6,542
Views
14
CrossRef citations to date
0
Altmetric
Review Articles

Breathomics: Review of Sample Collection and Analysis, Data Modeling and Clinical Applications

ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1461-1487 | Published online: 11 Mar 2021

References

  • Segers, K.; Declerck, S.; Mangelings, D.; Heyden, Y. V.; Eeckhaut, A. V. Analytical Techniques for Metabolomic Studies: A Review. Bioanalysis 2019, 11, 2297–2318. DOI: 10.4155/bio-2019-0014.
  • Parastar, H.; van Kollenburg, G.; Weesepoel, Y.; van den Doel, A.; Buydens, L.; Jansen, J. Integration of Handheld NIR and Machine Learning to “Measure & Monitor” Chicken Meat Authenticity. Food Control 2020, 112, 107149. DOI: 10.1016/j.foodcont.2020.107149.
  • Španěl, P.; Smith, D. Quantification of Volatile Metabolites in Exhaled Breath by Selected Ion Flow Tube Mass Spectrometry, SIFT-MS. Clin. Mass Spectrom. 2020, 16, 18–24. DOI: 10.1016/j.clinms.2020.02.001.
  • Zang, X.; Pérez, J. J.; Jones, C. M.; Monge, M. E.; McCarty, N. A.; Stecenko, A. A.; Fernández, F. M. Comparison of Ambient and Atmospheric Pressure Ion Sources for Cystic Fibrosis Exhaled Breath Condensate Ion Mobility-Mass Spectrometry Metabolomics. J Am Soc Mass Spectrom. 2017, 28, 1489–1496. DOI: 10.1007/s13361-017-1660-9.
  • Martínez-Lozano, P.; Fernández de la Mora, J. Direct Analysis of Fatty Acid Vapors in Breath by Electrospray Ionization and Atmospheric Pressure Ionization-Mass Spectrometry. Anal. Chem. 2008, 80, 8210–8215. DOI: 10.1021/ac801185e.
  • Hamidi, S.; Amini, M.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Sate, H.; Jouyban, A. LC-MS/MS Estimation of Propranolol Level in Exhaled Breath Condensate. Pharm. Sci. 2017, 24, 264–270. DOI: 10.15171/PS.2017.39.
  • Montuschi, P.; Martello, S.; Felli, M.; Mondino, C.; Chiarotti, M. Ion Trap Liquid Chromatography/Tandem Mass Spectrometry Analysis of Leukotriene B4 in Exhaled Breath Condensate. Rapid Commun Mass Spectrom. 2004, 18, 2723–2729. DOI: 10.1002/rcm.1682.
  • Montuschi, P.; Martello, S.; Felli, M.; Mondino, C.; Barnes, P. J.; Chiarotti, M. Liquid Chromatography/Mass Spectrometry Analysis of Exhaled Leukotriene B4 in Asthmatic Children. Respir. Res. 2005, 6, 119. DOI: 10.1186/1465-9921-6-119.
  • Hamidi, S.; Khoubnasabjafari, M.; Ansarin, K.; Jouyban-Gharamaleki, V.; Jouyban, A. Direct Analysis of Methadone in Exhaled Breath Condensate by Capillary Zone Electrophoresis. CPA. 2016, 12, 137–145. DOI: 10.2174/1573412911666150911202647.
  • Lourenço, C.; Turner, C. Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications. Metabolites 2014, 4, 465–498. DOI: 10.3390/metabo4020465.
  • Kuo, T. C.; Tan, C. E.; Wang, S. Y.; Lin, O. A.; Su, B. H.; Hsu, M. T.; Lin, J.; Cheng, Y. Y.; Chen, C. S.; Yang, Y. C.; et al. Human Breathomics Database. Database (Oxford) 2020, 2020, baz139. DOI: 10.1093/database/baz139.
  • Nobakht M Gh, B. F.; Aliannejad, R.; Rezaei-Tavirani, M.; Taheri, S.; Oskouie, A. A. The Metabolomics of Airway Diseases, Including COPD, Asthma and Cystic Fibrosis. Biomarkers 2015, 20, 5–16. DOI: 10.3109/1354750X.2014.983167.
  • Maniscalco, M.; Fuschillo, S.; Paris, D.; Cutignano, A.; Sanduzzi, A.; Motta, A. Clinical Metabolomics of Exhaled Breath Condensate in Chronic Respiratory Diseases. Adv. Clin. Chem. 2019, 121–149. pp DOI: 10.1016/bs.acc.2018.10.002.
