555
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

Analytical Methods for the Assessment of Curing Kinetics of Polyurethane Binders for High-Energy Composites

ORCID Icon, , ORCID Icon &
Pages 1112-1121 | Published online: 03 Jan 2021

References

  • Van der Heijden, A.; Leeuwenburgh, A. HNF/HTPB Propellants: Influence of HNF Particle Size on Ballistic Properties. Combust. Flame 2009, 156, 1359–1364. DOI: 10.1016/j.combustflame.2009.03.007.
  • Patel, A.; Mequanint, K. The Kinetics of Dithiocarbamate-Mediated Polyurethane-Block-Poly(Methylmethacrylate) Polymers. Polymer 2009, 50, 4464–4470. DOI: 10.1016/j.polymer.2009.07.045.
  • Talawar, M. B.; Agarwal, A. P.; Anniyappan, M.; Gore, G. M.; Asthana, S. N.; Venugopalan, S. Method for Preparation of Fine TATB (2-5 Microm) and Its Evaluation in Plastic Bonded Explosive (PBX) Formulations. J. Hazard. Mater. 2006, 137, 1848–1852. DOI: 10.1016/j.jhazmat.2006.05.031.
  • Samudre, S. S.; Nair, U. R.; Gore, G. M.; Sinha, R. K.; Sikder, A. K.; Asthana, S. N. Studies on an Improved Plastic Bonded Explosive (PBX) for Shaped Charges. Propell. Explos. Pyrot. 2009, 34, 144.
  • Patri, M.; Rath, S. K.; Suryavansi, U. G. A Novel Polyurethane Sealant Based on Hydroxy‐Terminated Polybutadiene. J. Appl. Polym. Sci. 2006, 99, 884–890. DOI: 10.1002/app.22815.
  • Lee, S.; Choi, C. H.; Hong, I.; Lee, J. W. Curing Behavior of Polyurethane as a Binder for Polymer-Bonded Explosives. J. Ind. Eng. Chem. 2015, 21, 980–985. DOI: 10.1016/j.jiec.2014.05.004.
  • Yang, W.; Yang, J.; Zhao, Y.; Zhang, Y. Preparation and Structure Study of Water-Blown Polyurethane/RDX Gun Propellant Foams. J. Energ. Mater. 2018, 36, 121–126. DOI: 10.1080/07370652.2017.1320598.
  • Huang, Z.; Nie, H.; Zhang, Y.; Tan, L.; Yin, H.; Ma, X. Migration Kinetics and Mechanisms of Plasticizers, Stabilizers at Interfaces of NEPE Propellant/HTPB Liner/EDPM Insulation. J. Hazard. Mater. 2012, 229-230, 251–257.
  • Ou, Y.; Chang, S.; Zhang, B. Effect of Bismuth-Containing Catalysts on HTPB Curing Kinetics. Chin. J. Energ. Mater. 2015, 23, 568.
  • Lee, S.; Choi, C. H.; Hong, I.; Lee, J. W. Polyurethane Curing Kinetics for Polymer Bonded Explosives: HTPB/IPDI Binder. Korean J. Chem. Eng. 2015, 32, 1701–1706. DOI: 10.1007/s11814-014-0366-y.
  • Wang, J.; An, C.; Li, G.; Liang, L.; Xu, W.; Wen, K. Preparation and Performances of Castable HTPB/CL-20 Booster Explosives. Propellants Explos. Pyrotech. 2011, 36, 34–41. DOI: 10.1002/prep.200900110.
  • Sekkar, V.; Raunija, T. S. K. Issues Related with Pot Life Extension for Hydroxyl-Terminated Polybutadiene-Based Solid Propellant Binder System. Propellants Explos. Pyrotech. 2015, 40, 267–274. DOI: 10.1002/prep.201400054.
  • Jangid, S. K.; Talawar, M. B.; Singh, M. K.; Nath, T.; Sinha, R. K. Experimental Studies on Advanced Sheet Explosive Formulations Based on 2,4,6,8,10,12-Hexanitro- 2,4,6,8,10,12-Hexaazaisowurtzitane (CL-20) and Hydroxyl Terminated Polybutadiene (HTPB), and Comparison with a RDX-Based System. Cent. Eur. J. Energ. Mater. 2016, 13, 135.
