609
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Analytical Techniques for the Preservation of Cultural Heritage: Frontiers in Knowledge and Application

Pages 1171-1196 | Published online: 03 Jan 2021

References

  • Domenech-Carbo, M. T. Novel Analytical Methods for Characterising Binding Media and Protective Coatings in Artworks. Anal. Chim. Acta 2008, 621, 109–139. DOI: 10.1016/j.aca.2008.05.056.
  • Elfeky, O. M.; Hassan, M. L. Artificial Aging and Deterioration of Oil‐Painted Fabriano Paper and Cardboard Paper Supports. J. Poly. Sci. 2008, 109, 1594–1603. DOI: 10.1002/app.28226.
  • Romero-Pastor, J.; Cardell, C.; Yebra-Rodriguez, A.; Rodriguez-Navarro, A. B. Validating Chemical and Structural Changes in Painting Materials by Principal Component Analysis of Spectroscopic Data Using Internal Mineral Standards. J. Cult. Herit. 2013, 14, 509–514. DOI: 10.1016/j.culher.2012.11.006.
  • Wang, N.; He, L.; Zhao, X.; Simon, S. Comparative Analysis of Eastern and Western Drying-Oil Binding Media Used in Polychromic Artworks by Pyrolysis-Gas Chromatography/Mass Spectrometry under the Influence of Pigments. Microchem. J. 2015, 123, 201–210. DOI: 10.1016/j.microc.2015.06.007.
  • Ghezzi, L.; Duce, C.; Bernazzani, L.; Bramanti, E.; Colombini, M. P.; Tine, M. R.; Bonaduce, I. Interactions between Inorganic Pigments and Rabbit Skin Glue in Reference Paint Reconstructions. J. Therm. Anal. Calorim. 2015, 122, 315–322. DOI: 10.1007/s10973-015-4759-x.
  • Cartechini, L.; Vagnini, M.; Palmieri, M.; Pitzurra, L.; Mello, T.; Mazurek, J.; Chiari, G. Immunodetection of Proteins in Ancient Paint Media. Acc. Chem. Res. 2010, 43, 867–876. DOI: 10.1021/ar900279d.
  • Klisinska-Kopacz, A. An Investigation of a Unique Group of Painted Silk Banners from a Polish Collection. J. Raman Spectrosc. 2017, 48, 1725–1731. DOI: 10.1002/jrs.5212.
  • Andreotti, A.; Bonaduce, I.; Colombini, M. P.; Gautier, G.; Modugno, F.; Ribechini, E. Combined GC/MS Analytical Procedure for the Characterization of Glycerolipid, Waxy, Resinous, and Proteinaceous Materials in a Unique Paint Microsample. Anal. Chem. 2006, 78, 4490–4500. DOI: 10.1021/ac0519615.
  • Fontana, D.; Alberghina, M. F.; Barraco, R.; Basile, S.; Tranchina, L.; Brai, M.; Gueli, A.; Troja, S. O. Historical Pigments Characterisation by Quantitative X-Ray Fluorescence. J. Cult. Herit. 2014, 15, 266–274. DOI: 10.1016/j.culher.2013.07.001.
  • Pellerito, C.; Di Marco, A. E.; Di Natale, M. C.; Pignataro, B.; Scopelliti, M.; Sebastianelli, M. Scientific Studies for the Restoration of a Wood Painting of the Galleria Interdisciplinare Regionale Della Sicilia–Palazzo Mirto di Palermo. Microchem. J. 2016, 124, 682–692. DOI: 10.1016/j.microc.2015.10.033.
  • Charola, A. E.; Koestler, R. J. Methods in Conservation. In Conservation Science: Heritage Materials; May, E.; Jones, M., Eds.; RSC Publishing: Cambridge, 2006; pp 13–31.
  • Orna, M. V.; Lambert, J. B. New Directions in Archaeological Chemistry. In Archaeological Chemistry Organic, Inorganic, and Biochemical Analysis; American Chemical Society: Washington, 1996; pp 1–9.
  • Colombini, M. P.; Andreotti, A.; Bonaduce, I.; Modugno, F.; Ribechini, E. Analytical Strategies for Characterizing Organic Paint Media Using Gas Chromatography/Mass Spectrometry. Acc. Chem. Res. 2010, 43, 715–727. DOI: 10.1021/ar900185f.
  • Domenech-Carbo, M. T.; Osete-Cortina, L. Another Beauty of Analytical Chemistry: Chemical Analysis of Inorganic Pigments of Art and Archaeological Objects. ChemTexts 2016, 2, 14. DOI: 10.1007/s40828-016-0033-5.
  • Miller, J. N.; Miller, J. C. Statistics and Chemometrics for Analytical Chemistry, 6th ed.; Pearson Education: London, 2010.
  • Stuart, B. H. Molecular Spectroscopy. In Forensic Analytical Techniques; John Wiley & Sons: Chichester, 2013; pp 69–112.
  • Vitha, M. F. Spectroscopy: Principles and Instrumentation; John Wiley & Sons: New Jersey, 2019.
  • Maynez-Rojas, M. A.; Casanova-Gonzalez, E.; Ruvalcaba-Sil, J. L. Identification of Natural Red and Purple Dyes on Textiles by Fiber-Optics Reflectance Spectroscopy. Spectrochim Acta, Part A 2017, 178, 239–250. DOI: 10.1016/j.saa.2017.02.019.
  • Zaleski, S.; Montagnino, E.; Brostoff, L.; Muller, I.; Buechele, A.; Lynn Ward‐Bamford, C.; France, F.; Loew, M. Application of Fiber Optic Reflectance Spectroscopy for the Detection of Historical Glass Deterioration. J. Am. Ceram. Soc. 2020, 103, 158–166. DOI: 10.1111/jace.16703.
  • Cala, E.; Agostino, A.; Fenoglio, G.; Capra, V.; Porticelli, F.; Manzari, F.; Fiddyment, S.; Aceto, M. The Messale Rosselli: Scientific Investigation on an Outstanding 14th Century Illuminated Manuscript from Avignon. J. Archaeol. Sci. Rep. 2019, 23, 721–730. DOI: 10.1016/j.jasrep.2018.12.001.
  • Gryczynski, Z. K.; Gryczynski, I. Practical Fluorescence Spectroscopy; CRC Press: Florida, 2019.
  • Valeur, B. Molecular Fluorescence Principles and Applications; Wiley-VCH: Weinheim, 2001.
  • Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006.
  • Engelborghs, Y.; Visser, A. J. W. C. Fluorescence Spectroscopy and Microscopy: Methods and Protocols; Humana Press: New Jersey, 2014.
  • Brambilla, L.; Riedo, C.; Baraldi, C.; Nevin, A.; Gamberini, M. C.; D'Andrea, C.; Chiantore, O.; Goidanich, S.; Toniolo, L. Characterization of Fresh and Aged Natural Ingredients Used in Historical Ointments by Molecular Spectroscopic Techniques: IR, Raman and Fluorescence. Anal. Bioanal. Chem. 2011, 401, 1827–1837. DOI: 10.1007/s00216-011-5168-z.
  • Barbara, H. S. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons; Chichester, 2004.
  • Tasumi, M. Introduction to Experimental Infrared Spectroscopy: Fundamentals and Practical Methods; John Wiley & Sons: Chichester, 2014.
  • Ajo, D.; Casellato, U.; Fiorin, E.; Vigato, P. A. Ciro Ferri’s Frescoes: A Study of Painting Materials and Technique by SEM-EDS Microscopy, X-Ray Diffraction, Micro FT-IR and Photoluminescence Spectroscopy. J. Cult. Herit. 2004, 5, 333–348. DOI: 10.1016/j.culher.2004.05.003.
  • Smith, E.; Dent, G. Modern Raman Spectroscopy: A Practical Approach, 2nd ed.; John Wiley & Sons: Chichester, 2019.
  • Das, R. S.; Agrawal, Y. K. Raman Spectroscopy: Recent Advancements, Techniques and Applications. Vib. Spectrosc. 2011, 57, 163–176. DOI: 10.1016/j.vibspec.2011.08.003.
  • Lazidou, D.; Lampakis, D.; Karapanagiotis, I.; Panayiotou, C. Investigation of the Cross-Section Stratifications of Icons Using Micro-Raman and Micro-Fourier Transform Infrared (FT-IR) Spectroscopy. Appl. Spectrosc. 2018, 72, 1258–1271. DOI: 10.1177/0003702818777772.
  • Mahoney, C. M.; Gillen, G. An Introduction to Cluster Secondary Ion Mass Spectrometry (Cluster SIMS). In Cluster Secondary Ion Mass Spectrometry: Principles and Applications; Mahoney, C. M., Ed.; John Wiley & Sons: New Jersey, 2013; pp 1–11.
  • Walls, J. M.; Smith, R. Surface Science Techniques; Pergamon Press: Oxford, 1994.
  • Balta, I. Z.; Pederzoli, S.; Iacob, E.; Bersani, M. Dynamic Secondary Ion Mass Spectrometry and X-Ray Photoelectron Spectroscopy on Artistic Bronze and Copper Artificial Patinas. Appl. Surf. Sci. 2009, 255, 6378–6385. DOI: 10.1016/j.apsusc.2009.02.020.
