324
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Ezetimibe: A Review of Analytical Methods for the Drug Substance, Pharmaceutical Formulations and Biological Matrices

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1078-1093 | Published online: 21 Dec 2020

References

  • Wishart, D. S.; Feunang, Y. D.; Guo, A. C.; Lo, E. J.; Marcu, A.; Grant, J. R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res 2017, Nov 8. DOI: 10.1093/nar/gkx1037.
  • Nutescu, E. A.; Shapiro, N. L. Ezetimibe: A Selective Cholesterol Absorption Inhibitor. Pharmacotherapy 2003, 23, 1463–1474. DOI: 10.1592/phco.23.14.1463.31942.
  • Kosoglou, T.; Statkevich, P.; Johnson-Levonas, A.; Paolini, J. F.; Bergman, A. J.; Alton, K. B. Ezetimibe: A Review of Its Metabolism, Pharmacokinetics and Drug Interactions. Clin. Pharmacokinet. 2005, 44, 467–494. DOI: 10.2165/00003088-200544050-00002.
  • FDA Approved Drug Products: Zetia (ezetimibe) oral tablets. 2002.
  • Niedzielski, M.; Broncel, M.; Gorzelak-Pabiś, P.; Woźniak, E. New Possible Pharmacological Targets for Statins and Ezetimibe. Biomed. Pharmacother. 2020, 129, 110388 DOI: 10.1016/j.biopha.2020.110388.
  • Mourikis, P.; Zako, S.; Dannenberg, L.; Nia, A. M.; Heinen, Y.; Busch, L.; Richter, H.; Hohlfeld, T.; Zeus, T.; Kelm, M.; Polzin, A. (2020). Lipid Lowering Therapy in Cardiovascular Disease: From Myth to Molecular reality. Pharmacol. Ther. 2020, 213, 107592 DOI: 10.1016/j.pharmthera.2020.107592.
  • Patel, J.; Sheehan, V.; Gurk-Turner, C. Ezetimibe (Zetia): a New Type of lipid-lowering agent. Proc (Bayl Univ Med Cent) 2003, 16, 354–358. DOI: 10.1080/08998280.2003.11927928.
  • Dispas, A.; Avohou, H. T.; Lebrun, P.; Hubert, P.; Hubert, C. Quality by Design’ Approach for the Analysis of Impurities in Pharmaceutical Drug Products and Drug Substances. Trend Anal. Chem. 2018, 101, 24–33. DOI: 10.1016/j.trac.2017.10.028.
  • Holm, R.; Elder, D. P. Analytical Advances in Pharmaceutical Impurity Profiling. Eur. J. Pharm. Sci. 2016, 87, 118–135. DOI: 10.1016/j.ejps.2015.12.007.
  • Kątny, M.; Frankowski, M. Impurities in Drug Products and Active Pharmaceutical Ingredients. Crit. Rev. Anal. Chem. 2017, 47, 187–193. DOI: 10.1080/10408347.2016.1242401.
  • Ramachandra, B. Development of Impurity Profiling Methods Using Modern Analytical Techniques. Crit. Rev. Anal. Chem. 2017, 47, 24–36. DOI: 10.1080/10408347.2016.1169913.
  • Olsen, B. A.; Sreedhara, A.; Baertschi, S. W. Impurity Investigations by Phases of Drug and Product Development. Trend Anal. Chem. 2018, 101, 17–23. DOI: 10.1016/j.trac.2017.10.025.
  • Görög, S. Critical Review of Reports on Impurity and Degradation Product Profiling in the Last Decade. Trend Anal. Chem. 2018, 101, 2–16. DOI: 10.1016/j.trac.2017.09.012.
  • ICH Guideline, Stability Testing of New Drug Substances and Products Q1A (R2). Geneva, Switzerland, IFPMA, 2003.
  • ICH Guideline, Impurities in New Drug Substances Q3A (R2). IFPMA, Geneva, Switzerland, 2006.
  • ICH Guideline, Impurities in New Drug Products Q3B (R2). IFPMA, Geneva, Switzerland, 2006.