  • Wu, Y. G.; Ge, Z.; Luo, Y. J. Properties and Application of a Novel Type of Glycidyl Azide Polymer Modified Double-Base Spherical Powders. J. Therm. Anal. Calorim. 2016, 124, 107–115. DOI: 10.1007/s10973-015-5122-y.
  • Niehaus, M. Compounding of Glycidyl Azide Polymer with Nitrocellulose and Its Influence on the Properties of Propellants. Propellants. Explos. Pyrotech. 2000, 25, 236–240. DOI: 10.1002/1521-4087(200011)25:5<236::AID-PREP236>3.0.CO;2-C.
  • Sun, Y. L.; Li, S. F. The Effect of Nitrate Esters on the Thermal Decomposition Mechanism of GAP. J. Hazard. Mater. 2008, 154, 112–117. [Database] DOI: 10.1016/j.jhazmat.2007.10.002.
  • Zhao, B.; Zhang, T.; Ge, Z.; Luo, Y. Fabrication and Thermal Decomposition of Glycidyl Azide Polymer Modified Nitrocellulose Double Base Propellants. Sci. China Chem. 2016, 59, 472–477. DOI: 10.1007/s11426-015-5538-z.
  • Chen, Z. Q.; Liu, Y.; Liu, Z. R.; et al. An Investigation on the Kinetics and Mechanism of the Thermal Decomposition of GAP. J. Solid. Rocked. Technol. 2003, 6, 52.
  • Wu, Y.; Yi, Z.; Luo, Y.; Ge, Z.; Du, F.; Chen, S.; Sun, J. Fabrication and Properties of Glycidyl Azide Polymer-Modified Nitrocellulose Spherical Powders. J. Therm. Anal. Calorim. 2017, 129, 1555–1562. DOI: 10.1007/s10973-017-6387-0.
  • Cerri, S.; Bohn, M. A.; Menke, K.; Galfetti, L. Aging of HTPB/Al/AP Rocket Propellant Formulations Investigated by DMA Measurements. Propellants Explos. Pyrotech. 2013, 38, 190–198. DOI: 10.1002/prep.201200186.
  • Beckstead, M.; Puduppakkam, k.; Thakre, P.; Yang, V. Modeling of Combustion and Ignition of Solid Propellant Ingredients. Prog. Energ. Combust. 2007, 33, 497–551. [Database] DOI: 10.1016/j.pecs.2007.02.003.
  • Manu, S.; Varghese, T.; Mathew, S.; Ninan, K. Studies on Structure Property Correlation of Cross-Linked Glycidyl Azide Polymer. J. Appl. Polym. Sci. 2009, 114, 3360–3368. DOI: 10.1002/app.30845.
  • Golofit, T.; Zyśk, K. Thermal Decomposition Properties and Compatibility of CL-20 with Binders HTPB, PBAN, GAP and PolyNIMMO. J. Therm. Anal. Calorim. 2015, 119, 1931.
  • Kim, K.-H.; Kim, C.-K.; Yoo, J.-C.; Yoh, J. J. Test-Based Thermal Decomposition Simulation of AP/HTPB and AP/HTPE Propellants. J. Propul. Power 2011, 27, 822–827. DOI: 10.2514/1.B34099.
  • Bohn, M. A.; Cerri, S. Aging Behavior of ADN Solid Rocket Propellants and Their Glass-Rubber Transition Characteristics. In: Chemical Rocket Propulsion. Springer Aerospace Technology; De Luca, L., Shimada, T., Sinditskii, V., Calabro M. Eds.; Springer: Cham, 2016; p 771.
  • Ou, Y.; Jiao, Q.; Yan, S.; Zhu, Y. Influence of Bismuth Complex Catalysts on the Cure Reaction of Hydroxyl-Terminated Polyether-Based Polymer Bonded Explosives. Cent. Eur. J. Energ. Mater. 2018, 15, 131–149. DOI: 10.22211/cejem/81176.