  • Neerincx, A. H.; Vijverberg, S. J. H.; Bos, L. D. J.; Brinkman, P.; van der Schee, M. P.; de Vries, R.; Sterk, P. J.; Maitland-van der Zee, A.-H. Breathomics from Exhaled Volatile Organic Compounds in Pediatric Asthma. Pediatr. Pulmonol. 2017, 52, 1616–1627. DOI: 10.1002/ppul.23785.
  • Finamore, P.; Scarlata, S.; Incalzi, R. A. Breath Analysis in Respiratory Diseases: State-of-the-Art and Future Perspectives. Expert Rev. Mol. Diagn. 2019, 19, 47–61. DOI: 10.1080/14737159.2019.1559052.
  • Azim, A.; Barber, C.; Dennison, P.; Riley, J.; Howarth, P. Exhaled Volatile Organic Compounds in Adult Asthma: A Systematic Review. Eur. Respir. J. 2019, 2019, 1900056. DOI: 10.1183/13993003.00056-2019.
  • Scheepers, P. T. J.; Cocker, J. Human Biomonitoring with or without Limits? Progress in the Analysis of Biomarkers of Xenobiotics and Some Opportunities for Improved Interpretation. Trends Anal. Chem. 2019, 113, 116–123. DOI: 10.1016/j.trac.2019.02.001.
  • Rahimpour, E.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Jouyban, A. Non-Volatile Compounds in Exhaled Breath Condensate: Review of Methodological Aspects. Anal. Bioanal. Chem. 2018, 410, 6411–6440. DOI: 10.1007/s00216-018-1259-4.
  • Bruderer, T.; Gaisl, T.; Gaugg, M. T.; Nowak, N.; Streckenbach, B.; Müller, S.; Moeller, A.; Kohler, M.; Zenobi, R. On-Line Analysis of Exhaled Breath Focus Review. Chem. Rev. 2019, 119, 10803–10828. DOI: 10.1021/acs.chemrev.9b00005.
  • Preti, G.; Labows, J. N.; Kostelc, J. G.; Aldinger, S.; Daniele, R. Analysis of Lung Air from Patients with Bronchogenic Carcinoma and Controls Using Gas Chromatography-Mass Spectrometry. J. Chromatogr. B 1988, 432, 1–11. DOI: 10.1016/S0378-4347(00)80627-1.
  • Poli, D.; Goldoni, M.; Caglieri, A.; Ceresa, G.; Acampa, O.; Carbognani, P.; Rusca, M.; Corradi, M. Breath Analysis in Non Small Cell Lung Cancer Patients after Surgical Tumour Resection. Acta Biomed. 2008, 79, 64–72. DOI: PMID: 18924311.
  • Basanta, M.; Koimtzis, T.; Singh, D.; Wilson, I.; Thomas, C. L. P. An Adaptive Breath Sampler for Use with Human Subjects with an Impaired Respiratory Function. Analyst 2007, 132, 153–163. DOI: 10.1039/B608608J.
  • Cope, K. A.; Watson, M. T.; Foster, W. M.; Sehnert, S. S.; Risby, T. H. Effects of Ventilation on the Collection of Exhaled Breath in Humans. J. Appl. Physiol. 2004, 96, 1371–1379. DOI: 10.1152/japplphysiol.01034.2003.
  • Lawal, O.; Ahmed, W. M.; Nijsen, T. M. E.; Goodacre, R.; Fowler, S. J. Exhaled Breath Analysis: A Review of 'breath-taking' methods for off-line analysis . Metabolomics 2017, 13, 110 DOI: 10.1007/s11306-017-1241-8.
  • Rudnicka, J.; Kowalkowski, T.; Ligor, T.; Buszewski, B. Determination of Volatile Organic Compounds as Biomarkers of Lung Cancer by SPME-GC-TOF/MS and Chemometrics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 3360–3366. DOI: 10.1016/j.jchromb.2011.09.001.
  • Trefz, P.; Obermeier, J.; Lehbrink, R.; Schubert, J. K.; Miekisch, W.; Fischer, D.-C. Exhaled Volatile Substances in Children Suffering from Type 1 Diabetes Mellitus: Results from a Cross-Sectional Study. Sci. Rep. 2019, 9, 15707. DOI: 10.1038/s41598-019-52165-x.
  • Davis, M. D.; Fowler, S. J.; Montpetit, A. J. Exhaled Breath Testing - A tool for the clinician and researcher. Paediatr. Respir. Rev. 2019, 29, 37–41. DOI: 10.1016/j.prrv.2018.05.002.