  • Townsend, J.; Boon, J. Research and Instrumental Analysis in the Materials of Easel Paintings. In Conservation of Easel Paintings; Stoner, J. H.; Rushfield, R., Eds.; Routledge: London, 2013; pp 341–365.
  • Lomax, S. Q.; Schilling, M. R.; Learner, J. S. The Identification of Synthetic Organic Pigments by FTIR and DTMS. In Modern Paints Uncovered, Proceedings from the Modern Paints Uncovered Symposium, London, May 16–19, 2006; Learner, T.; Learner, T. J.; Smithen, P.; Krueger, J. W.; Schilling, M. R., Eds.; Getty Publications: Los Angeles; 2007; p 105.
  • Scalarone, D.; Van der Horst, J.; Boon, J. J.; Chiantore, O. Direct-Temperature Mass Spectrometric Detection of Volatile Terpenoids and Natural Terpenoid Polymersin Fresh and Artificially Aged Resins . J Mass Spectrom . 2003, 38, 607–617. DOI: 10.1002/jms.470.
  • Suder, P. Tandem Mass Spectrometry. In Mass Spectrometry: An Applied Approach, 2nd ed.; Smoluch, M.; Grasso, G.; Suder, P.; Silberring, J., Eds.; John Wiley & Sons: New Jersey, 2019; pp 231–259.
  • De Hoffmann, E.; Stroobant, V. Mass Spectrometry: Principles and Applications, 3rd ed.; John Wiley & Sons: Chichester, 2007.
  • Bona, A.; Papai, Z.; Maasz, G.; Toth, G. A.; Jambor, E.; Schmidt, J.; Toth, C.; Farkas, C.; Mark, L. Mass Spectrometric Identification of Ancient Proteins as Potential Molecular Biomarkers for a 2000-Year-Old Osteogenic Sarcoma. PLoS One. 2014, 9, e87215. DOI: 10.1371/journal.pone.0087215.
  • Lambert, J. B.; Mazzola, E. P. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods; Prentice Hall: New Jersey, 2003.
  • Bovey, F. A.; Mirau, P. A.; Gutowsky, H. S. Nuclear Magnetic Resonance Spectroscopy, 2nd ed.; Academic Press: London, 1998.
  • Alfano, D.; Albunia, A. R.; Motta, O.; Proto, A. Detection of Diagenetic Alterations by Spectroscopic Analysis on Archaeological Bones from the Necropolis of Poseidonia (Paestum): A Case Study. J. Cult. Herit. 2009, 10, 509–513. DOI: 10.1016/j.culher.2009.03.001.
  • Rieger, P. Electron Spin Resonance: Analysis and Interpretation; RSC Publishing: Cambridge, 2007.
  • Weil, J. A.; Bolton, J. R. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd ed.; John Wiley & Sons: New Jersey, 2007.
  • Mazzocchin, G. A.; Agnoli, F.; Salvadori, M. Analysis of Roman Age Wall Paintings Found in Pordenone, Trieste and Montegrotto. Talanta. 2004, 64, 732–741. DOI: 10.1016/j.talanta.2004.03.055.
  • Gutlich, P.; Bill, E.; Trautwein, A. X. Mössbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications; Springer: Berlin, 2010.
  • Nasu, S. General Introduction to Mössbauer Spectroscopy. In Spectroscopy: Tutorial Book; Yoshida, Y.; Langouche, G., Eds.; Springer: Berlin, 2013; pp 1–22.
  • Annamalai, G. R.; Ravisankar, R.; Krishna, D. C.; Chandrasekaran, A.; Rajan, K. Application of 57Fe Mössbauer Spectroscopy for the Characterization of Archaeological Pottery of Tamil Nadu. India. J. Rad. Nucl. Appl. 2016, 1, 1–9. DOI: 10.18576/jrna/010101.
  • Purdie, N.; Brittain, H. G. Analytical Applications of Circular Dichroism; Elsevier: Netherlands, 1994.
  • Mander, L.; Lui, H.-W. Comprehensive Natural Products II: Chemistry and Biology; Elsevier: Oxford, 2010; Vol. 9, p 91.
  • Orsini, S.; Zinna, F.; Biver, T.; Di Bari, L.; Bonaduce, I. Circularly Polarized Luminescence Reveals Interaction between Commercial Stains and Protein Matrices Used in Paintings. RSC Adv. 2016, 6, 96176–96181. DOI: 10.1039/C6RA14795J.
  • Garratt-Reed, A. J.; Bell, D. C. Energy Dispersive X-Ray Analysis in the Electron Microscope; BIOS: Oxford, 2003.
  • Goldstein, J. I.; Newbury, D. E.; Michael, J. R.; Ritchie, N. W.; Scott, J. H.; Joy, D. C. Scanning Electron Microscopy and X-Ray Microanalysis, 4th ed.; Springer: New York, 2017.
  • Franquelo, M. L.; Duran, A.; Castaing, J.; Arquillo, D.; Perez-Rodriguez, J. L. XRF, μ-XRD and μ-Spectroscopic Techniques for Revealing the Composition and Structure of Paint Layers on Polychrome Sculptures after Multiple Restorations. Talanta 2012, 89, 462–469. DOI: 10.1016/j.talanta.2011.12.063.
  • Hofer, F.; Schmidt, F. P.; Grogger, W.; Kothleitner, G. Fundamentals of Electron Energy-Loss Spectroscopy. IOP Conf. Ser: Mater. Sci. Eng. 2016, 109, 012007. DOI: 10.1088/1757-899X/109/1/012007.
  • Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed.; Springer: New York, 2011.
  • Negi, D. S.; Idrobo, J. C.; Rusz, J. Probing the Localization of Magnetic Dichroism by Atomic-Size Astigmatic and Vortex Electron Beams. Sci. Rep. 2018, 8, 1–12. DOI: 10.1038/s41598-018-22234-8.
  • Fredrickx, P.; De Ryck, I.; Janssens, K.; Schryvers, D.; Petit, J. P.; Docking, H. EPMA and µ‐SRXRF Analysis and TEM-Based Microstructure Characterization of a Set of Roman Glass Fragments. X-Ray Spectrom. 2004, 33, 326–333. DOI: 10.1002/xrs.734.
  • Beckhoff, B.; Kanngießer, B.; Langhoff, N.; Wedell, R.; Wolff, H. Handbook of Practical X-Ray Fluorescence Analysis; Springer: Berlin, 2007.
  • Donais, M. K.; George, D. B. X-Ray Fluorescence Spectrometry and Its Applications to Archaeology: An Illustrated Guide; Momentum Press: New York, 2018.
  • Alfeld, M.; Pedroso, J. V.; Van Eikema Hommes, M.; Van der Snickt, G.; Tauber, G.; Blaas, J.; Haschke, M.; Erler, K.; Dik, J.; Janssens, K. A Mobile Instrument for in Situ Scanning Macro-XRF Investigation of Historical Paintings. J. Anal. At. Spectrom. 2013, 28, 760–767. DOI: 10.1039/c3ja30341a.
  • Willmott, P. An Introduction to Synchrotron Radiation: Techniques and Applications, 2nd ed.; John Wiley & Sons: New Jersey, 2019.
  • Bracci, S.; Caruso, O.; Galeotti, M.; Iannaccone, R.; Magrini, D.; Picchi, D.; Pinna, D.; Porcinai, S. Multidisciplinary Approach for the Study of an Egyptian Coffin (Late 22nd/Early 25th Dynasty): Combining Imaging and Spectroscopic Techniques. Spectrochim. Acta A 2015, 145, 511–522. DOI: 10.1016/j.saa.2015.02.052.
  • Zhang, X.; Zhang, H.; Chang, F.; Ashraf, U.; Peng, W.; Wu, H.; Liu, Q.; Liu, F.; Zhang, Y.; Duan, L. Application of Corrected Methods for High-Resolution XRF Core Scanning Elements in Lake Sediments. Appl. Sci. 2020, 10, 8012. DOI: 10.3390/app10228012.
  • Zolotoyabko, E. Basic Concepts of X-Ray Diffraction; Wiley-VCH: Weinheim, 2014.
  • Seeck, O. H.; Murphy, B. X-Ray Diffraction: Modern Experimental Techniques; CRC Press: New York, 2015.
  • Clegg, W. X-Ray Crystallography, 2nd ed.; Oxford University Press: Oxford, 2015.
  • Kaufmann, E. N. Characterization of Materials, 2nd ed.; John Wiley & Sons: New Jersey, 2012; Vol. 3. p 1925.
  • Serifaki, K.; Boke, H.; Yalcin, S.; Ipekoglu, B. Characterization of Materials Used in the Execution of Historic Oil Paintings by XRD, SEM-EDS, TGA and LIBS Analysis. Mater. Charact. 2009, 60(4), 303–311. DOI: 10.1016/j.matchar.2008.09.016.