  • Caro, R. I.; Bellerby, J. M.; Kronfli, E. Synthesis and Characterization of a Hydroxy Terminated Polyether (HTPE) Copolymer for Use as a Binder in Composite Rocket Propellants. Int. J. Energ. Mater. Chem. Prop. 2007, 6, 289–306. DOI: 10.1615/IntJEnergeticMaterialsChemProp.v6.i3.20.
  • Caro, R. I.; Bellerby, J. M. Characterization and Comparison of Two Hydroxyl-Terminated Polyether Prepolymers. Int. J. Energetic Materials Chem. Prop. 2010, 9, 351–364. DOI: 10.1615/IntJEnergeticMaterialsChemProp.v9.i4.50.
  • Caro, R. I.; Bellerby, J. M. Behavior of Hydroxyl-Terminated Polyether (HTPE) Composite Rocket Propellants in Slow Cook-off. Int. J. Energetic Mater. Chem. Prop. 2008, 7, 171–185. DOI: 10.1615/IntJEnergeticMaterialsChemProp.v7.i3.10.
  • Fu, X.; Fan, X.; Ju, X.; Qi, X.; Li, J.; Yu, H. Molecular Dynamic Simulations on the Interaction between an HTPE Polymer and Energetic Plasticizers in a Solid Propellant. RSC Adv. 2015, 5, 52844–52851. DOI: 10.1039/C5RA05312A.
  • Cerri, S.; Bohn, M. A.; Menke, K.; Galfetti, L. Ageing Behaviour of HTPB Based Rocket Propellant Formulation. Cent. Eur. J. Energ. Mater. 2009, 6, 149.
  • Menke, K.; Heintz, T.; Schweikert, W.; Keicher, T.; Krause, H. Formulation and Properties of ADN/GAP Propellants. Propellants. Explos. Pyrotech. 2009, 34, 218–230. DOI: 10.1002/prep.200900013.
  • Cerri, S.; Bohn, M. A.; Menke, K.; Galfetti, L. Characterization of ADN/GAP-Based and ADN/Desmophen-Based Propellant Formulations and Comparison with AP Analogues. Propellants Explos. Pyrotech. 2014, 39, 192–204. DOI: 10.1002/prep.201300065.
  • Cerri, S.; Bohn, M. A.; Menke, K.; Galfetti, L. Aging of ADN Rocket Propellant Formulations with Desmophen-Based Elastomer Binder. Propellants Explos. Pyrotech. 2014, 39, 526–537. DOI: 10.1002/prep.201300124.
  • Jawalkar, S. N.; Mehilal, D.; Kurva, R.; Singh, P. P.; Bhattacharya, B. Influence of Bicurative on Processibility of Composite Propellant. DSJ 2007, 57, 669–675. DOI: 10.14429/dsj.57.1800.
  • Sekkar, V. Comparison between Crosslink Densities Derived from Stress-Strain Data and Theoretically Data Evaluated through the a-Model Approach for a Polyurethane Network System Based on Hydroxyl-Terminated Polybutadiene and Isophorone-Diisocyanate. J. Appl. Polym. Sci. 2010, 117, 920–925. DOI: 10.1002/app.31643.
  • Davenas, A. Development of Modern Solid Propellants. J. Propul. Power 2003, 19, 1108–1128. DOI: 10.2514/2.6947.
  • Nair, U. R.; Asthana, S. N.; Rao, A. S.; Gandhe, B. R. Advances in High Energy Materials. DSJ 2010, 60, 137–151. DOI: 10.14429/dsj.60.327.
  • Cui, Y.; Hong, L.; Wang, X.; Tang, X. Evaluation of the Cure Kinetics of Isocyanate Reactive Hot‐Melt Adhesives with Differential Scanning Calorimetry. J. Appl. Polym. Sci. 2003, 89, 2708–2713. DOI: 10.1002/app.12394.