  • ICH M10, Bioanalytical method validation draft guideline. IFPMA, Geneva, Switzerland, 2019.
  • Panuwet, P.; Hunter, R. E.; Jr, D'Souza, P. E.; Chen, X.; Radford, S. A.; Cohen, J. R.; Marder, M. E.; Kartavenka, K.; Ryan, P. B.; Barr, D. B. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring. Crit. Rev. Anal. Chem. 2016, 46, 93–105. DOI: 10.1080/10408347.2014.980775.
  • USP 45. The United States Pharmacopeia 2020.
  • Clader, J. W. The Discovery of Ezetimibe: A View from outside the Receptor. J. Med. Chem. 2004, 47, 1–9. DOI: 10.1021/jm030283g.
  • Galletti, P.; Giacomini, D. Monocyclic β-Lactams: new Structures for New Biological Activities. Curr. Med. Chem. 2011, 18, 4265–4283. DOI: 10.2174/092986711797200480.
  • Mehta, P. D.; Sengar, N. P. S.; Pathak, A. K. 2-Azetidinone – a New Profile of Various Pharmacological Activities. Eur. J. Med. Chem. 2010, 45, 5541–5560. DOI: 10.1016/j.ejmech.2010.09.035.
  • Burnett, D. Beta-lactam Cholesterol Absorption Inhibitors . Curr. Med. Chem. 2004, 11, 1873–1887. DOI: 10.2174/0929867043364865.
  • Arya, N.; Jagdale, A. Y.; Patil, T. A.; Yeramwar, S. S.; Holikatti, S. S.; Dwivedi, J.; Shishoo, C. J.; Jain, K. S. The Chemistry and Biological Potential of Azetidin-2-Ones. Eur. J. Med. Chem. 2014, 74, 619–656. DOI: 10.1016/j.ejmech.2014.01.002.
  • National Center for Biotechnology Information. PubChem Database. Ezetimibe, CID = 150311. https://pubchem.ncbi.nlm.nih.gov/compound/Ezetimibe (accessed Apr 22, 2020).
  • Atici, E. B.; Karlığa, B. Identification, Synthesis and Characterization of process related Desfluoro Impurity of Ezetimibe and HPLC Method Validations . J. Pharm. Anal. 2015, 5, 356–370. DOI: 10.1016/j.jpha.2015.04.002.
  • Earl, J.; Kirkpatrick, P. Fresh from the pipeline. Ezetimibe. Nat. Rev. Drug Discov. 2003, 2, 97–98. DOI: 10.1038/nrd1015.
  • Rosenblum, S. B.; Huynh, T.; Afonso, A.; Davis, H. R.; Yumibe, N.; Clader, J. W.; Burnett, D. A. Discovery of 1-(4-fluorophenyl)-(3R)-[3-(4-fluorophenyl)-(3S)-hydroxypropyl]-(4S)-(4 -hydroxyphenyl)-2-Azetidinone (SCH 58235): A Designed, Potent, Orally Active Inhibitor of Cholesterol Absorption . J. Med. Chem. 1998, 41, 973–980. DOI: 10.1021/jm970701f.
  • Torrado-Salmerón, C.; Guarnizo-Herrero, V.; Gallego-Arranz, T.; del Val-Sabugo, Y.; Torrado, G.; Morales, J.; Torrado-Santiago, S. Improvement in the Oral Bioavailability and Efficacy of New Ezetimibe Formulations—Comparative Study of a Solid Dispersion and Different Micellar Systems. Pharmaceutics 2020, 12, 617. DOI: 10.3390/pharmaceutics12070617.
  • Shukr, M. H.; Ismail, S.; Ahmed, S. M. Development and Optimization of Ezetimibe Nanoparticles with Improved Antihyperlipidemic Activity. J. Drug Deliv. Sci. Technol. 2019, 49, 383–395. DOI: 10.1016/j.jddst.2018.12.001.