  • Garcia, R.; Baez, A. P. Atomic Absorption Spectrometry. In Atomic Absorption Spectroscopy; Farrukh, M. A., Ed.; InTechOpen: Rijeka, 2011; pp 1–12.
  • Worsfold, P.; Poole, C.; Townshend, A.; Miro, M. Encyclopedia of Analytical Science, 3rd ed.; Elsevier: Amsterdam, 2019; Vol. 1. p 137.
  • Siano, S.; Agresti, J. Archaeometallurgical Characterisation of Donatello's Florentine Copper Alloy Masterpieces Using Portable Laser-Induced Plasma Spectroscopy and Traditional Techniques. Stud. Conserv. 2015, 60, S106–S119. DOI: 10.1179/0039363015Z.000000000215.
  • Dean, J. R. Practical Inductively Coupled Plasma Spectroscopy; John Wiley & Sons: Chichester, 2005.
  • Nelms, S. M. Inductively Coupled Plasma Mass Spectrometry Handbook; Blackwell Publishing: Oxford, 2005.
  • Caponetti, E.; Armetta, F.; Brusca, L.; Martino, D. C.; Saladino, M. L.; Ridolfi, S.; Chirco, G.; Berrettoni, M.; Conti, P.; Bruno, N.; Tusa, S. A Multivariate Approach to the Study of Orichalcum Ingots from the Underwater Gela's Archaeological Site. Microchem. J. 2017, 135, 163–170. DOI: 10.1016/j.microc.2017.09.003.
  • Rai, V. N.; Thakur, S. N. Instrumentation for Laser-Induced Breakdown Spectroscopy. In Laser Induced Breakdown Spectroscopy; Miziolek, A. W.; Palleschi, V.; Schechter, I., Eds.; Cambridge University Press: Cambridge, 2006; pp 113–133.
  • Musazzi, S.; Perini, U. Laser-Induced Breakdown Spectroscopy: Theory and Applications; Springer: Berlin, 2017.
  • Jin, P. J.; Huang, W.; Zhao, G.; Wang, X. L. The Identification of the Pigments Used to Paint Statues of Feixiange Cliff in China in Late 19th Century by Micro-Raman Spectroscopy and Scanning Electron Microscopy/Energy Dispersive X-Ray Analysis. J. Mol. Struct. 2010, 983, 22–26. DOI: 10.1016/j.molstruc.2010.08.022.
  • Ishii, K. PIXE and Its Applications to Elemental Analysis. Qubs. 2019, 3, 12. DOI: 10.3390/qubs3020012.
  • Johansson, S. A. E. Introduction to PIXE. In Particle-Induced X-Ray Emission Spectrometry (PIXE); Johansson, S. A. E.; Campbell, J. L.; Malmqvist, K. G., Eds.; John Wiley & Sons: New York, 1995; pp 1–18.
  • Quarta, G.; D’Elia, M.; Butalag, K.; Maruccio, L.; Demortier, G.; Calcagnile, L. An Integrated Accelerator Mass Spectrometry Radiocarbon Dating and Ion Beam Analysis Approach for the Study of Archaeological Contexts. Appl. Phys. A. 2006, 83, 605–609. DOI: 10.1007/s00339-006-3552-x.
  • Perriere, J. Rutherford Backscattering Spectrometry. Vacuum 1987, 37, 429–432. DOI: 10.1016/0042-207X(87)90327-7.
  • Kotz, R. Rutherford Backscattering Spectroscopy of Electrode Surfaces. In Spectroscopic and Diffraction Techniques in Interfacial Electrochemistry; Gutierrez, C.; Melendres, C. A., Eds.; Springer: Dordrecht, 1990; pp 439–448.
  • Albéric, M.; Müller, K.; Pichon, L.; Lemasson, Q.; Moignard, B.; Pacheco, C.; Fontan, E.; Reiche, I. Non-invasive Quantitative Micro-PIXE-RBS/EBS/EBS Imaging Reveals the Lost Polychromy and Gilding of the Neo-Assyrian Ivories from the Louvre Collection. Talanta 2015, 137, 100–108. DOI: 10.1016/j.talanta.2015.01.029.
  • Kiguchi, M. Compendium of Surface and Interface Analysis; Springer: Singapore, 2018.
  • Newbury, D. E. Electron Beam Instruments. In Encyclopedia of Materials Characterization: Surfaces, Interfaces, Thin Films; Brundle, C. R.; Evans, C. A.; Wilson, S., Eds.; Butxetworch-Heinemann: Stoneham, 1992; pp 117–191.
  • Staub, P. F. The Low Energy X-Ray Spectrometry Technique as Applied to Semiconductors. Microsc. Microanal. 2006, 12, 340–346. DOI: 10.1017/S1431927606060442.
  • Tanasi, D.; Caso, G.; Tykot, R. H.; Amoroso, D. Petrographic and Chemical Characterization of Middle Bronze Age Pottery from Sicily: Towards a Definition of an Etnean Production. Rend. Fis. Acc. Lincei. 2019, 30, 399–415. DOI: 10.1007/s12210-019-00803-x.
  • Malainey, M. E. A Consumer’s Guide to Archaeological Science: Analytical Techniques; Springer: New York, 2011.
  • Ma, T. S. Organic Elemental Analysis. In Analytical Instrumentation Handbook, 2nd ed.; Ewing, G. W. Ed.; Marcel Dekker: New York, 1997; pp 85–123.
  • Lejay, M.; Alexis, M. A.; Quenea, K.; Anquetil, C.; Bon, F. The Organic Signature of an Experimental Meat-Cooking Fireplace: The Identification of Nitrogen Compounds and Their Archaeological Potential. Org. Geochem. 2019, 138, 103923. DOI: 10.1016/j.orggeochem.2019.103923.
  • Winchester, M. R.; Payling, R. Radio-Frequency Glow Discharge Spectrometry: A Critical Review. Spectrochim. Acta B 2004, 59, 607–666. DOI: 10.1016/j.sab.2004.02.013.
  • Calliari, I.; Dabalŕ, M.; Brunoro, G.; Ingo, G. M. Advanced Surface Techniques for Characterization of Cu-Base Artefacts. J. Radioanal. Nucl. Chem. 2001, 247, 601–608. DOI: 10.1023/A:1010663417536.
  • Stuart, B. H. Analytical Techniques in Materials Conservation; John Wiley & Sons: Chichester, 2007.
  • Tkaczyk, T. S. Field Guide to Microscopy; SPIE Press: Washington, 2010.
  • Badr, N. M.; Ali, M. F.; El Hadidi, N.; Naeem, G. A. Identification of Materials Used in a Wooden Coffin Lid Covered with Composite Layers Dating Back to the Ptolemaic Period in Egypt. Cons. Património. 2018, 29, 11–24. DOI: 10.14568/cp2017029.
  • Ul-Hamid, A. A Beginners' Guide to Scanning Electron Microscopy; Springer: Switzerland, 2018.
  • Echlin, P. Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis; Springer: New York, 2009.
  • Hu, K.; Bai, C.; Ma, L.; Bai, K.; Liu, D.; Fan, B. A Study on the Painting Techniques and Materials of the Murals in the Five Northern Provinces’ Assembly Hall, Ziyang, China. Herit. Sci. 2013, 1, 18. DOI: 10.1186/2050-7445-1-18.
  • Serefidou, M.; Bracci, S.; Tapete, D.; Andreotti, A.; Biondi, L.; Colombini, M. P.; Giannini, C.; Parenti, D. Microchemical and Microscopic Characterization of the Pictorial Quality of Egg-Tempera Polyptych, Late 14th Century, Florence, Italy. Microchem. J. 2016, 127, 187–198. DOI: 10.1016/j.microc.2016.03.001.
  • Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed.; Springer: New York, 2009.
  • Tang, C. Y.; Yang, Z. Transmission Electron Microscopy (TEM). In Membrane Characterization; Hilal, N.; Ismail, A. F.; Matsuura, T.; Oatley-Redceiffe, D., Eds.; Elsevier: Amsterdam, 2017; pp 145–160.
  • Chang, B. S.; Uhm, C. S.; Park, C. H.; Kim, H. K.; Lee, G. Y.; Cho, H. H.; Chung, Y. H.; Shin, D. H. Ultramicroscopic Study on the Hair of Newly Found 15th Century Mummy in Daejeon, Korea. Ann. Anat. 2006, 188, 439–445. DOI: 10.1016/j.aanat.2006.03.006.
  • Voigtlander, B. Scanning Probe Microscopy: Atomic Force Microscopy and Scanning Tunneling Microscopy; Springer: Berlin, 2015.
  • Bai, C. Scanning Tunneling Microscopy and Its Application, 2nd ed.; Springer: Berlin, 2000.
  • Tommesani, L.; Brunoro, G.; Garagnani, G. L.; Montanari, R.; Volterri, R. Corrosion Behaviour of Modern Bronzes Simulating Historical Alloys. Revue d'Archéomêtrie 1997, 21, 131–139. DOI: 10.3406/arsci.1997.954.
  • Bowen, W. R.; Hilal, N. Atomic Force Microscopy in Process Engineering: An Introduction to AFM for Improved Processes and Products; Butterworth-Heinemann: Oxford, 2009.