  • Kincal, D.; Zkar, S. Kinetic Study of the Reaction between Hydroxyl-Terminated Polybutadiene and Isophorone Diisocyanate in Bulk by Quantitative FTIR Spectroscopy. J. Appl. Polym. Sci. 1997, 66, 1979–1983. DOI: 10.1002/(SICI)1097-4628(19971205)66:10<1979::AID-APP14>3.0.CO;2-Q.
  • Yang, P. F.; Yu, Y. H.; Wang, S. P.; Li, T. D. Kinetic Studies of Isophorone Diisocyanate-Polyether Polymerization with in Situ FT-IR. Int. J. Polym. Anal. Charact. 2011, 16, 584–590. DOI: 10.1080/1023666X.2011.622107.
  • Hailu, K.; Guthausen, G.; Becker, W.; König, A.; Bendfeld, A.; Geissler, E. In-Situ Characterization of the Cure Reaction of HTPB and IPDI by Simultaneous NMR and IR Measurements. Polym. Test 2010, 29, 513–519. DOI: 10.1016/j.polymertesting.2010.03.001.
  • Li, Y.; Li, J.; Ma, S.; Luo, Y. Different Catalytic Systems on Hydroxyl-Terminated GAP and PET with Poly-Isocyanate: Curing Kinetics Study Using Dynamic in Situ IR Spectroscopy. Int. J. Polym. Anal. Charact. 2016, 21, 495–503. DOI: 10.1080/1023666X.2016.1175202.
  • Bina, C. K.; Kannan, K. G.; Ninan, K. N. DSC Study on the Effect of Isocyanates and Catalysts on the HTPB Cure Reaction. J. Therm. Anal. Calorim. 2004, 78, 753.
  • Fu, X.; Fan, X. Curing Reaction Kinetics of HTPE Polymer Studied by Simultaneous Rheometry and FTIR Measurements. J. Therm. Anal. Calorim. 2016, 125, 977–982. DOI: 10.1007/s10973-016-5485-8.
  • Mao, K. Z.; Xia, M.; Luo, Y. J. Effect of Curing Agent Types on Properties of HTPE Polyurethane Elastomer Films. Chin. J. Explos. Propellants 2012, 1, 55.
  • Wu, Y. G.; Luo, Y. J.; Ge, Z. FT-IR Study on the Curing Reaction of Isophorone Diisocyanate with the Glycidyl Azide Polymer and Its Prepolymer with Nitrocellose. Chin. J. Explos. Propellants 2013, 1, 43.
  • Shen, F. F.; Tanver, A.; Luo, Y. FT-IR Study on the Catalytic Reaction Kinetics of Glycidyl Azide Polymer with N100. Chin. J. Explos. Propellants 2014, 37, 14.
  • Song, X.; Luo, Y. Effect of Hyperbranched Polyesters on HTPB Polyurethane Curing Kinetic. Mat. Res. 2013, 17, 78–82. DOI: 10.1590/S1516-14392013005000193.
  • Tanver, A.; Huang, M.; Yun-Jun, L.; Hei, Z. Chemical Kinetic Studies on Polyurethane Formation of GAP and HTPB with IPDI by Using in-Situ FT-IR Spectroscopy. Adv. Mater. Res. 2015, 337, 1061–1062.
  • Chai, C.; Hou, J.; Yang, X.; Ge, Z.; Huang, M.; Li, G. Two-Component Waterborne Polyurethane: Curing Process Study Using Dynamic in Situ IR Spectroscopy. Polym. Test 2018, 69, 259–265. DOI: 10.1016/j.polymertesting.2018.05.021.
  • Du, W. P.; Zhang, Y.; Tan, L. J.; Chen, H. F. Cure-Reaction Kinetics of Crosslinked Polythiourethane Network for Optical Applications Using FTIR Spectroscopy. Polym. Sci. Ser. B. 2019, 61, 247–253. DOI: 10.1134/S1560090419030035.
  • Shen, F. F.; Tanver, A.; Luo, Y. J. FT-IR Study on the Catalytic Reaction Kinetics of Glycidyl Azide Polymer with N100. Chin. J. Explos. Propell. 2014, 37, 14.
