointestinal Tract in Inflammatory Bowel Disease. Eur. J. Pharm. Biopharm. 2016, 103, 32–42. DOI: 10.1016/j.ejpb.2016.03.018.
  • Quinteros, D. A.; Manzo, R. H.; Allemandi, D. A. Design of a Colonic Delivery System Based on Cationic Polymethacrylate (Eudragit E100)-Mesalamine Complexes. Drug Deliv. 2010, 17, 208–213. DOI: 10.3109/10717541003667806.
  • Tang, P.; Sun, Q.; Zhao, L.; Pu, H.; Yang, H.; Zhang, S.; Gan, R.; Gan, N.; Li, H. Mesalazine/Hydroxypropyl-β-Cyclodextrin/Chitosan Nanoparticles with Sustained Release and Enhanced Anti-Inflammation Activity. Carbohydr. Polym. 2018, 198, 418–425. DOI: 10.1016/j.carbpol.2018.06.106.
  • Müller, V.; Piai, J. F.; Fajardo, A. R.; Fávaro, S. L.; Rubira, A. F.; Muniz, E. C. Preparation and Characterization of Zein and Zein-Chitosan Microspheres with Great Prospective of Application in Controlled Drug Release. J. Nanomater. 2011, 2011, 1–6. DOI: 10.1155/2011/928728..
  • Bisharat, L.; Barker, S. A.; Narbad, A.; Craig, D. Q. M. In Vitro Drug Release from Acetylated High Amylose Starch-Zein Films for Oral Colon-Specific Drug Delivery. Int. J. Pharm. 2019, 556, 311–319. DOI: 10.1016/j.ijpharm.2018.12.021.
  • Trendafilova, I.; Szegedi, Á.; Yoncheva, K.; Shestakova, P.; Mihály, J.; Ristić, A.; Konstantinov, S.; Popova, M. A pH Dependent Delivery of Mesalazine from Polymer Coated and Drug-Loaded SBA-16 Systems. Eur. J. Pharm. Sci. 2016, 81, 75–81. DOI: 10.1016/j.ejps.2015.10.003.
  • Fonseca-Santos, B.; Chorilli, M. An Overview of Carboxymethyl Derivatives of Chitosan: Their Use as Biomaterials and Drug Delivery Systems. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 1349–1362. DOI: 10.1016/j.msec.2017.03.198.
  • Souza, M. P. C. d.; Sábio, R. M.; Ribeiro, T. d. C.; Santos, A. M. d.; Meneguin, A. B.; Chorilli, M. Highlighting the Impact of Chitosan on the Development of Gastroretentive Drug Delivery Systems. Int. J. Biol. Macromol. 2020, 159, 804–822. DOI: 10.1016/j.ijbiomac.2020.05.104.
  • Sharma, P.; Chawla, A.; Pawar, P. Design, Development, and Optimization of Polymeric Based-Colonic Drug Delivery System of Naproxen. Sci. World J. 2013, 2013, 1–12. DOI: 10.1155/2013/654829.
  • Freire, C.; Podczeck, F.; Veiga, F.; Sousa, J. Starch-Based Coatings for Colon-Specific Delivery. Part II: Physicochemical Properties and In Vitro Drug Release from High Amylose Maize Starch Films. Eur. J. Pharm. Biopharm. 2009, 72, 587–594. DOI: 10.1016/j.ejpb.2009.02.010.
  • Zhang, Y.; Cui, L.; Li, F.; Shi, N.; Li, C.; Yu, X.; Chen, Y.; Kong, W. Design, Fabrication and Biomedical Applications of Zein-Based Nano/Micro-Carrier Systems. Int. J. Pharm. 2016, 513, 191–210. DOI: 10.1016/j.ijpharm.2016.09.023.
  • Crucho, C. I. C.; Barros, M. T. Polymeric Nanoparticles: A Study on the Preparation Variables and Characterization Methods. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 80, 771–784. DOI: 10.1016/j.msec.2017.06.004.