  • Sanders, W. C. Atomic Force Microscopy: Fundamental Concepts and Laboratory Investigations; CRC Press: Florida, 2020.
  • De Sa, M. H.; Eaton, P.; Ferreira, J. L.; Melo, M. J.; Ramos, A. M. Ageing of Vinyl Emulsion Paints-An Atomic Force Microscopy Study. Surf. Interface Anal. 2011, 43, 1160–1164. DOI: 10.1002/sia.3664.
  • Paddock, S. W. Confocal Laser Scanning Microscopy. Biotechniques. 1999, 27, 992–1004. DOI: 10.2144/99275ov01.
  • Adams, F.; Barbante, C. Chemical Imaging Analysis; Elsevier: Amsterdam, 2015.
  • Morrow, J. J.; Elowsky, C. Application of Autofluorescence for Confocal Microscopy to Aid in Archaeoparasitological Analyses. Korean J Parasitol. 2019, 57, 581–585. DOI: 10.3347/kjp.2019.57.6.581.
  • Murphy, D. B.; Davidson, M. W. Fundamentals of Light Microscopy and Electronic Imaging, 2nd ed.; Wiley-Blackwell: New Jersey, 2013.
  • Asai, D. J. Immunofluorescence Microscopy. In Current Protocols Essential Laboratory Techniques; Gallagher, S. R.; Wiley, E. A. Eds.; John Wiley & Sons: New Jersey, 2008; pp 9.2.1–9.2.21.
  • Hu, W.; Zhang, K.; Zhang, H.; Zhang, B.; Rong, B. Analysis of Polychromy Binder on Qin Shihuang's Terracotta Warriors by Immunofluorescence Microscopy. J. Cult. Herit. 2015, 16, 244–248. DOI: 10.1016/j.culher.2014.05.003.
  • Pamart, A.; Guillon, O.; Faraci, S.; Gattet, E.; Genevois, M.; Vallet, J. M.; De Luca, L. Multispectral Photogrammetric Data Acquisition and Processing for Wall Paintings Studies. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 42, 559–566. DOI: 10.5194/isprs-archives-XLII-2-W3-559-2017.
  • Cosentino, A. Identification of Pigments by Multispectral Imaging; a Flowchart Method. Herit. Sci. 2014, 2, 8. DOI: 10.1186/2050-7445-2-8.
  • Zacharopoulos, A.; Hatzigiannakis, K.; Karamaoynas, P.; Papadakis, V. M.; Andrianakis, M.; Melessanaki, K.; Zabulis, X. A Method for the Registration of Spectral Images of Paintings and Its Evaluation. J. Cult. Herit. 2018, 29, 10–18. DOI: 10.1016/j.culher.2017.07.004.
  • - Rampazzi, L.; Brunello, V.; Corti, C.; Lissoni, E. Non-Invasive Techniques for Revealing the Palette of the Romantic Painter Francesco Hayez. Spectrochim. Acta A 2017, 176, 142–154. DOI: 10.1016/j.saa.2017.01.011.
  • O'Connor, S. Principles of X-Radiography. In X-Radiography of Textiles, Dress and Related Objects; O’Connor, S.; Brooks, M., Eds.; Butterworth-Heinemann: Oxford, 2007; pp 12–22.
  • Greene, A. F.; Hartley, C. W.; Dupuy, P. D.; Chinander, M. The Digital Radiography of Archaeological Pottery: Program and Protocols for the Analysis of Production. J. Archaeol. Sci. 2017, 78, 120–133. DOI: 10.1016/j.jas.2016.11.007.
  • Lahlil, S.; Martin, E. Characterization of 18 Melkite Icons Dating from the 17th to the 19th C. AD. J. Cult. Herit. 2012, 13, 332–338. DOI: 10.1016/j.culher.2011.11.004.
  • Hermanek, P.; Rathore, J. S.; Aloisi, V.; Carmignato, S.; Principles of X-Ray Computed Tomography. In Industrial X-Ray Computed Tomography; Carmignato, S.; Dewulf, W.; Leach, R. Eds.; Springer: Berlin, 2018; pp 25–67.
  • Hsieh, J. Computed Tomography: Principles, Design, Artifacts, and Recent Advances, 2nd ed.; SPIE Press: Washington, 2009.
  • Re, A.; Lo Giudice, A.; Nervo, M.; Buscaglia, P.; Luciani, P.; Borla, M.; Greco, C. The Importance of Tomography Studying Wooden Artefacts: A Comparison with Radiography in the Case of a Coffin Lid from Ancient Egypt. Int. J. Conserv. Sci. 2016, 7, 935–944.
  • Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F. G. Infrared Thermography for Temperature Measurement and Non-destructive Testing. Sensors (Basel) 2014, 14, 12305–12348. DOI: 10.3390/s140712305.
  • Vollmer, M.; Mollmann, K. P. Infrared Thermal Imaging: Fundamentals, Research and Applications; Wiley-VCH: Weinheim, 2010.
  • Brooke, C. Thermal Imaging for the Archaeological Investigation of Historic Buildings. Remote Sens. 2018, 10, 1401. DOI: 10.3390/rs10091401.
  • Baxter, J. B.; Guglietta, G. W. Terahertz Spectroscopy. Anal. Chem. 2011, 83, 4342–4368. DOI: 10.1021/ac200907z.
  • Beard, M. C.; Turner, G. M.; Schmuttenmaer, C. A. Terahertz Spectroscopy. J. Phys. Chem. B. 2002, 106, 7146–7159. DOI: 10.1021/jp020579i.
  • Picollo, M.; Fukunaga, K.; Labaune, J. Obtaining Noninvasive Stratigraphic Details of Panel Paintings Using Terahertz Time Domain Spectroscopy Imaging System. J. Cult. Herit. 2015, 16, 73–80. DOI: 10.1016/j.culher.2014.01.006.
  • Tai, R.; He, J.; Huang, Y.; Wang, J.; Gao, X.; Xiao, T.; Ma, J. Synchrotron Radiation Experimental Techniques. In Synchrotron Radiation in Materials Science: Light Sources, Techniques, and Applications; Fan, C.; Zhao, Z., Eds.; Wiley-VCH: Weinheim, 2018; pp 61–121.
  • Michelin, A.; Drouet, E.; Foy, E.; Dynes, J. J.; Neff, D.; Dillmann, P. Investigation at the Nanometre Scale on the Corrosion Mechanisms of Archaeological Ferrous Artefacts by STXM. J. Anal. At. Spectrom. 2013, 28, 59–66. DOI: 10.1039/C2JA30250K.
  • Wagner, M. J. X-Ray Photoelectron Spectroscopy; Nova Science: New York, 2011.
  • Hofmann, S. Auger- and X-Ray Photoelectron Spectroscopy in Materials Science: A User-Oriented Guide; Springer: Berlin, 2013.
  • Lv, B.; Qian, T.; Ding, H. Angle-Resolved Photoemission Spectroscopy and Its Application to Topological Materials. Nat. Rev. Phys. 2019, 1, 609–626. DOI: 10.1038/s42254-019-0088-5.
  • Joanne James, B.; Cameron, R.; Baskcomb, C. Selected Area XPS Analysis for Identification of Pigment Compounds in Microscopic Paint Flakes. Adv. Mater. Sci. Eng. 2008, 2008, 1–4. DOI: 10.1155/2008/247053.
  • Wolstenholme, J. Auger Electron Spectroscopy: Practical Application to Materials Analysis and Characterization of Surfaces, Interfaces, and Thin Films; Momentum Press: New York, 2015.
  • Mathieu, H. J. Auger Electron Spectroscopy. In Surface Analysis: The Principal Techniques, 2nd ed.; Vickerman, J. C.; Gilmore, I. S. Eds.; John Wiley & Sons: Chichester, 2011; pp 9–45.
  • Climent-Font, A.; Demortier, G.; Palacio, C.; Montero, I.; Ruvalcaba-Sil, J. L.; Diaz, D. Characterisation of Archaeological Bronzes Using PIXE, PIGE, RBS and AES Spectrometries. Nucl. Instrum. Methods Phys. Res. B 1998, 134, 229–236. DOI: 10.1016/S0168-583X(98)00553-9.
  • Bunker, G. Introduction to XAFS: A Practical Guide to X-Ray Absorption Fine Structure Spectroscopy; Cambridge University Press: Cambridge, 2010.
  • Gaur, A.; Shrivastava, B. D.; Nigam, H. L. X-Ray Absorption Fine Structure (XAFS) Spectroscopy–a Review. Proc. Indian Natl. Sci. Acad. 2013, 79, 921–966. DOI: 10.6084/m9.figshare.943499.v1.
  • Funk, T.; Deb, A.; George, S. J.; Wang, H.; Cramer, S. P. X-Ray Magnetic Circular Dichroism–a High Energy Probe of Magnetic Properties. Coordin. Chem. Rev. 2005, 249, 3–30. DOI: 10.1016/j.ccr.2004.05.017.