  • Davidson, M. H.; McGarry, T.; Bettis, R.; Melani, L.; Lipka, L. J.; LeBeaut, A. P.; Suresh, R.; Sun, S.; Veltri, E. P. Ezetimibe Study Group. Ezetimibe Coadministered with Simvastatin in Patients with Primary Hypercholesterolemia. J. Am. Coll. Cardiol. 2002, 40, 2125–2134. DOI: 10.1016/S0735-1097(02)02610-4.
  • Kosoglou, T.; Meyer, I.; Veltri, E. P.; Statkevich, P.; Yang, B.; Zhu, Y.; Mellars, L.; Maxwell, S. E.; Patrick, J. E.; Cutler, D. L.; et al. (2002). Pharmacodynamic Interaction Between the New Selective Cholesterol Absorption Inhibitor Ezetimibe and Simvastatin. Br. J. Clin. Pharmacol. 2002, 54, 309–319. DOI: 10.1046/j.1365-2125.2002.01633.x.
  • Knopp, R. H.; Gitter, H.; Truitt, T.; Bays, H.; Manion, C. V.; Lipka, L. J.; LeBeaut, A. P.; Suresh, R.; Yang, B.; Veltri, E. P. Effects of Ezetimibe, a New Cholesterol Absorption Inhibitor, on Plasma Lipids in Patients with Primary Hypercholesterolemia. Eur. Heart J. 2003, 24, 729–741. DOI: 10.1016/S0195-668X(02)00807-2.
  • Soulele, K.; Karalis, V. Development of a Joint Population Pharmacokinetic Model of Ezetimibe and Its Conjugated Metabolite. Eur. J. Pharm. Sci. 2019, 128, 18–26. DOI: 10.1016/j.ejps.2018.11.018.
  • Lestari, M. L.; Ardiana, F.; Indrayanto, G. Ezetimibe. In Profiles Drug Subst Excip Relat Methodol 2011, 36, 103–149. Academic Press. DOI: 10.1016/B978-0-12-387667-6.00016-6.
  • El-Moghazy, S. M.; Mohamed, M. A. E.-A.; Mohamed, M. F.; Youssef, N. F. Development and Validation of HPLC, TLC and Derivative Spectrophotometric Methods for the Analysis of Ezetimibe in the Presence of Alkaline Induced Degradation Products. J. Chinese Chemical Soc. 2009, 56, 360–367. DOI: 10.1002/jccs.200900052.
  • Oliveira, P. R.; Junior, L. B.; Fronza, M.; Bernardi, L. S.; Masiero, S. M. K.; Dalmora, S. L. Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Ezetimibe in Human Plasma and Pharmaceutical Formulations. Chroma. 2006, 63, 315–320. DOI: 10.1365/s10337-006-0749-2.
  • Panjwani, G.; Shetty, R.; Shenoy, G.; Dhamecha, D. Development and Validation of a New Reversed-Phase HPLC Method for the Determination of Ezetimibe in Pharmaceutical Dosage Forms. Indian J. Pharm. Educ. 2013, 47, 7–12.
  • Kumar, P.; Ahmad, Y.; Ghosh, A. A Stability-Indicating RP-HPLC Method Development for Determination of Ezetimibe in Tablet Dosage Form. Der Pharma Chem. 2012, 4, 1296–1304.
  • Sistla, R.; Tata, V. S. S. K.; Kashyap, Y. V.; Chandrasekar, D.; Diwan, P. V. Development and Validation of a Reversed-Phase HPLC Method for the Determination of Ezetimibe in Pharmaceutical Dosage Forms. J. Pharm. Biomed. Anal. 2005, 39, 517–522. DOI: 10.1016/j.jpba.2005.04.026.
  • Doshi, A. S.; Kachhadia, P. K.; Joshi, H. S. Validation of a Stability-Indicating LC Method for Assay of Ezetimibe in Tablets and for Determination of Content Uniformity. Chroma. 2008, 67, 137–142. DOI: 10.1365/s10337-007-0470-9.
  • Baokar Shrikrishna, B.; Erande, R.; Shaikh, S. Analytical Method Development and Validation for Estimation of Ezetimibe from Tablet Dosage Form by Using RP-HPLC. Int. J. Res. Pharm. Biomed. Sci. 2011, 2, 833–841.