  • Lau, E. T. L.; Giddings, S. J.; Mohammed, S. G.; Dubois, P.; Johnson, S. K.; Stanley, R. A.; Halley, P. J.; Steadman, K. J. Encapsulation of Hydrocortisone and Mesalazine in Zein Microparticles. Pharmaceutics 2013, 5, 277–293. DOI: 10.3390/pharmaceutics5020277.
  • Cao, Q.; Jin, L.; Ding, Y.; Zhang, Y.; Xu, X. A Novel pH & Enzyme-Dependent Mesalamine Colon-Specific Delivery System. Drug Des. Develop. Ther. 2016, 10, 2021-2028. DOI: 10.2147/DDDT.S107283.
  • Mura, C.; Nácher, A.; Merino, V.; Merino-Sanjuan, M.; Carda, C.; Ruiz, A.; Manconi, M.; Loy, G.; Fadda, A. M.; Diez-Sales, O. N-Succinyl-Chitosan Systems for 5-Aminosalicylic Acid Colon Delivery: In Vivo Study with TNBS-Induced Colitis Model in Rats. Int. J. Pharm. 2011, 416, 145–154. DOI: 10.1016/j.ijpharm.2011.06.025.
  • Mura, C.; Nácher, A.; Merino, V.; Merino-Sanjuán, M.; Manconi, M.; Loy, G.; Fadda, A. M.; Díez-Sales, O. Design, Characterization and In Vitro Evaluation of 5-Aminosalicylic Acid Loaded N-Succinyl-Chitosan Microparticles for Colon Specific Delivery. Colloids Surf. B Biointerfaces 2012, 94, 199–205. DOI: 10.1016/j.colsurfb.2012.01.030.
  • Thakur, V.; Singh, A.; Joshi, N.; Mishra, N. Spray Dried Formulation of Mesalamine Embedded with Probiotic Biomass for the Treatment of Ulcerative Colitis: In-Vitro and In-Vivo Studies. Drug Dev. Ind. Pharm. 2019, 45, 1807–1820. DOI: 10.1080/03639045.2019.1665059.
  • Chen, J.; Li, X.; Chen, L.; Xie, F. Starch Film-Coated Microparticles for Oral Colon-Specific Drug Delivery. Carbohydr. Polym. 2018, 191, 242–254. DOI: 10.1016/j.carbpol.2018.03.025.
  • Zhang, H.; Shahbazi, M.-A.; Mäkilä, E. M.; da Silva, T. H.; Reis, R. L.; Salonen, J. J.; Hirvonen, J. T.; Santos, H. A. Diatom Silica Microparticles for Sustained Release and Permeation Enhancement following Oral Delivery of Prednisone and Mesalamine. Biomaterials 2013, 34, 9210–9219. DOI: 10.1016/j.biomaterials.2013.08.035.
  • Popat, A.; Ross, B. P.; Liu, J.; Jambhrunkar, S.; Kleitz, F.; Qiao, S. Z. Enzyme-Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. Angew. Chem. Int. Ed. Engl. 2012, 51, 12486–12489. DOI: 10.1002/anie.201206416.
  • Popova, M.; Szegedi, A.; Yoncheva, K.; Konstantinov, S.; Petrova, G. P.; Aleksandrov, H. A.; Vayssilov, G. N.; Shestakova, P. New Method for Preparation of Delivery Systems of Poorly Soluble Drugs on the Basis of Functionalized Mesoporous MCM-41 Nanoparticles. Microporous Mesoporous Mater. 2014, 198, 247–255. DOI: 10.1016/j.micromeso.2014.07.044.
  • Tang, H.; Xiang, D.; Wang, F.; Mao, J.; Tan, X.; Wang, Y. 5-ASA-Loaded SiO2 Nanoparticles-A Novel Drug Delivery System Targeting Therapy on Ulcerative Colitis in Mice. Mol. Med. Rep. 2017, 15, 1117–1122. DOI: 10.3892/mmr.2017.6153.
  • Krajewska, J. B.; Pietruszka, P.; Tomczyk, D.; Chen, C.; Owczarek, A.; Karolewicz, B.; Czapor-Irzabek, H.; Gorniak, A.; Fichna, J. Evaluation of the Effect of Liposomes Loaded with Chlorogenic Acid in Treatment of 2,4,6-Trinitrobenzenesulfonic Acid-Induced Murine Colitis. J. Physiol. Pharmacol. 2019, 70, 269–275. DOI: 10.26402/jpp.2019.2.10.