  • Frey, U.; Merkus, P. J. F. M., Eds. Paediatric Lung Function; European Respiratory Society Journals Ltd, 2010. DOI: 10.1183/1025448x.erm4710.
  • Jouyban, A.; Khoubnasabjafari, M.; Ansarin, K.; Jouyban-Gharamaleki, V. Breath Sampling Setup 2013, Iranian patent 81363.
  • Gahleitner, F.; Guallar-Hoyas, C.; Beardsmore, C. S.; Pandya, H. C.; Thomas, C. P. Metabolomics Pilot Study to Identify Volatile Organic Compound Markers of Childhood Asthma in Exhaled Breath. Bioanalysis 2013, 5, 2239–2247. DOI: 10.4155/bio.13.184.
  • Khoubnasabjafari, M.; Kezeminasab, S.; Emamalizadeh, B.; Jouyban, A. Exhaled Breath Condensate: A Non-Invasive Source for Tracking of Genetic and Epigenetic Alterations in Lung Diseases. Pharm. Sci. DOI: 10.34172/PS.2020.46.
  • Kharitonov, S. A.; Barnes, P. J. Exhaled Markers of Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2001, 163, 1693–1722. DOI: 10.1164/ajrccm.163.7.2009041.
  • Horváth, I.; Hunt, J.; Barnes, P. J.; Alving, K.; Antczak, A.; Baraldi, E.; Becher, G.; van Beurden, W. J. C.; Corradi, M.; Dekhuijzen, R.; et al.; ATS/ERS Task Force on Exhaled Breath Condensate. Exhaled Breath Condensate: Methodological Recommendations and Unresolved Questions. Eur. Respir. J. 2005, 26, 523–548. DOI: 10.1183/09031936.05.00029705.
  • Vass, G.; Huszár, E.; Barát, E.; Valyon, M.; Kiss, D.; Pénzes, I.; Augusztinovicz, M.; Horváth, I. Horváth, I. Comparison of Nasal and Oral Inhalation during Exhaled Breath Condensate Collection. Am. J. Respir. Crit. Care. Med. 2003, 167, 850–855. DOI: 10.1164/rccm.200207-716BC.
  • Zakrzewski, J. T.; Barnes, N. C.; Costello, J. F.; Piper, P. J. Lipid Mediators in Cystic Fibrosis and Chronic Obstructive Pulmonary Disease. Am. Rev. Respir. Dis. 1987, 136, 779–782. DOI: 10.1164/ajrccm/136.3.779.
  • Montuschi, P.; Barnes, P. J. Analysis of Exhaled Breath Condensate for Monitoring Airway Inflammation. Trends Pharmacol. Sci. 2002, 23, 232–237. DOI: 10.1016/S0165-6147(02)02020-5.
  • Goldoni, M.; Caglieri, A.; Andreoli, R.; Poli, D.; Manini, P.; Vettori, M. V.; Corradi, M.; Mutti, A. Influence of Condensation Temperature on Selected Exhaled Breath Parameters. BMC Pulm. Med. 2005, 5, 10 DOI: 10.1186/1471-2466-5-10.
  • Czebe, K.; Barta, I.; Antus, B.; Valyon, M.; Horváth, I.; Kullmann, T. Influence of Condensing Equipment and Temperature on Exhaled Breath Condensate PH, Total Protein and Leukotriene Concentrations. Respir. Med. 2008, 102, 720–725. DOI: 10.1016/j.rmed.2007.12.013.
  • Latzin, P.; Griese, M. Exhaled Hydrogen Peroxide, Nitrite and Nitric Oxide in Healthy Children: Decrease of Hydrogen Peroxide by Atmospheric Nitric Oxide. Eur. J. Med. Res. 2002, 7, 353–358.
  • Ahmadzai, H.; Huang, S.; Hettiarachchi, R.; Lin, J.-L.; Thomas, P. S.; Zhang, Q. Exhaled Breath Condensate: A Comprehensive Update. Clin. Chem. Lab. Med. 2013, 51, 1343–1361. DOI: 10.1515/cclm-2012-0593.
  • Tufvesson, E.; Bjermer, L. Methodological Improvements for Measuring Eicosanoids and Cytokines in Exhaled Breath Condensate. Respir. Med. 2006, 100, 34–38. DOI: 10.1016/j.rmed.2005.04.007.
  • Corradi, M.; Goldoni, M.; Caglieri, A.; Folesani, G.; Poli, D.; Corti, M.; Mutti, A. Collecting Exhaled Breath Condensate (EBC) with Two Condensers in Series: A Promising Technique for Studying the Mechanisms of EBC Formation, and the Volatility of Selected Biomarkers. J. Aerosol Med. 2008, 21, 35–44. DOI: 10.1089/jam.2007.0644.