  • Danafar, H.; Hamidi, M. A Rapid and Sensitive LC–MS Method for Determination of Ezetimibe Concentration in Human Plasma: application to a Bioequivalence Study. Chromatographia 2013, 76, 1667–1675. DOI: 10.1007/s10337-013-2548-x.
  • Krishna, M. R.; Kumar, S. P.; Khurdhus, M. S. K.; Vaishnavi, G.; Mamatha, M.; Ravi, K. A Rapid Determination of Ezetimibe in Bulk and Pharmaceutical Formulations by Using RP-HPLC. World J. Pharm. Pharm. Sci. 2017, 6, 971–978. DOI: 10.20959/wjpps20177-9475.
  • Bhagwat, A. M.; Khadke, A. P.; Patil, A. M.; Sawakhande, S. N.; Kulkarni, R. J.; Tarade, S. V. Development and Validation of Novel UV Spectroscopic Assay Method of Ezetimibe in Bulk Drugs and Drug Formulations. World J. Pharm. Res. 2017, 6, 507–517. DOI: 10.20959/wjpr20174-8137.
  • Shrivastava, P. K.; Basniwal, P. K.; Shrivastava, S. K.; Jain, D. Validated RP-HPLC Method for Estimation of Ezetimibe in Different Tablet Dosage Form. Int. J. Phy. Sci. 2009, 1, 174–181.
  • Akmar, S. K.; Kothapalli, L.; Thomas, A.; Jangam, S. Reverse Phase High Performance Liquid Chromatography Method for Estimation of Ezetimibe in Bulk and Pharmaceutical Formulations. Indian J. Pharm. Sci. 2007, 69, 695–697.
  • Bahrami, G.; Mohammadi, B.; Khatabi, P. M.; Farzaei, M. H.; Majnooni, M. B.; Bahoosh, S. R. Application of One-step Liquid Chromatography-electrospray Tandem MS/MS and Collision-Induced Dissociation to Quantification of Ezetimibe and Identification of Its Glucuronated Metabolite in Human Serum: A Pharmacokinetic Study . J Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 2789–2795. DOI: 10.1016/j.jchromb.2010.08.023.
  • Bae, J.-W.; Choi, C.-I.; Park, S.-H.; Jang, C.-G.; Lee, S.-Y. Analytical LC-MS/MS Method for Ezetimibe and Its Application for Pharmacokinetic Study. J. Liq. Chromatogr. Rel. Technol. 2012, 35, 141–152. DOI: 10.1080/10826076.2011.597065.
  • Suchy, D.; Łabuzek, K.; Pierzchała, O.; Okopień, B. RP-HPLC-UV Determination of Ezetimibe in Serum: Method Development, Validation and Application to Patients Chronically Receiving the Drug. Acta Chromatogr. 2013, 25, 483–502. DOI: 10.1556/AChrom.25.2013.3.6.
  • Li, S.; Liu, G.; Jia, J.; Li, X.; Yu, C. Liquid Chromatography-negative Ion Electrospray Tandem Mass Spectrometry Method for the Quantification of Ezetimibe in Human Plasma. J. Pharm. Biomed. Anal. 2006, 40, 987–992. DOI: 10.1016/j.jpba.2005.07.053.
  • Babu, M. S.; Kumar, V. R.; Reddy, B. P. B.; Rao, V. S.; Sharma, H. K. Development and Validation of a High-Throughput LC–MS/MS Method for the Quantitation of Total Ezetimibe in Human Plasma. Int. J. Pharm. Sci. Rev. Res. 2016, 39, 338–345.
  • Park, Y. S.; Kim, D. P.; Kang, S. H.; Kim, K. T.; Hwan, Y.; Hoon, J.; Na, Y.; Young, J.; Sim, S. J.; Jin, B. R.; Lee, H. S. Development and Validation of Simple and Rapid LC-MS/MS Method for Ezetimibe in Human Plasma and Its Application to Bioequivalence Study. IOSR J. Pharm. Biol. Sci. 2017, 12, 01–08. DOI: 10.9790/3008-1204070108.