  • da Silva, G. H.; Fernandes, M. A.; Trevizan, L. N. F.; de Lima, F. T.; Eloy, J. O.; Chorilli, M. A. A Critical Review of Properties and Analytical Methods for the Determination of Docetaxel in Biological and Pharmaceutical Matrices. Crit. Rev. Anal. Chem. 2018, 48, 517–527. DOI: 10.1080/10408347.2018.1456315.
  • Alves, R. C.; Fernandes, R. P.; Eloy, J. O.; Salgado, H. R. N.; Chorilli, M. Characteristics, Properties and Analytical Methods of Paclitaxel: A Review. Crit. Rev. Anal. Chem. 2018, 48, 110–118. DOI: 10.1080/10408347.2017.1416283.
  • Gu, G.-Z.; Xia, H.-M.; Pang, Z.-Q.; Liu, Z.-Y.; Jiang, X.-G.; Chen, J. Determination of Sulphasalazine and Its Main Metabolite Sulphapyridine and 5-Aminosalicylic Acid in Human Plasma by Liquid Chromatography/Tandem Mass Spectrometry and Its Application to a Pharmacokinetic Study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 449–456. DOI: 10.1016/j.jchromb.2010.12.034.
  • Qin, J.; Di, X.; Wang, X.; Liu, Y. Development and Validation of an LC-MS/MS Method for the Determination of Mesalazine in Beagle Dog Plasma and Its Application to a Pharmacokinetic Study. Biomed. Chromatogr. 2015, 29, 261–267. DOI: 10.1002/bmc.3270.
  • Abdelrahman, M. M.; Habib, N. M.; Emam, A. A.; Mahmoud, H. M.; Abdelwhab, N. S. Chromatographic Determination of Sulfasalazine and Its Active Metabolites: Greenness Assessment and Application to Spiked Human Plasma. Biomed. Chromatogr. 2020, 34, 1–12. DOI: 10.1002/bmc.4804.
  • Romkens, T. E.; Salomon, J.; Peters, W. H. Urinary Excretion Levels of MMX-Mesalazine as a Tool to Assess Non-Adherence. Pharm. Anal. Acta 2015, 6, 1–6. DOI: 10.4172/2153-2435.1000443.
  • Elmasry, M. S.; Blagbrough, I. S.; Rowan, M. G.; Saleh, H. M.; Kheir, A. A.; Rogers, P. J. Quantitative HPLC Analysis of Mebeverine, Mesalazine, Sulphasalazine and Dispersible Aspirin Stored in a Venalink Monitored Dosage System with Co-Prescribed Medicines. J. Pharm. Biomed. Anal. 2011, 54, 646–652. DOI: 10.1016/j.jpba.2010.10.002.
  • Sahoo, N. K.; Sahu, M.; Srinivasa Rao, P.; Ghosh, G. Validation of Stability Indicating RP-HPLC Method for the Estimation of Mesalamine in Bulk and Tablet Dosage Form. Pharm. Methods 2013, 4, 56–61. DOI: 10.1016/j.phme.2013.12.003.
  • Hu, D.; Liu, L.; Chen, W.; Li, S.; Zhao, Y. A Novel Preparation Method for 5-Aminosalicylic Acid Loaded Eudragit S100 Nanoparticles. Int. J. Mol. Sci. 2012, 13, 6454–6468. DOI: 10.3390/ijms13056454.
  • Walz, M.; Hagemann, D.; Trentzsch, M.; Weber, A.; Henle, T. Degradation Studies of Modified Inulin as Potential Encapsulation Material for Colon Targeting and Release of Mesalamine. Carbohydr. Polym. 2018, 199, 102–108. DOI: 10.1016/j.carbpol.2018.07.015.
  • Yamamoto, Y.; Masuda, S.; Nakase, H.; Matsuura, M.; Maruyama, S.; Hisamatsu, T.; Suzuki, Y.; Matsubara, K. Influence of Pharmaceutical Formulation on the Mucosal Concentration of 5-Aminosalicylic Acid and N-Acetylmesalamine in Japanese Patients with Ulcerative Colitis. Biol. Pharm. Bull. 2019, 42, 81–86. DOI: 10.1248/bpb.b18-00561.