  • Gervais, C.; Languille, M. A.; Reguer, S.; Garnier, C.; Gillet, M. Light and Anoxia Fading of Prussian Blue Dyed Textiles. Herit. Sci. 2014, 2, 26. DOI: 10.1186/s40494-014-0026-x.
  • Fearn, S. An Introduction to Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Its Application to Materials Science; Morgan & Claypool: California, 2015.
  • Vickerman, J. C.; Briggs, D. ToF-SIMS: Materials Analysis by Mass Spectrometry, 2nd ed.; IM Publications: Chichester, 2013.
  • Lee, Y.; Lee, J.; Kim, Y.; Choi, S.; Ham, S. W.; Kim, K. J. Investigation of Natural Dyes and Ancient Textiles from Korea Using TOF-SIMS. Appl. Surf. Sci. 2008, 255, 1033–1036. DOI: 10.1016/j.apsusc.2008.05.097.
  • Brongersma, H. H. Low‐Energy Ion Scattering. In Characterization of Materials, 2nd ed., Kaufmann, E. N., Ed.; John Wiley & Sons: New York, 2012; pp 2024–2044.
  • Armour, D. G. Ion Scattering Spectroscopy. In Methods of Surface Analysis: Techniques and Applications; Walls, J. M., Ed.; Cambridge University Press: Cambridge, 1990; pp 263–298.
  • Keturakis, C. J.; Notis, B.; Blenheim, A.; Miller, A. C.; Pafchek, R.; Notis, M. R.; Wachs, I. E. Analysis of Corrosion Layers in Ancient Roman Silver Coins with High Resolution Surface Spectroscopic Techniques. Appl. Surf. Sci. 2016, 376, 241–251. DOI: 10.1016/j.apsusc.2016.03.009.
  • Braun, A. X-Ray Studies on Electrochemical Systems: Synchrotron Methods for Energy Materials; De Gruyter: Berlin, 2017.
  • He, B. B. Two-Dimensional X-Ray Diffraction, 2nd ed.; John Wiley & Sons: New Jersey, 2018.
  • Karydas, A. G.; Czyzycki, M.; Leani, J. J.; Migliori, A.; Osan, J.; Bogovac, M.; Wrobel, P.; Vakula, N.; Padilla-Alvarez, R.; Menk, R. H.; et al. An IAEA Multi-Technique X-Ray Spectrometry Endstation at Elettra Sincrotrone Trieste: Benchmarking Results and Interdisciplinary Applications. J Synchrotron Radiat. 2018, 25, 189–203. DOI: 10.1107/S1600577517016332.
  • Law, K. Y.; Zhao, H. Surface Wetting: Characterization, Contact Angle, and Fundamentals; Springer: Switzerland, 2016.
  • Chibowski, E. Surface Free Energy of a Solid from Contact Angle Hysteresis. Adv. Colloid. Interface. Sci. 2003, 103, 149–172. DOI: 10.1016/S00018686(02)00093-3.
  • Aldosari, M. A.; Darwish, S. S.; Adam, M. A.; Elmarzugi, N. A.; Ahmed, S. M. Using ZnO Nanoparticles in Fungal Inhibition and Self-Protection of Exposed Marble Columns in Historic Sites. Archaeol. Anthropol. Sci. 2019, 11, 3407–3422. DOI: 10.1007/s12520-018-0762-z.
  • Lowell, S.; Shields, J. E.; Thomas, M. A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer: Dordrecht, 2004.
  • Condon, J. B. Surface Area and Porosity Determinations by Physisorption Measurements and Theory; Elsevier: Amsterdam, 2006.
  • Broda, M.; Curling, S. F.; Spear, M. J.; Hill, C. A. Effect of Methyltrimethoxysilane Impregnation on the Cell Wall Porosity and Water Vapour Sorption of Archaeological Waterlogged Oak. Wood Sci. Technol. 2019, 53, 703–726. DOI: 10.1007/s00226-019-01095-y.
  • Bottom, R. Thermogravimetric Analysis. In Principles and Applications of Thermal Analysis; Gabbott, P., Ed.; Blackwell Publishing: Oxford, 2008; pp 87–118.
  • Wagner, M. Thermal Analysis in Practice: Fundamental Aspects; Hanser Publishers, Munich, 2017.
  • Ponce-Anton, G.; Zuluaga, M. C.; Ortega, L. A.; Agirre Mauleon, J. Petrographic and Chemical-Mineralogical Characterization of Mortars from the Cistern at Amaiur Castle (Navarre, Spain). Minerals 2020, 10, 311. DOI: 10.3390/min10040311.
  • Smykatz-Kloss, W. Differential Thermal Analysis: Application and Results in Mineralogy; Springer: Berlin, 1974.
  • Speyer, R. Thermal Analysis of Materials; Marcel Dekker: New York, 1994.
  • Haaland, M. M.; Friesem, D. E.; Miller, C. E.; Henshilwood, C. S. Heat-Induced Alteration of Glauconitic Minerals in the Middle Stone Age Levels of Blombos Cave, South Africa: Implications for Evaluating Site Structure and Burning Events. J. Archaeol. Sci. 2017, 86, 81–100. DOI: 10.1016/j.jas.2017.06.008.
  • Hohne, G.; Hemminger, W. F.; Flammersheim, H. J. Differential Scanning Calorimetry, 2nd ed.; Springer: Berlin, 2003.
  • Cheng, S. Z. Handbook of Thermal Analysis and Calorimetry: Applications to Polymers and Plastics. Elsevier: Amsterdam, 2002.
  • Santos, J.; Munita, C.; Toyota, R.; Vergne, C.; Silva, R.; Oliveira, P. The Archaeometry Study of the Chemical and Mineral Composition of Pottery from Brazil’s Northeast. J. Radioanal. Nucl. Chem. 2009, 281, 189–192. DOI: 10.1007/s10967-009-0119-2.
  • Buck, W.; Rudstch, S. Thermal Properties. In Springer Handbook of Metrology and Testing, 2nd ed.; Czichos, H.; Saito, T.; Smith, L. E.; Eds.; Springer: Berlin, 2011; pp 453–483.
  • Menczel, J. D.; Prime, R. B. Thermal Analysis of Polymers: Fundamentals and Applications; John Wiley & Sons: New Jersey, 2009.
  • Campanella, L.; Favero, G.; Flamini, P.; Tomassetti, M. Prehistoric Terracottas from the Libyan Tadrart Acacus: Thermoanalytical Study and Characterization. J. Therm. Anal. Calorim. 2003, 73, 127–142. DOI: 10.1023/A:1025185524947.
  • Brown, M. E. Introduction to Thermal Analysis: Techniques and Applications; Chapman and Hall Publishers: London, 1988.
  • Zhu, T. Q.; Wu, F.; Wan, J. L.; Wang, M.; Ahamed, B. K.; Liu, C. J.; Wang, Z. Study on the Material and Manufacturing Technology of Different Types of Longquan Ware Imitations from Dapu Kiln of Guangdong Province in the Ming Dynasty of China (AD 1368–1644). Archaeometry 2018, 60, 42–53. DOI: 10.1111/arcm.12366.
  • Menard, K. P. Dynamic Mechanical Analysis: A Practical Introduction, 2nd ed.; CRC Press: Florida, 2008.
  • Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F.; Sparacino, V. Thermal and Dynamic Mechanical Properties of Beeswax-Halloysite Nanocomposites for Consolidating Waterlogged Archaeological Woods. Polym. Degrad. Stab. 2015, 120, 220–225. DOI: 10.1016/j.polymdegradstab.2015.07.007.
  • Allen, S. A. B. Dielectric Techniques. In Handbook of Thermal Analysis and Calorimetry: Principles and Practice; Brown, M. E., Ed.; Elsevier: Amsterdam, 1998; pp 401–422.
  • Price, D. M. Thermomechanical, Dynamic Mechanical and Dielectric Methods. In Principles of Thermal Analysis and Calorimetry; Haines; P. J., Ed.; RSC Publishing: Cambridge, 2002; pp 94–128.
  • Odlyha, M.; Walker, R. M.; Liddell, W. R. A Study of the Effects of Conservation Treatment on the Fanshawe Archive. Stud. Conserv. 1992, 37, 104–111. DOI: 10.1179/sic.1992.37.s1.022.
  • Shinde, S. L.; Goela, J. High Thermal Conductivity Materials; Springer: New York, 2006.
  • Tritt, T. M. Thermal Conductivity Theory, Properties, and Applications; Kluwer Academic Publishers: New York, 2004.
  • Hein, A.; Muller, N. S.; Day, P. M.; Kilikoglou, V. Thermal Conductivity of Archaeological Ceramics: The Effect of Inclusions, Porosity and Firing Temperature. Thermochim. Acta 2008, 480, 35–42. DOI: 10.1016/j.tca.2008.09.012.
  • Sherma, J.; Fried, B. Handbook of Thin-Layer Chromatography, 3rd ed.; Marcel Dekker: New York, 2003.
  • Poole, C. F. Instrumental Thin-Layer Chromatography; Elsevier: Amsterdam, 2015.