  • Guo, L.; Wang, M. M.; He, M.; Qiu, F. R.; Jiang, J. Simultaneous Determination of Ezetimibe and Its Glucuronide Metabolite in Human Plasma by Solid Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. B 2015, 986, 108–114. DOI: 10.1016/j.jchromb.2015.02.012.
  • Di, M.; Li, Z.; Jiang, Q.; Wang, T.; Zhang, W.; Sun, Z.; Sun, J.; Liu, X. A Rapid and Sensitive Supercritical Fluid Chromatography/Tandem Mass Spectrometry Method for Detection of Ezetimibein Dog Plasma and Its Application in Pharmacokinetic Studies. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2018, 1073, 177–182. DOI: 10.1016/j.jchromb.2017.10.053.
  • Raman, B.; Sharma, B. A.; Butala, R.; Ghugare, P. D.; Kumar, A. Structural Elucidation of a Process-Related Impurity in Ezetimibe by LC/MS/MS and NMR. J. Pharm. Biomed. Anal. 2010, 52, 73–78. DOI: 10.1016/j.jpba.2009.12.021.
  • Filip, K.; Bańkowski, K.; Sidoryk, K.; Zagrodzka, J.; Łaszcz, M.; Trzcińska, K.; Szyprowska, A.; Cmoch, P.; Maruszak, W. Physicochemical Characterization of Ezetimibe and Its Impurities. J. Mol. Struct 2011, 991, 162–170. DOI: 10.1016/j.molstruc.2011.02.020.
  • Guntupalli, S.; Ray, U. K.; Murali, N.; Gupta, P. B.; Kumar, V. J.; Satheesh, D.; Islam, A. Identification, Isolation and Characterization of Process Related Impurities in Ezetimibe. J. Pharm. Biomed. Anal. 2014, 88, 385–390. DOI: 10.1016/j.jpba.2013.09.020.
  • Zhang, D.; Su, J. Investigation of Reduction Process and Related Impurities in Ezetimibe. J. Pharm. Biomed. Anal. 2015, 107, 355–363. DOI: 10.1016/j.jpba.2015.01.008.
  • Luo, Z.; Deng, Z.; Liu, Y.; Wang, G.; Yang, W.; Hou, C.; Tang, M.; Yang, R.; Zhou, H. Development and Validation of a Novel Stability-Indicating HPLC Method for the Quantitative Determination of Eleven Related Substances in Ezetimibe Drug Substance and Drug Product. Talanta 2015, 139, 67–74. DOI: 10.1016/j.talanta.2015.02.039.
  • Balasubramanian, H.; Kumar, R. S.; Anireddy, J. S.; Rao, D. V. Development of a Simple, Highly Selective RP-LC Method for the Quantification of Diastereomers and Other Related Substances of Ezetimibe Using Multivariate Analysis. J. Chromatogr. Sci. 2019, 57, 71–80. DOI: 10.1093/chromsci/bmy084.
  • Sun, L.; Zou, Q.; Wei, P.; Ouyang, P. Chiral Separation and Thermodynamic Investigation of Ezetimibe Optical Isomers on a Chiralpak IC Column. J. Chromatogr. Sci. 2016, 54, 1489–1494. DOI: 10.1093/chromsci/bmw032.
  • Chimalakonda, K. R.; Gudala, V.; Gutta, M.; Polisetty, S.; Koduri, S. V. S. Development and Validation of Chiral HPLC Method for Identification and Quantification of (R)-Enantiomer in Ezetimibe. AJAC. 2012, 03, 478–483. DOI: 10.4236/ajac.2012.37063.
  • Chimalakonda, K.; Kamani, V.; Gutta, M.; Polisetty, S.; Koduri, S. V. S. Isolation and Characterization of R-Enantiomer in Ezetimibe. AJAC. 2013, 04, 488–495. DOI: 10.4236/ajac.2013.49062.