  • Karewicz, A.; Łęgowik, J.; Nowakowska, M. New Bilayer-Coated Microbead System for Controlled Release of 5-Aminosalicylic Acid. Polym. Bull. 2011, 66, 433–443. DOI: 10.1007/s00289-010-0370-2.
  • Freire, C.; Podczeck, F.; Ferreira, D.; Veiga, F.; Sousa, J.; Pena, A. Assessment of the In-Vivo Drug Release from Pellets Film-Coated with a Dispersion of High Amylose Starch and Ethylcellulose for Potential Colon Delivery. J. Pharm. Pharmacol. 2010, 62, 55–61. DOI: 10.1211/jpp.62.01.0005.
  • Uliana, C. V.; Yamanaka, H.; Garbellini, G. S.; Salazar-Banda, G. R. Determination of 5-Aminosalicylic Acid in Pharmaceutical Formulations by Square Wave Voltammetry at Pencil Graphite Electrodes. Quím. Nova 2010, 33, 964–967. DOI: 10.1590/S0100-40422010000400036.
  • Li, J.; Chen, C.; Cao, X.; Wang, G.; Hu, J.; Wang, J. Efficacy of Topical versus Oral 5-Aminosalicylate for Treatment of 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Ulcerative Colitis in Rats. J. Huazhong Univ. Sci. Technol. Med. Sci. 2014, 34, 59–65. DOI: 10.1007/s11596-014-1232-1.
  • Karrout, Y.; Dubuquoy, L.; Piveteau, C.; Siepmann, F.; Moussa, E.; Wils, D.; Beghyn, T.; Neut, C.; Flament, M.-P.; Guerin-Deremaux, L.; et al. In Vivo Efficacy of Microbiota-Sensitive Coatings for Colon Targeting: A Promising Tool for IBD Therapy. J. Control Release 2015, 197, 121–130. DOI: 10.1016/j.jconrel.2014.11.006.
  • Główka, F. K.; Hermann, J.; Hermann, T. W.; Zabel, M. Bioavailability of Mesalazine from Two Coated Formulation Tablets. Acta Pol. Pharm. Drug Res. 2019, 76, 67–73. DOI: 10.32383/appdr/92604.
  • Anindya, A. L.; Oktaviani, R. D.; Praevina, B. R.; Damayanti, S.; Kurniati, N. F.; Riani, C.; Rachmawati, H. Xylan from Pineapple Stem Waste: A Potential Biopolymer for Colonic Targeting of Anti-Inflammatory Agent Mesalamine. AAPS PharmSciTech. 2019, 20, 1–13. DOI: 10.1208/s12249-018-1205-y.
  • Nalinbenjapun, S.; Ovatlarnporn, C. Chitosan-5-Aminosalicylic Acid Conjugates for Colon-Specific Drug Delivery: Methods of Preparation and In Vitro Evaluations. J. Drug Deliv. Sci. Technol. 2020, 57, 101397. DOI: 10.1016/j.jddst.2019.101397.
  • Abdolmohammad-Zadeh, H.; Kohansal, S. Determination of Mesalamine by Spectrofluorometry in Human Serum after Solid-Phase Extraction with Ni-Al Layered Double Hydroxide as a Nanosorbent. J. Braz. Chem. Soc. 2012, 23, 473–481. DOI: 10.1590/S0103-50532012000300014.
  • Cui, F. L.; Qin, L. X.; Li, F.; Luo, H. X. Synchronous Fluorescence Determination and Molecular Modeling of 5-Aminosalicylic Acid (5-ASA) Interacted with Human Serum Albumin. J. Mol. Model. 2008, 14, 1111–1117. DOI: 10.1007/s00894-008-0352-6.
  • Morcoss, M. M.; Abdelwahab, N. S.; Ali, N. W.; Elsaady, M. T. Different Spectrophotometric and TLC-Densitometric Methods for Determination of Mesalazine in Presence of Its Two Toxic Impurities. Chem. Pharm. Bull. (Tokyo) 2016, 64, 1268–1274. DOI: 10.1248/cpb.c16-00143.