  • Han, J. L.; Yu, C. H.; Lin, Y. H.; Hsieh, K. H. Kinetic Study of the Urethane and Urea Reactions of Isophorone Diisocyanate. J. Appl. Polym. Sci. 2008, 107, 3891–3902. DOI: 10.1002/app.27421.
  • Guo, J.; Chai, T.; Liu, Y.; Cui, J.; Ma, H.; Jing, S.; Zhong, L.; Qin, S.; Wang, G.; Ren, X. Kinetic Research on the Curing Reaction of Hydroxyl-Terminated Polybutadiene Based Polyurethane Binder System via FT-IR Measurements. Coatings 2018, 8, 175. DOI: 10.3390/coatings8050175.
  • Manu, S. K.; Sekkar, V.; Scariah, K. J.; Varghese, T. L.; Mathew, S. Kinetics of Glycidyl Azide Polymer-Based Urethane Network Formation. J. Appl. Polym. Sci. 2008, 110, 908–914. DOI: 10.1002/app.28639.
  • Wu, Y.; Luo, Y.; Ge, Z.; Zhao, L. FT-IR Study on the Curing Reaction of Isophorone Diisocyanate with the Glycidyl Azide Polymer and Its Prepolymer with Nitrocellulose. Chin. J. Explos. Propell. 2013, 01, 43–46.
  • Vyazovkin, S.; Chrissafis, K.; Di Lorenzo, M. L.; Koga, N.; Pijolat, M.; Roduit, B.; Sbirrazzuoli, N.; Suñol, J. J. ICTAC Kinetics Committee Recommendations for Collecting Experimental Thermal Analysis Data for Kinetic Computations. Thermochim. Acta 2014, 590, 1–23. [Database] DOI: 10.1016/j.tca.2014.05.036.
  • Vyazovkin, S.; Burnham, A. K.; Criado, J. M.; Pérez-Maqueda, L. A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data. Thermochim. Acta 2011, 520, 1–19. DOI: 10.1016/j.tca.2011.03.034.
  • Vyazovkin, S. Isoconversional Kinetics of Thermally Stimulated Processes. Berlin: Springer, 2015.
  • Verhoeven, V. W. A.; Padsalgikar, A. D.; Ganzeveld, K. J.; Janssen, L. P. B. M. A Kinetic Investigation of Polyurethane Polymerization for Reactive Extrusion Purposes. J. Appl. Polym. Sci. 2006, 101, 370–382. DOI: 10.1002/app.23848.
  • Parnell, S.; Min, K.; Cakmak, M. Kinetic Studies of Polyurethane Polymerization with Raman Spectroscopy. Polymer 2003, 44, 5137–5144. DOI: 10.1016/S0032-3861(03)00468-3.
  • Edwards, H. G. M.; Johnson, A. F.; Lewis, I. R. Applications of Raman Spectroscopy to the Study of Polymers and Polymerization Processes. J. Raman Spectrosc. 1993, 24, 475–483. DOI: 10.1002/jrs.1250240803.
  • Xu, L.; Li, C.; Simon Ng, K. Y. In-Situ Monitoring of Urethane Formation by FTIR and Raman Spectroscopy. J. Phys. Chem. A. 2000, 104, 3952–3957. DOI: 10.1021/jp992622g.
  • Fernandez d’Arlas, B.; Rueda, L.; Stefani, P. M.; de la Caba, K.; Mondragon, I.; Eceiza, A. Kinetic and Thermodynamic Studies of the Formation of a Polyurethane Based on 1,6-Hexamethylene Diisocyanate and Poly(Carbonate-co-Ester)Diol. Thermochim. Acta 2007, 459, 94–103. DOI: 10.1016/j.tca.2007.03.021.
  • Olejnik, A.; Gosz, K.; Piszczyk, L. Kinetics of Cross-Linking Processes of Fast-Curing Polyurethane System. Thermochim. Acta 2020, 683, 178435. DOI: 10.1016/j.tca.2019.178435.