  • Zhu, B.; Yao, Y.; Zhao, Y.; Sun, T.; Li, Q. Study on the HPLC-based Separation of Some Ezetimibe Stereoisomers and the Underlying Stereorecognition Process. Chirality 2018, 30, 642–651. DOI: 10.1002/chir.22829.
  • Jagu, P.; Baksam, V. K.; Rao, B. M.; Nittala, S. R. A Novel Enantio-Selective Reverse Phase HPLC Method for the Determination of Ezetimibe and It's Enantiomer. World J. Pharm. Res. 2015, 4, 1605–1619.
  • Barhate, C. L.; Breitbach, Z. S.; Pinto, E. C.; Regalado, E. L.; Welch, C. J.; Armstrong, D. W. Ultrafast Separation of Fluorinated and Desfluorinated Pharmaceuticals Using Highly Efficient and Selective Chiral Selectors Bonded to Superficially Porous Particles. J. Chromatogr. A. 2015, 1426, 241–247. DOI: 10.1016/j.chroma.2015.11.056.
  • Regalado, E. L.; Dermenjian, R. K.; Joyce, L. A.; Welch, C. J. Detection of Dehalogenation Impurities in Organohalogenated Pharmaceuticals by UHPLC-DAD-HRESIMS. J. Pharm. Biomed. Anal. 2014, 92, 1–5. DOI: 10.1016/j.jpba.2013.12.043.
  • Dong, S.; Yang, H.; Ye, D. Development of an LC-MS Method for 4-Fluoroaniline Determination in Ezetimibe. J. Chromatogr. Sci. 2018, 56, 724–730. DOI: 10.1093/chromsci/bmy048.
  • Mannam, M. R.; Sankareswaran, S.; Gaddam, V. R.; Natarajan, S.; Kottapalli, R. P.; Kumar, P. Structural Correction and Process Improvement for Control of a Critical Process Impurity of Ezetimibe. Org. Process. Res. Dev. 2019, 23, 919–925. DOI: 10.1021/acs.oprd.9b00024.
  • Kancherla, P.; Velpuri, V.; Alegete, P.; Albaseer, S. S.; Khagga, M.; Das, P. LC–MS/MS Characterization of the Forced Degradation Products of Ezetemibe: Development and Validation of a Stability-Indicating UPLC Method. J. Taibah Univ. Sci. 2016, 10, 148–160. DOI: 10.1016/j.jtusci.2015.08.001.
  • Singh, S.; Singh, B.; Bahuguna, R.; Wadhwa, L.; Saxena, R. Stress Degradation Studies on Ezetimibe and Development of a Validated Stability-Indicating HPLC Assay. J. Pharm. Biomed. Anal. 2006, 41, 1037–1040. DOI: 10.1016/j.jpba.2006.01.030.
  • Gajjar, A. K.; Shah, V. D. Impurity Profiling: A Case Study of Ezetimibe. Open Conf. Proc. J. 2011, 2, 108–112. DOI: 10.2174/2210289201102010108.
  • Gajjar, A. K.; Shah, V. D. Isolation and Structure Elucidation of Major Alkaline Degradant of Ezetimibe. J. Pharm. Biomed. Anal. 2011, 55, 225–229. DOI: 10.1016/j.jpba.2010.12.033.
  • Baťová, J.; Imramovský, A.; HájÍček, J.; Hejtmánková, L.; Hanusek, J. Kinetics and Mechanism of the Base-Catalyzed Rearrangement and Hydrolysis of Ezetimibe. J. Pharm. Sci. 2014, 103, 2240–2247. DOI: 10.1002/jps.24070.
  • Jin, J.; Wang, Z.; Lin, J.; Zhu, W.; Gu, C.; Li, M. "Ghost peaks" of Ezetimibe: Solution Degradation Products of Ezetimibe in Acetonitrile Induced by Alkaline Impurities from Glass HPLC Vials” . J. Pharm. Biomed. Anal. 2017, 140, 281–286. DOI: 10.1016/j.jpba.2017.02.059.