  • Navya Sloka, S.; Gurupadayya, B. M.; Aswani Kumar, C. H. Sensitive Spectrophotometric Method for the Determination of Mesalamine in Bulk and Pharmaceutical Formulations. Sch. Res. Libr. 2010, 2, 389–396.
  • Acharjya, S. K.; Sahu, A.; Das, S.; Sagar, P.; Annapurna, M. M. Spectrophotometric Methods for the Determination of Mesalamine in Bulk and Pharmaceutical Dosage Forms. J. Pharm. Educ. Res. 2010, 1, 63–67.
  • Patel, K. M.; Patel, C. N.; Panigrahi, B.; Parikh, A. S.; Patel, H. N. Development and Validation of Spectrophotometric Methods for the Estimation of Mesalamine in Tablet Dosage Forms. J. Young Pharm. 2010, 2, 284–288. DOI: 10.4103/0975-1483.66789.
  • Urtiga, S. C. d. C.; Alves, V. M. O.; Melo, C. d. O.; Lima, M. N. d.; Souza, E.; Cunha, A. P.; Ricardo, N. M. P. S.; Oliveira, E. E.; Egito, E. S. T. d. Xylan Microparticles for Controlled Release of Mesalamine: Production and Physicochemical Characterization. Carbohydr. Polym. 2020, 250, 1-9. DOI: 10.1016/j.carbpol.2020.116929.
  • Kaffash, E.; Saremnejad, F.; Abbaspour, M.; Mohajeri, S. A.; Garekani, H. A.; Jafarian, A. H.; Sardo, H. S.; Akhgari, A.; Nokhodchi, A. Statistical Optimization of Alginate-Based Oral Dosage Form of 5-Aminosalicylic Acid Aimed to Colonic Delivery: In Vitro and in Vivo Evaluation. J. Drug Deliv. Sci. Technol. 2019, 52, 177–188. DOI: 10.1016/j.jddst.2019.04.006.
  • Nigović, B.; Sadiković, M.; Jurić, S. Electrochemical Sensing of Mesalazine and Its N-Acetylated Metabolite in Biological Samples Using Functionalized Carbon Nanotubes. Talanta 2016, 147, 50–58. DOI: 10.1016/j.talanta.2015.09.036.
  • Torkashvand, M.; Gholivand, M. B.; Taherkhani, F. Fabrication of an Electrochemical Sensor Based on Computationally Designed Molecularly Imprinted Polymer for the Determination of Mesalamine in Real Samples. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 55, 209–217. DOI: 10.1016/j.msec.2015.05.031.
  • Štěpánková, M.; Šelešovská, R.; Janíková, L.; Chýlková, J. Voltammetric Determination of Mesalazine in Pharmaceutical Preparations and Biological Samples Using Boron-Doped Diamond Electrode. Chem. Pap. 2017, 71, 1419–1427. DOI: 10.1007/s11696-017-0135-6..
  • Harisha, K. V.; Swamy, B. E. K.; Ganesh, P. S.; Jayadevappa, H. An Electrochemical Sensor for the Determination of 5-Amino Salicylic Acid at Poly (Alanine) Modified Carbon Paste Electrode: A Cyclic Voltammetric Study. Anal. Bioanal. Electrochem. 2018, 10, 1273–1287.
  • Morrison, K. A.; Clowers, B. H. Fundamentals and Applications of Incorporating Chromatographic Separations with Ion Mobility-Mass Spectrometry. TrAC Trends Anal. Chem. 2019, 119, 115625. DOI:10.1016/j.trac.2019.115625.
  • BP-2010. British Pharmacopoeia. Medicines and Healthcare Products Regulatory Agency. Medicines and Healthcare Products Regulatory Agency: London, 2010; p 1368. DOI: 10.1093/ajhp/18.1.88.
  • Ph. Eur. 6.0. European Pharmacopoeia 6.0. European Directorate for the Quality of Medicines. 6th ed. European Directorate for the Quality of Medicines: Straßburg, 2007; pp 2362–2364.