  • Ahn, W.; Eom, S. A Study on Reaction Kinetics of PTMG/TDI Prepolymer with MOCA by Non-Isothermal DSC. Elastomers Compos. 2015, 50, 92–97. DOI: 10.7473/EC.2015.50.2.092.
  • Check, C.; Imre, B.; Gojzewski, H.; Chartoff, R.; Vancso, G. Kinetic Aspects of Formation and Processing of Polycaprolactone Polyurethanes in-Situ from a Blocked Isocyanate. Polym. Chem. 2018, 9, 1983.
  • Kang, S.; Ku, D.; Lim, J.; Yang, Y.; Kwak, N.; Hwang, T. Characterization for Pyrolysis of Thermoplastic Polyurethane by Thermal Analyses. Macromol. Res. 2005, 13, 212–217. DOI: 10.1007/BF03219054.
  • Surya, D.; Pandita, L. W.; Ramani, S.; Mahendran, V. R.; Machavaram, M. S.; Irfan, D. H.; Gerard, F. F. Simultaneous DSC-FTIR Spectroscopy: Comparison of Cross-Linking Kinetics of an Epoxy/Amine Resin System. Thermochim. Acta 2012, 543, 9–17. DOI: 10.1016/j.tca.2012.04.024.
  • Papadopoulos, E.; Ginic-Markovic, M.; Clarke, S. Reaction Kinetics of Polyurethane Formation Using a Commercial Oligomeric Diisocyanate Resin Studied by Calorimetric and Rheological Methods. Macromol. Chem. Phys. 2008, 209, 2302–2311. DOI: 10.1002/macp.200800345.
  • Stanko, M.; Stommel, M. Kinetic Prediction of Fast Curing Polyurethane Resins by Model-Free Isoconversional Methods. Polymers 2018, 10, 698. DOI: 10.3390/polym10070698.
  • Catherine, K. B.; Krishnan, K.; Ninan, K. N. A DSC Study on Cure Kinetics of HTPB-IPDI Urethane Reaction. J. Therm. Anal. Calorim. 2000, 59, 93–100. DOI: 10.1023/A:1010127727162.
  • Mallmann, E. S.; Barbosa, MiR.; Filho, R. M. Assessment of Biobased Polyurethane Reaction Kinetics through DSC and FTIR Analysis. IJSRCE 2014, 1, 66–73. DOI: 10.12983/ijsrce-2014-p0066-0073.
  • Hui, M.; Yu-Cun, L.; Tao, C.; Tuo-Ping, H.; Jia-Hu, G.; Yan-Wu, Y.; Jun-Ming, Y.; Jian-Hua, W.; Ning, Q.; Liang, Z. Kinetic Studies on the Cure Reaction of Hydroxylterminated Polybutadiene Based Polyurethane with Variable Catalysts by Differential Scanning Calorimetry. e-Polymers 2017, 17, 89–94. DOI: 10.1515/epoly-2016-0245.
  • Sultan, W.; Busnel, J. P. Kinetic Study of Polyurethanes Formation by Using Differential Scanning Calorimetry. J. Therm. Anal. Calorim. 2006, 83, 355–359. DOI: 10.1007/s10973-005-7026-8.
  • Xiao, Y.; Jin, B.; Peng, R.; Zhang, Q.; Liu, Q.; Guo, P.; Chu, S. Kinetic and Thermodynamic Analysis of the Hydroxyl Terminated Polybutadiene Binder System by Using Microcalorimetry. Thermochim. Acta 2018, 659, 13–18. DOI: 10.1016/j.tca.2017.10.025.
  • Tao, J.; Jin, B.; Peng, R.; Chu, S. Isothermal Curing of the Glycidyl Azide Polymer Binder System by Microcalorimetry. Polym. Test 2018, 71, 231–237. DOI: 10.1016/j.polymertesting.2018.09.015.
  • Ozawa, T. A New Method of Analyzing Thermogravimetric Data. BCSJ 1965, 38, 1881–1886. DOI: 10.1246/bcsj.38.1881.