  • Alarfaj, N. A.; Aly, F. A. Micelle-Enhanced Spectrofluorimetric Method for Determination of Cholesterol-Reducing Drug Ezetimibe in Dosage Forms. J. Fluoresc. 2012, 22, 9–15. DOI: 10.1007/s10895-011-0952-x.
  • Gupta, K.; Singhvi, I. Development of UV Spectrophotometric Method for the Estimation of Ezetimibe from Tablet Formulation. Int. J. Chem. Sci. 2015, 13, 1051–1056.
  • Kabra, R. P.; Kadam, S. C.; Mane, V. B.; Kadam, S. S.; Mamde, C. G. Simple Novel UV-Spectroscopic Method for Estimation of Ezetimibe in Tablet Dosage Form. Am. J. Pharm. Health Res. 2014, 2, 66–71.
  • Lakshmi, P.; Ramchandran, D.; Rambabu, C. Spectrophotometric Determination of Ezetimibe. J. Chem. 2010, 7, 101–104. DOI: 10.1155/2010/238140.
  • Baraka, M. M.; Khalil, H. M.; Al-Ahmary, K. M. Colorimetric Determination of Ezetimibe in Pure Form and in Pharmaceutical Preparation. Bull. Fac. Pharm.(Cairo Univ.) 2008, 46, 163–167.
  • Narasimharaju, B. C.; Devalarao, G.; Ramanjaneyulu, S. Spectrophotometric Method for the Determination of Ezetimibe in Pharmaceutical Formulations. Biomed. Pharmacol. J. 2008, 1, 413–416.
  • Sharma, M.; Mhaske, D. V.; Mahadik, M.; Kadam, S. S.; Dhaneshwar, S. R. UV and Three Derivative Spectrophotometric Methods for Determination of Ezetimibe in Tablet Formulation. Indian J. Pharm. Sci. 2008, 70, 258–260. DOI: 10.4103/0250-474X.41471.
  • Dalmora, S. L.; Oliveira, P. R.; Barth, T.; Todeschini, V. Development and Validation of a Stability-Indicating Micellar Electrokinetic Chromatography Method for the Determination of Ezetimibe in Pharmaceutical Formulations. Anal. Sci. 2008, 24, 499–503. DOI: 10.2116/analsci.24.499.
  • Uçaktürk, E.; Özaltin, N.; Kaya, B. Quantitative Analysis of Ezetimibe in Human Plasma by Gas Chromatography-Mass Spectrometry. J. Sep. Sci. 2009, 32, 1868–1874. DOI: 10.1002/jssc.200900078.
  • Mahadik, M.; Dhaneshwar, S. Application of a Stability-Indicating HPTLC Method for the Quantitative Determination of Ezetimibe in Pharmaceutical Dosage Forms. Asian J. Pharm. Sci. 2007, 2, 182–190. DOI: 10.5138/ijaps.2010.0976.1055.01048.
  • Uçaktürk, E.; Özaltin, N. Optimization of a Gas Chromatography–Mass Spectrometry Method Using Chemometric Techniques for the Determination of Ezetimibe in Human Plasma. Turk. J. Chem. 2013, 37, 734– 745. DOI: 10.3906/kim-1210-18.
  • Abdelfattah, A.; Elabasawi, N.; Abo-Serie, A.; Attia, K.; Morshedy, S. Densitometric Determination of Ezetimibe in the Presence of Its Alkaline Degradation Product. J. Adv.Pharm. Res. 2018, 2, 212–220.
  • Chitravathi, S.; Reddy, S.; Swamy, B. K. (2016). Electrochemical Determination of Ezetimibe by MgO Nanoflakes-Modified Carbon Paste Electrode. J. Electroanal. Chem. 2016, 764, 1–6. DOI: 10.1016/j.jelechem.2016.01.001.
  • Ren, Y.; Duan, Y. J.; Li, R. J.; Deng, Y.; Hai, L.; Wu, Y. First Synthesis and Characterization of Key Stereoisomers Related to Ezetimibe. Chin. Chem. Lett. 2014, 25, 1157–1160. DOI: 10.1016/j.cclet.2014.03.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.