  • Rezic, I.; Mudronja, D.; Obranovic, M.; Rezic, T.; Skaric, K. Application of Thin-Layer Chromatography, X-Ray Fluorescence Spectrometry, and Fourier Transformed Infrared Spectroscopy in the Analysis of Binding Media Present on Mummies of St. Giovanni Olini (1200 AD) and St. Nicolosa Bursa (1500 AD). J. Planar Chromat. 2015, 28, 205–212. DOI: 10.1556/1006.2015.28.3.2.
  • Bayne, S.; Carlin, M. Forensic Applications of High Performance Liquid Chromatography; CRC Press: Florida, 2010.
  • Dong, M. W. UPLC and UHPLC for Practicing Scientists, 2nd ed.; John Wiley & Sons: New Jersey, 2019.
  • Vicente, J. P.; Adelantado, J. G.; Carbo, M. D.; Castro, R. M.; Reig, F. B. Identification of Lipid Binders in Old Oil Paintings by Separation of 4-Bromomethyl-7-Methoxycoumarin Derivatives of Fatty Acids by Liquid Chromatography with Fluorescence Detection. J. Chromatogr. A 2005, 1076, 44–50. DOI: 10.1016/j.chroma.2005.03.136.
  • Striegel, A.; Yau, W. W.; Kirkland, J. J.; Bly, D. D. Modern Size-Exclusion Liquid Chromatography: Practice of Gel Permeation and Gel Filtration Chromatography, 2nd ed.; John Wiley & Sons: New Jersey, 2009.
  • Mori, S.; Barth, H. G. Size Exclusion Chromatography. Springer: Berlin, 1999.
  • Duce, C.; Ghezzi, L.; Onor, M.; Bonaduce, I.; Colombini, M. P.; Tine, M. R.; Bramanti, E. Physico-Chemical Characterization of Protein-Pigment Interactions in Tempera Paint Reconstructions: Casein/Cinnabar and Albumin/Cinnabar. Anal. Bioanal. Chem. 2012, 402, 2183–2193. DOI: 10.1007/s00216-011-5684-x.
  • Haddad, P. R.; Jackson, P. E.; Greenway, G. M. Ion Chromatography: Principles and Applications; Elsevier: Amsterdam, 1991.
  • Fritz, J. S.; Gjerde, D. T. Ion Chromatography, 4th ed.; Wiley-VCH: Weinheim, 2009.
  • Jegdic, B.; Polic-Radovanovic, S.; Ristic, S.; Alil, A. B. Rajakovic-Ognjanovic, V. Corrosion of an Archaeological Find from the Roman Period in Serbia. Zast. Mater. 2012, 53, 247–252.
  • Wilde, K. D.; Engewald, W. Practical Gas Chromatography: A Comprehensive Reference; Springer: Berlin, 2014.
  • Niessen, W. M.; Principles and Instrumentation of Gas Chromatography–Mass Spectrometry. In Current Practice of Gas Chromatography-Mass Spectrometry; Niessen, W. M. Ed.; Marcel Dekker: New York, 2001; pp 1–54.
  • Keck, S.; Peters, T. Identification of Protein-Containing Paint Media by Quantitative Amino Acid Analysis. Stud. Conserv. 1969, 14, 75–82. DOI: 10.1179/sic.1969.007.
  • Chiavari, G.; Prati, S. Analytical Pyrolysis as Diagnostic Tool in the Investigation of Works of Art. Chromatographia 2003, 58, 543–554. DOI: 10.1365/s10337-003-0094-7.
  • Wampler, T. P. Instrumentation and Analysis. In Applied Pyrolysis Handbook, 2nd ed.; Wampler, T. P., Ed.; CRC Press: Florida, 2006; pp 27–46.
  • Wei, S.; Fang, X.; Yang, J.; Cao, X.; Pintus, V.; Schreiner, M.; Song, G. Identification of the Materials Used in an Eastern Jin Chinese Ink Stick. J. Cult. Herit. 2012, 13, 448–452. DOI: 10.1016/j.culher.2012.02.001.
  • Vashist, S. K.; Luong, J. H.; Enzyme-Linked Immunoassays. In Handbook of Immunoassay Technologies: Approaches, Performances, and Applications; Vashist, S. K.; Luong, J. H. Eds.; Academic Press: London, 2018; pp 97–127.
  • Hosseini, S.; Vazquez-Villegas, P.; Rito-Palomares, M.; Martinez-Chapa, S. O. Enzyme-Linked Immunosorbent Assay (ELISA): From A to Z; Springer: Singapore, 2018.
  • Altria, K. D. Capillary Electrophoresis Guidebook: Principles, Operation, and Applications; Humana Press: New Jersey, 1996.
  • Torano, J. S.; Ramautar, R.; De Jong, G. Advances in Capillary Electrophoresis for the Life Sciences. J. Chromatogr. B 2019, 1118–1119, 116–136. DOI: 10.1016/j.jchromb.2019.04.020.
  • Grössl, M.; Harrison, S.; Kaml, I.; Kenndler, E. Characterisation of natural polysaccharides (plant gums) used as binding media for artistic and historic works by capillary zone electrophoresis. J. Chromatogr. A 2005, 1077, 80–89. DOI: 10.1016/j.chroma.2005.04.075.
  • Dimitriou, P.; Becker, H.-W.; Bogdanović-Radović, I.; Chiari, M.; Goncharov, A.; Jesus, A. P.; Kakuee, O.; Kiss, A. Z.; Lagoyannis, A.; Räisänen, J.; et al. Development of a Reference Database for Particle-Induced Gamma-Ray Emission Spectroscopy. Nucl. Instrum. Meth. B 2016, 371, 33–36. DOI: 10.1016/j.nimb.2015.09.052.
  • Malmqvist, K. G. Elemental Composition. In Surface Characterization: A User's Sourcebook; Brune, D.; Hellborg, R.; Whitlow, H. J.; Hunderi, O., Eds.; Wiley-VCH: Weinheim, 1997; pp 109–288.
  • Dasari, K. B.; Chhillar, S.; Acharya, R.; Ray, D. K.; Behera, A.; Das, N. L.; Pujari, P. K. Simultaneous Determination of Si, Al and Na Concentrations by Particle Induced Gamma-Ray Emission and Applications to Reference Materials and Ceramic Archaeological Artifacts. Nucl. Instrum. Methods Phys. Res. B 2014, 339, 37–41. DOI: 10.1016/j.nimb.2014.08.017.
  • Segebade, C.; Starovoitova, V. N.; Borgwardt, T.; Wells, D. Principles, Methodologies, and Applications of Photon Activation Analysis: A Review. J. Radioanal. Nucl. Chem. 2017, 312, 443–459. DOI: 10.1007/s10967-017-5238-6.
  • Harmon, J. F.; Wells, D. P.; Hunt, A. W. Neutrons and Photons in Nondestructive Detection. In Reviews of Accelerator Science and Technology-Volume 4: Accelerator Applications in Industry and the Environment; Chao, A. W.; Chou, W., Eds.; World Scientific: Singapore, 2011; pp 83–101.
  • Krausová, I.; Tajer, J.; Světlík, I.; Chvátil, D. Matrix Determination of Bronze Age Bracelet via Nitrogen Assay by Instrumental Photon Activation Analysis and Radiocarbon Dating of Its Exact Age. Nucl. Instrum. Methods Phys. Res. B 2019, 448, 26–30. DOI: 10.1016/j.nimb.2019.03.057.
  • Revay, Z.; Belgya, T.; Principles of the PGAA Method. In Handbook of Prompt Gamma Activation Analysis with Neutron Beams; Molnar, G. L. Ed.; Springer: Netherlands, 2004; pp 1–30.
  • Belgya, T. Prompt Gamma Activation Analysis at the Budapest Research Reactor. Phys. Procedia 2012, 31, 99–109. DOI: 10.1016/j.phpro.2012.04.014.
  • Kasztovszky, Z.; Biro, K. T.; Nagy-Korodi, I.; Sztancsuj, S. J.; Hago, A.; Szilagyi, V.; Maroti, B.; Constantinescu, B.; Berecki, S.; Mirea, P. Provenance Study on Prehistoric Obsidian Objects Found in Romania (Eastern Carpathian Basin and Its Neighbouring Regions) Using Prompt Gamma Activation Analysis. Quat. Int. 2019, 510, 76–87. DOI: 10.1016/j.quaint.2018.12.020.
  • Pollard, A. M.; Batt, C. M.; Stern, B.; Young, S. M.; Young, S. M. Analytical Chemistry in Archaeology; Cambridge University Press: Cambridge, 2007.
  • Bode, P. Neutron Activation Analysis (NAA). In Neutron Methods for Archaeology and Cultural Heritage; Kardjilov, N.; Festa, G.; Eds.; Springer: Cham, 2017; pp 209–219.
  • Dasari, K. B.; Acharya, R.; Swain, K. K.; Das, N. L.; Reddy, A. V. R. Analysis of Large and Non-Standard Geometry Samples of Ancient Potteries by Internal Monostandard Neutron Activation Analysis Using in Situ Detection Efficiency. J. Radioanal. Nucl. Chem. 2010, 286, 525–531. DOI: 10.1007/s10967-010-0789-9.