  • Crane, L. W.; Dynes, P. J.; Kaelble, D. H. Analysis of Curing Kinetics in Polymer Composites. J. Polym. Sci. B Polym. Lett. Ed. 1973, 11, 533–540. DOI: 10.1002/pol.1973.130110808.
  • Kissinger, H. E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702–1706. DOI: 10.1021/ac60131a045.
  • Brown, M. E. An Introduction to Thermal Analysis: Techniques and Applications; Kluwer Academic Publishers-Springer: Netherlands, 2004.
  • Wang, R.; Li, X.; Wang, X.; Luo, Y. Study on the Click Chemical Curing Reaction Kinetics of Polybutadiene Triazole System by Non-Isothermal DSC Method. Chin. J. Explos. Propell. 2019, 4, 328–334.
  • He, W.; He, L. M.; Ma, Z. L.; Guo, Y. L. The Kinetic and Viscosity Analysis of Glycidyl Azide Polymer Spherical Propellant. J. Therm. Anal. Calorim. 2015, 124, 943.
  • Cioffi, M.; Ganzeveld, K. J.; Hoffmann, A. C.; Janssen, L. P. B. M. Rheokinetics of Linear Polymerization. A Literature Review. Polym. Eng. Sci. 2002, 42, 2383–2392. DOI: 10.1002/pen.11124.
  • Kumar, K. S. S.; Nair, C. P. R.; Ninan, K. N. Rheokinetic Investigations on the Thermal Polymerization of Benzoxazine Monomer. Thermochim Acta 2006, 441, 150–155. DOI: 10.1016/j.tca.2005.12.007.
  • Sekkar, V.; Ambika, D. K.; Ninan, K. N. Rheokinetic Evaluation on the Formation of Urethane Networks Based on Hydroxyl‐Terminated Polybutadiene. J. Appl. Polym. Sci. 2001, 79, 1869–1876. DOI: 10.1002/1097-4628(20010307)79:10<1869::AID-APP160>3.0.CO;2-7.
  • Wei, H.; Liming, H.; Zhongliang, M.; Yanli, G. Using Rheometry to Study the Curing Kinetics of Glycidyl Azide Polymer Spherical Propellant by Non-Isothermal Method. Rheol. Acta 2016, 55, 365–367. DOI: 10.1007/s00397-016-0926-7.
  • Sudha, J. D.; Pradhan, S.; Viswanath, H.; Unnikrishnan, J.; Brahmbhatt, P.; Manju, M. S. Studies on the Cure Parameters of Cyanate Ester–Epoxy Blend System through Rheological Property Measurements. J. Therm. Anal. Calorim. 2014, 115, 743–750. DOI: 10.1007/s10973-013-3273-2.
  • Man, Z.; Qi, L.; He, W.; He, L. A Novel Approach on the Study of Cure Kinetics for Rheological Isothermal and Non-Isothermal Methods. Compos. Part B. 2019, 162, 242–249.
  • Lucio, B.; de la Fuente, J. L. Kinetic and Thermodynamic Analysis of the Polymerization of Polyurethanes by a Rheological Method. Thermochim. Acta 2016, 625, 28–35. DOI: 10.1016/j.tca.2015.12.012.
  • Lucio, B.; de la Fuente, J. L. Rheokinetic Analysis on the Formation of Metallo-Polyurethanes Based on Hydroxyl-Terminated Polybutadiene. Eur. Polym. J. 2014, 50, 117–126. DOI: 10.1016/j.eurpolymj.2013.10.013.
  • Lucio, B.; de la Fuente, J. L. Non-Isothermal DSC and Rheological Curing of Ferrocene-Functionalized Hydroxyl-Terminated Polybutadiene Polyurethane. React. Funct. Polym. 2016, 107, 60–68.
  • Rahimi, S.; Peretz, A.; Natan, B. On Shear Rheology of Gel Propellants. Prop. Explos. Pyrotech. 2007, 32, 165–174. DOI: 10.1002/prep.200700018.