  • USP29-NF24. The United States Pharmacopeia (USP 29). United States Pharmacopeial Convention Inc. United States Pharmacopeial Convention Inc.: Rockville, MD, 2006; p 1352.
  • Römkens, T. E. H.; Te Morsche, R.; Peters, W.; Burger, D. M.; Hoentjen, F.; Drenth, J. P. H. Urinalysis of MMX-Mesalazine as a Tool to Monitor 5-ASA Adherence in Daily IBD Practice. Br. J. Clin. Pharmacol. 2018, 84, 477–481. DOI: 10.1111/bcp.13462.
  • Kotra, V. S. R.; Satyabanta, L.; Goswami, T. K. A Critical Review of Analytical Methods for Determination of Curcuminoids in Turmeric. J. Food Sci. Technol. 2019, 56, 5153–5166. DOI: 10.1007/s13197-019-03986-1.
  • Hladová, M.; Martinka, J.; Rantuch, P.; Nečas, A. Review of Spectrophotometric Methods for Determination of Formaldehyde. Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol. 2019, 27, 105–120. DOI: 10.2478/rput-2019-0012.
  • Gaikwad, J.; Sharma, S.; Hatware, K. V. Review on Characteristics and Analytical Methods of Tazarotene: An Update. Crit. Rev. Anal. Chem. 2020, 50, 90–96. DOI: 10.1080/10408347.2019.1586519.
  • Chandra, B. S.; Bhogela, S. S.; Shaik, M.; Vadlamudi, C. S.; Chappa, M.; Maddirala, N. S. Simple and Sensitive Spectrophotometric Methods for the Analysis of Mesalamine in Bulk and Tablet Dosage Forms. Quím. Nova 2011, 34, 1068–1073. DOI: 10.1590/S0100-40422011000600026.
  • Wang, J. Portable Electrochemical Systems. TrAC Trends Anal. Chem. 2002, 21, 226–232. DOI: 10.1016/S0165-9936(02)00402-8.
  • Wang, J. Electrochemical Detection for Microscale Analytical Systems: A Review. Talanta 2002, 56, 223–231. DOI: 10.1016/S0039-9140(01)00592-6.
  • Purushothama, H. T.; Nayaka, Y. A.; Vinay, M. M.; Manjunatha, P.; Yathisha, R. O.; Basavarajappa, K. V. Pencil Graphite Electrode as an Electrochemical Sensor for the Voltammetric Determination of Chlorpromazine. J. Sci. Adv. Mater. Devices 2018, 3, 161–166. DOI: 10.1016/j.jsamd.2018.03.007.
  • Khoshroo, A.; Hosseinzadeh, L.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ehrlich, H. Development of Electrochemical Sensor for Sensitive Determination of Oxazepam Based on Silver-Platinum Core–Shell Nanoparticles Supported on Graphene. J. Electroanal. Chem. 2018, 823, 61–66. DOI: 10.1016/j.jelechem.2018.05.030.
  • Maduraiveeran, G.; Jin, W. Nanomaterials Based Electrochemical Sensor and Biosensor Platforms for Environmental Applications. Trends Environ. Anal. Chem. 2017, 13, 10–23. DOI: 10.1016/j.teac.2017.02.001.
  • Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical Sensor and Biosensor Platforms Based on Advanced Nanomaterials for Biological and Biomedical Applications. Biosens. Bioelectron. 2018, 103, 113–129. DOI: 10.1016/j.bios.2017.12.031.
  • Nie, G.; Zhou, L.; Zhang, Y.; Xu, J. Direct Low-Potential Electropolymerization of 9,10-Dihydrophenanthrene in Boron Trifluoride Diethyl Etherate. J. Appl. Polym. Sci. 2010, 117, 793–800. DOI: 10.1002/app.31078.
  • Khater, M.; Khater, S. S.; Gholap, H.; Patil, R.; Kulkarni, G. Comparative Studies on Measurement of Membrane Potential of Bacterial Cells Treated with ZnO Nanoparticles by Spectrofluorometry, Fluorescence Microscopy and Flowcytometry. J. Microbiol. Methods 2020, 173, 105920. DOI: 10.1016/j.mimet.2020.105920.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.