  • Khidirov, I. Neutron Diffraction; InTechOpen: Rijeka, 2012.
  • Kisi, E. H.; Howard, C. J. Applications of Neutron Powder Diffraction; Oxford University Press: Oxford, 2008.
  • Festa, G.; Andreani, C.; D’Agostino, F.; Forte, V.; Nardini, M.; Scherillo, A.; Scatigno, C.; Senesi, R.; Romano, L. Sumerian Pottery Technology Studied through Neutron Diffraction and Chemometrics at Abu Tbeirah (Iraq). Geosciences 2019, 9, 74. DOI: 10.3390/geosciences9020074.
  • Mitchell, P. C. H.; Parker, S. F.; Ramirez-Cuesta, A. J.; Tomkinson, J. Vibrational Spectroscopy with Neutrons: With Applications in Chemistry, Biology, Materials Science and Catalysis; World Scientific: Singapore, 2005.
  • Hudson, B. S. Vibrational Spectroscopy Using Inelastic Neutron Scattering: Overview and Outlook. Vib. Spectrosc. 2006, 42, 25–32. DOI: 10.1016/j.vibspec.2006.04.014.
  • Festa, G.; Andreani, C.; Baldoni, M.; Cipollari, V.; Martinez-Labarga, C.; Martini, F.; Rickards, O.; Rolfo, M. F.; Sarti, L.; Volante, N.; et al. First Analysis of Ancient Burned Human Skeletal Remains Probed by Neutron and Optical Vibrational Spectroscopy. Sci. Adv. 2019, 5, eaaw1292. DOI: 10.1126/sciadv.aaw1292.
  • Strobl, M.; Manke, I.; Kardjilov, N.; Hilger, A.; Dawson, M.; Banhart, J. Advances in Neutron Radiography and Tomography. J. Phys. D: Appl. Phys. 2009, 42, 243001. DOI: 10.1088/0022-3727/42/24/243001.
  • Heller, A. K.; Brenizer, J. S. Neutron Radiography. In Neutron Imaging and Applications: A Reference for the Imaging Community; Anderson, I. S.; McGreevy, R. L.; Bilheux, H. Z., Eds.; Springer: New York, 2009; pp 67–80.
  • Rant, J.; Milic, Z.; Istenic, J.; Knific, T.; Lengar, I.; Rant, A. Neutron Radiography Examination of Objects Belonging to the Cultural Heritage. Appl. Radiat. Isot. 2006, 64, 7–12. DOI: 10.1016/j.apradiso.2005.06.003.
  • Vontobel, P.; Lehmann, E. H.; Hassanein, R.; Frei, G. Neutron Tomography: Method and Applications. Physica B 2006, 385–386, 475–480. DOI: 10.1016/j.physb.2006.05.252.
  • Kardjilov, N.; Manke, I.; Woracek, R.; Hilger, A.; Banhart, J. Advances in Neutron Imaging. Mater. Today 2018, 21, 652–672. DOI: 10.1016/j.mattod.2018.03.001.
  • Karl, S.; Kazimierski, K. S.; Hauzenberger, C. A. An Interdisciplinary Approach to Studying Archaeological Vase Paintings Using Computed Tomography Combined with Mineralogical and Geochemical Methods. A Corinthian Alabastron by the Erlenmeyer Painter Revisited. J. Cult. Herit. 2018, 31, 63–71. DOI: 10.1016/j.culher.2017.10.012.
  • Kelly, R. L.; Thomas, D. H. Archaeology, 5th ed.; Cengage Learning: California, 2010.
  • Ramsey, C. B. Radiocarbon Dating: Revolutions in Understanding. Archaeometry 2008, 50, 249–275. DOI: 10.1111/j.1475-4754.2008.00394.x.
  • Salamon, M.; Tzur, S.; Arensburg, B.; Zias, J.; Nagar, Y.; Weiner, S.; Boaretto, E. Ancient mtDNA Sequences and Radiocarbon Dating of Human Bones from the Chalcolithic Caves of Wadi El-Makkukh. Mediterr. Archaeol. Archaeom. 2010, 10, 1–14.
  • Van Calsteren, P.; Thomas, L. Uranium-Series Dating Applications in Natural Environmental Science. Earth-Sci. Rev. 2006, 75, 155–175. DOI: 10.1016/j.earscirev.2005.09.001.
  • Ivanovich, M.; Harmon, R. S. Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences, 2nd ed.; Clarendon Press: Oxford, 1992.
  • Hoffmann, D. L.; Standish, C. D.; García-Diez, M.; Pettitt, P. B.; Milton, J. A.; Zilhão, J.; Alcolea-González, J. J.; Cantalejo-Duarte, P.; Collado, H.; de Balbín, R.; et al. U-Th Dating of Carbonate Crusts Reveals Neandertal Origin of Iberian Cave Art. Science 2018, 359, 912–915. DOI: 10.1126/science.aap7778.
  • Bravenec, A. D.; Ward, K. D.; Ward, T. J. Amino Acid Racemization and Its Relation to Geochronology and Archaeometry. J. Sep. Sci. 2018, 41, 1489–1506. DOI: 10.1002/jssc.201701506.
  • Demarchi, B.; Collins, M. Amino Acid Racemization Dating. In Encyclopedia of Scientific Dating Methods; Rink, W. J.; Thompson, J. W., Eds.; Springer: Dordrecht, 2014; pp 13–26.
  • Griffin, R. C.; Chamberlain, A. T.; Hotz, G.; Penkman, K. E. H.; Collins, M. J. Age Estimation of Archaeological Remains Using Amino Acid Racemization in Dental Enamel: A Comparison of Morphological, Biochemical, and Known Ages-at-Death. Am. J. Phys. Anthropol. 2009, 140, 244–252. DOI: 10.1002/ajpa.21058.
  • Grun, R. Electron Spin Resonance Dating. In Chronometric Dating in Archaeology; Taylor, R. E.; Aitken, M. J., Eds.; Springer: New York, 1997; pp 217–260.
  • Grun, R. Electron Spin Resonance (ESR) Dating. Quat. Int. 1989, 1, 65–109. DOI: 10.1016/1040-6182(89)90010-4.
  • Cano, N. F.; Munita, C. S.; Watanabe, S.; Barbosa, R. F.; Chubaci, J. F.; Tatumi, S. H.; Neves, E. G. OSL and EPR Dating of Pottery from the Archaeological Sites in Amazon Valley. Brazil. Quat. Int. 2014, 352, 176–180. DOI: 10.1016/j.quaint.2013.05.042.
  • Feathers, J. K. Use of Luminescence Dating in Archaeology. Meas. Sci. Technol. 2003, 14, 1493–1509. DOI: 10.1088/0957-0233/14/9/302.
  • Liritzis, I.; Singhvi, A. K.; Feathers, J. K.; Wagner, G. A.; Kadereit, A.; Zacharias, N.; Li, S. H. Luminescence Dating in Archaeology, Anthropology, and Geoarchaeology: An Overview; Springer: Cham, 2013.
  • Schmitt, A. K.; Perrine, A. R.; Rhodes, E. J.; Fischer, C. Age of Obsidian Butte (Imperial County, California) through Infrared Stimulated Luminescence Dating of Potassium Feldspar from Tuffaceous Sediment. Calif. Archaeol. 2019, 11, 5–20. DOI: 10.1080/1947461X.2019.1581678.
  • Lengyel, S. Archaeomagnetic Dating. In Encyclopedia of Geoarchaeology; Gilbert, A. S., Ed.; Springer: Dordrecht, 2017; pp 39–46.
  • McIntosh, G.; Catanzariti, G. An Introduction to Archaeomagnetic Dating. Geochronometria 2006, 25, 11–18.
  • Hus, J.; Ech‐Chakrouni, S.; Jordanova, D.; Geeraerts, R. Archaeomagnetic Investigation of Two Mediaeval Brick Constructions in North Belgium and the Magnetic Anisotropy of Bricks. Geoarchaeology 2003, 18, 225–253. DOI: 10.1002/gea.10059.
  • Dahmen, E. A. M. F. Electroanalysis: Theory and Applications in Aqueous and Non-Aqueous Media and in Automated Chemical Control; Elsevier; Amsterdam, 1986.
  • Palanna, O. G. Engineering Chemistry, 2nd ed.; Tata McGraw-Hill Education: Chennai, 2017.
  • Akyol, A. A.; Kadioglu, Y. K. Restoration Studies on Phaselis Hadrian Gate (Kemer, Antalya) through Archaeometry. Mediterr. Archaeol. Archaeom. 2013, 13, 89–105.
  • Scholz, F. Electroanalytical Methods: Guide to Experiments and Applications, 2nd ed.; Springer: Berlin, 2010.
  • Cazes, J. Ewing’s Analytical Instrumentation Handbook, 3rd ed.; Marcel Dekker: New York, 2005.
  • Rellini, I.; Firpo, M.; Martino, G.; Riel-Salvatore, J.; Maggi, R. Climate and Environmental Changes Recognized by Micromorphology in Paleolithic Deposits at Arene Candide (Liguria, Italy). Quatern. Int. 2013, 315, 42–55. DOI: 10.1016/j.quaint.2013.05.050.
  • Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis, 7th ed.; Cengage Learning: Massachusetts, 2016.
  • Dash, D. C. Analytical Chemistry, 2nd ed.; PHI Learning: New Delhi, 2017.
  • Crupi, V.; Interdonato, M.; Longo, F.; Maisano, G.; Majolino, D.; Rossi, B.; Venuti, V. Coulometry for the Detection of Water Content in Archaeological Findings. Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat. 2016, 94, A3. DOI: 10.1478/AAPP.942A3.
  • Kounaves, S. P.; Voltammetric Techniques. In Handbook of Instrumental Techniques for Analytical Chemistry.; Settle, F. A. Ed.; Prentice Hall: New Jersey, 1997; pp 711–725.
  • Conejo-Barboza, G.; Sanabria-Chinchilla, J.; Ulloa, F. C.; Villalobos, M. M. Characterization of Costa Rican Archaeological Ceramics from the Formative Period: Preliminary Electrochemical Studies. Sci. Technol. Archaeol. Res. 2015, 1, 22–29. DOI: 10.1080/20548923.2015.1133122.
  • Deshmukh, K.; Sankaran, S.; Ahamed, B.; Sadasivuni, K. K.; Pasha, K. S.; Ponnamma, D.; Sreekanth, P. R.; Chidambaram, K. Dielectric Spectroscopy. In Spectroscopic Methods for Nanomaterials Characterization; Thomas, S.; Thomas, R.; Zachariah, A. K.; Kumar, R., Eds.; Elsevier: Amsterdam, 2017; pp 237–299.
  • Lvovich, V. F. Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena; John Wiley & Sons: New Jersey, 2012.
  • Di Turo, F.; De Vito, C.; Coletti, F.; Mazzei, F.; Antiochia, R.; Favero, G. A Multi-Analytical Approach for the Validation of a Jellified Electrolyte: Application to the Study of Ancient Bronze Patina. Microchem. J. 2017, 134, 154–163. DOI: 10.1016/j.microc.2017.05.015.
  • Ohta, N.; Robertson, A. Colorimetry: Fundamentals and Applications; John Wiley & Sons: Chichester, 2005.
  • Schanda, J. CIE Colorimetry. In Colorimetry: Understanding the CIE System; Schanda, J., Ed.; John Wiley & Sons: New Jersey, 2007; pp 25–78.
  • Zhang, W.; Zhang, Y.; Fang, S.; Luo, X.; Jin, H.; Xu, Z.; Xia, W. Preparation of Acrylate Copolymer Modified by TiO2 Nanoparticles with Excellent Photo-Oxidative Stability for Application in Ancient Ivory Conservation. J. Appl. Polym. Sci. 2016, 133, 43291. DOI: 10.1002/app.43291.
  • Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications; John Wiley & Sons: Tokyo, 2007.
  • Tompkins, H.; Irene, E. A. Handbook of Ellipsometry; William Andrew Publishing: New York, 2005.
  • Colombo, A.; Gherardi, F.; Goidanich, S. A. R. A.; Delaney, J. K.; De La Rie, E. R.; Ubaldi, M. C.; Toniolo, L. U. C. I. A.; Simonutti, R. Highly Transparent Poly (2-Ethyl-2-Oxazoline)-TiO2 Nanocomposite Coatings for the Conservation of Matte Painted Artworks. RSC Adv. 2015, 5, 84879–84888. DOI: 10.1039/C5RA10895K.
  • Davis, J. R. Tensile Testing, 2nd ed.; ASM International: Ohio, 2004.
  • Mercier, J. P.; Zambelli, G.; Kurz, W. Introduction to Materials Science; Elsevier: Paris, 2002.
  • Kourkoumelis, N.; El-Gaoudy, H.; Varella, E.; Kovala-Demertzi, D. Physicochemical Characterization of Thermally Aged Egyptian Linen Dyed with Organic Natural Dyestuffs. Appl. Phys. A. 2013, 112, 469–478. DOI: 10.1007/s00339-012-7435-z.
  • Bhaduri, A. Mechanical Properties and Working of Metals and Alloys; Springer: Singapore, 2018; Vol. 264. p 119.
  • Broitman, E. Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview. Tribol. Lett. 2017, 65, 23. DOI: 10.1007/s11249-016-0805-5..
  • Elhaddad, F.; Pinho, L.; Mosquera, M. J. Effectiveness of a Novel Consolidant/Hydrophobic Nanomaterial on Stones from Three Archaeological Sites. In Science, Technology and Cultural Heritage; Rogerio-Candelera, M. A., Ed.; CRC Press: London, 2014; pp 133–138.
  • Bonnick, S. L.; Lewis, L. A. Bone Densitometry for Technologists, 3rd ed.; Humana Press: New Jersey, 2013.
  • Farquharson, M. J.; Brickley, M. The Use of X-Ray Techniques for Bone Densitometry in Archaeological Skeletons. In Radiation in Art and Archeometry; Creagh, D. C.; Bradley, D.A., Eds.; Elsevier: Amsterdam, 2000; pp 151–179.
  • Hale, A. R.; Ross, A. H. Scanning Skeletal Remains for Bone Mineral Density in Forensic Contexts. J. Vis. Exp. 2018, 131, e56713. DOI: 10.3791/56713.
  • Smithwick, R. W. A Generalized Analysis for Mercury Porosimetry. Powder Technol. 1982, 33, 201–209. DOI: 10.1016/0032-5910(82)85059-6.
  • Leon y Leon, C. A. New Perspectives in Mercury Porosimetry. Adv. Colloid Interfac. Sci. 1998, 76–77, 341–372. DOI: 10.1016/S0001-8686(98)00052-9.
  • Jroundi, F.; Gonzalez-Munoz, M. T.; Garcia-Bueno, A.; Rodriguez-Navarro, C. Consolidation of Archaeological Gypsum Plaster by Bacterial Biomineralization of Calcium Carbonate. Acta Biomater. 2014, 10, 3844–3854. DOI: 10.1016/j.actbio.2014.03.007.
  • Sakho, E. H. M.; Allahyari, E.; Oluwafemi, O. S.; Thomas, S.; Kalarikkal, N. Dynamic Light Scattering (DLS). In Thermal and Rheological Measurement Techniques for Nanomaterials Characterization; Thomas, S.; Thomas, R.; Zachariah, A. K.; Mishra, R. K., Eds.; Elsevier: Amsterdam, 2017; pp 37–49.
  • Hodoroaba, V. D.; Unger, W. E. S.; Shard, A. G. Characterization of Nanoparticles: Measurement Processes for Nanoparticles; Elsevier: Amsterdam, 2020.
  • Ion, R.-M.; Doncea, S. M.; Ion, M.-L.; Rădiţoiu, V.; Amăriuţei, V. Surface Investigations of Old Book Paper Treated with Hydroxyapatite Nanoparticles. Appl. Surf. Sci. 2013, 285, 27–32. DOI: 10.1016/j.apsusc.2013.07.159.
  • Xu, R. Particle Characterization: Light Scattering Methods; Kluwer Academic Publishers: Dordrecht, 2000.
  • Camerini, R.; Chelazzi, D.; Giorgi, R.; Baglioni, P. Hybrid Nano-Composites for the Consolidation of Earthen Masonry. J. Colloid Interface Sci. 2019, 539, 504–515. DOI: 10.1016/j.jcis.2018.12.082.
  • Muccio, Z.; Jackson, G. P. Isotope Ratio Mass Spectrometry. Analyst 2009, 134, 213–222. DOI: 10.1039/b808232d.
  • Sevastyanov, V. S. Isotope Ratio Mass Spectrometry: Devices, Methods, Applications. In Isotope Ratio Mass Spectrometry of Light Gas-Forming Elements, 1st ed.; Sevastyanov, V. S. Ed.; CRC Press: Florida, 2014; pp 1–118.
  • De Luca, R.; Barca, D.; Bloise, A.; Dominici, R.; Lezzerini, M.; Sica, M. M.; Miriello, D. Provenance of White Marbles from the Roman City of Tauriana (Palmi, Reggio Calabria, Italy). Minerals 2020, 10, 297. DOI: 10.3390/min10040297.
  • Aggarwal, S. K. Thermal Ionisation Mass Spectrometry (TIMS) in Nuclear Science and Technology – a Review. Anal. Methods 2016, 8, 942–957. DOI: 10.1039/C5AY02816G.
  • Dass, C. Fundamentals of Contemporary Mass Spectrometry; John Wiley & Sons: New Jersey, 2007.
  • Clemenza, M.; Contini, A.; Baccolo, G.; di Vacri, M. L.; Ferrante, M.; Nisi, S.; Carpinelli, M.; Cremonesi, O.; Enzo, S.; Fiorini, E.; et al. Development of a Multi-Analytical Approach for the Characterization of Ancient Roman Lead Ingots. J. Radioanal. Nucl. Chem. 2017, 311, 1495–1501. DOI: 10.1007/s10967-016-5040-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.