  • Botchu, V.; Jyoti, S.; Baek, S. W. Rheological Characterization of Metalized and Non-Metalized Ethanol Gel Propellants. Propell. Explos. Pyrotech. 2014, 39, 866–873.
  • Teipel, U.; Barth, U. F. Rheology of Nano-Scale Aluminum Suspensions. Propellants. Explos. Pyrotech. 2001, 26, 268–272. DOI: 10.1002/1521-4087(200112)26:6<268::AID-PREP268>3.0.CO;2-L.
  • You, J. S.; Noh, S. T. Rheological and Thermal Properties of Glycidyl Azide Polyol-Based Energetic Thermoplastic Polyurethane Elastomer. Polym. Int. 2013, 62, 158–164. DOI: 10.1002/pi.4271.
  • Mahanta, A. K.; Dharmsaktu, I.; Pattnayak, P. K. Rheological Behavior of HTPB-Based Composite Propellant: Effect of Temperature and Pot Life on Casting Rate. DSJ 2007, 57, 435–442. DOI: 10.14429/dsj.57.1791.
  • Mahanta, A. K.; Goyal, M.; Pathak, D. Rheokinetic Analysis of Hydroxy Terminated Polybutadiene Based Solid Propellant Slurry. E. J. Chem. 2010, 7, 171–179. DOI: 10.1155/2010/750393.
  • Bandgar, B. M.; Krishnamurthy, V. N.; Mukundan, T.; Sharma, K. C. Mathematical Modeling of Rheological Properties of Hydroxyl Terminated Polybutadiene Binder and Dioctyl Adipate Plasticizer. J. Appl. Polym. Sci. 2002, 85, 1002–1007. DOI: 10.1002/app.10479.
  • Bandgar, B. M.; Sharma, K. C.; Mukundan, T.; Krishnamurthy, V. N. Rheokinetic Modeling of HTPB–TDI and HTPB–DOA–TDI Systems. J. Appl. Polym. Sci. 2003, 89, 1331–1335. DOI: 10.1002/app.12254.
  • Li, H. X.; Wang, J. Y.; Chong-Wei, A. N. Study on the Rheological Properties of CL-20/HTPB Casting Explosives. Cent. Eur. J. Energy Mater. 2014, 11, 237–255.
  • Santhosh, G.; Reshmi, S.; Reghunadhan Nair, C. P. Rheokinetic Characterization of Polyurethane Formation in a Highly Filled Composite Solid Propellant. J. Therm. Anal. Calorim. 2020, 140, 213–223. DOI: 10.1007/s10973-019-08793-6.
  • Agawane, N. T.; Soman, R. R.; Wagh, R. M.; Athar, J.; Talawar, M. Optimization of Curing Agents for Linear Difunctional Glycidyl Azide Polymer (GAP), with and without Isocyanate, for Binder Applications. Cent Eur. J. Energy Mater. 2018, 15, 206–222.
  • Canamero-Martinez, P.; Fernandez-Garcia, M.; De la Fuente, J. L. Rheological Cure Characterization of a Polyfunctional Epoxy Acrylic Resin. React. Funct. Polym. 2010, 70, 761–766. DOI: 10.1016/j.reactfunctpolym.2010.07.010.
  • Horie, H.; Hiura, M.; Sawada, I.; Mita, H.; Kambe, J. Calorimetric Investigation of Polymerization Reactions. III. Curing Reaction of Epoxides with Amines. J. Polym. Sci. A-1 Polym. Chem. 1970, 8, 1357–1372. DOI: 10.1002/pol.1970.150080605.
  • Kamal, M. R.; Sourour, S. Kinetics and Thermal Characterization of Thermoset Cure. Polym. Eng. Sci. 1973, 13, 59–64. DOI: 10.1002/pen.760130110.
  • He, L.; Zhou, J.; Dai, S.; Ma, Z. Influence of Combustion Modifiers on the Cure Kinetics of Glycidyl Azide Polymer Based Propellant-Evaluated through Rheo-Kinetic Approach. Polymers 2019, 11, 637. DOI: 10.3390/polym11040637.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.