  • Effros, R. M.; Biller, J.; Foss, B.; Hoagland, K.; Dunning, M. B.; Castillo, D.; Bosbous, M.; Sun, F.; Shaker, R. A Simple Method for Estimating Respiratory Solute Dilution in Exhaled Breath Condensates. Am. J. Respir. Crit. Care Med. 2003, 168, 1500–1505. DOI: 10.1164/rccm.200307-920OC.
  • Dwyer, T. M. Sampling Airway Surface Liquid: non-volatiles in the exhaled breath condensate . Lung 2004, 182, 241–250. DOI: 10.1007/s00408-004-2506-3.
  • Effros, R. M.; Hoagland, K. W.; Bosbous, M.; Castillo, D.; Foss, B.; Dunning, M.; Gare, M.; Lin, W.; Feng, S. Dilution of Respiratory Solutes in Exhaled Condensates. Am. J. Respir. Crit. Care. Med. 2002, 165, 663–669. DOI: 10.1164/ajrccm.165.5.2101018.
  • Reinhold, P.; Knobloch, H. Exhaled Breath Condensate: Lessons Learned from Veterinary Medicine. J Breath Res . 2010, 4, 017001. DOI: 10.1088/1752-7155/4/1/017001.
  • Reinhold, P.; Jaeger, J.; Schroeder, C. Evaluation of Methodological and Biological Influences on the Collection and Composition of Exhaled Breath Condensate. Biomarkers 2006, 11, 118–142. DOI: 10.1080/13547500600572764.
  • Rosias, P. Methodological Aspects of Exhaled Breath Condensate Collection and Analysis. J. Breath Res. 2012, 6, 027102. DOI: 10.1088/1752-7155/6/2/027102.
  • Scheuch, G.; Siekmeier, R. Novel Approaches to Enhance Pulmonary Delivery of Proteins and Peptides. J. Physiol. Pharmacol. 2007, 58, 615–625.
  • Hunt, J. Exhaled Breath Condensate: An Overview. Immunol. Allergy Clin. North Am. 2007, 27, 587–596. DOI: 10.1016/j.iac.2007.09.001.
  • Greenwald, R.; Fitzpatrick, A. M.; Gaston, B.; Marozkina, N. V.; Erzurum, S.; Teague, W. G. Breath Formate is a Marker of Airway S-Nitrosothiol Depletion in Severe Asthma. PLoS One 2010, 5, e11919. DOI: 10.1371/journal.pone.0011919.
  • Bertini, I.; Luchinat, C.; Miniati, M.; Monti, S.; Tenori, L. Phenotyping COPD by 1H NMR Metabolomics of Exhaled Breath Condensate. Metabolomics 2014, 10, 302–311. DOI: 10.1007/s11306-013-0572-3.
  • Motta, A.; Paris, D.; D'Amato, M.; Melck, D.; Calabrese, C.; Vitale, C.; Stanziola, A. A.; Corso, G.; Sofia, M.; Maniscalco, M. NMR Metabolomic Analysis of Exhaled Breath Condensate of Asthmatic Patients at Two Different Temperatures. J. Proteome Res. 2014, 13, 6107–6120. DOI: 10.1021/pr5010407.
  • Maniscalco, M.; Paris, D.; Melck, D. J.; Molino, A.; Carone, M.; Ruggeri, P.; Caramori, G.; Motta, A. Differential Diagnosis between Newly Diagnosed Asthma and COPD Using Exhaled Breath Condensate Metabolomics: A Pilot Study. Eur. Respir. J. 2018, 51, 1701825. DOI: 10.1183/13993003.01825-2017.
  • Maniscalco, M.; Paris, D.; Melck, D.; Chiariello, N.; Di Napoli, F.; Manno, M.; Iavicoli, I.; Motta, A. Biomonitoring of Workers Using Nuclear Magnetic Resonance-Based Metabolomics of Exhaled Breath Condensate: A Pilot Study. Toxicol. Lett. 2018, 298, 4–12. DOI: 10.1016/j.toxlet.2018.10.018.
  • D’Amato, M.; Paris, D.; Molino, A.; Cuomo, P.; Fulgione, A.; Sorrentino, N.; Palomba, L.; Maniscalco, M.; Motta, A. The Immune-Modulator Pidotimod Affects the Metabolic Profile of Exhaled Breath Condensate in Bronchiectatic Patients: A Metabolomics Pilot Study. Front. Pharmacol. 2019, 10, 1–14. DOI: 10.3389/fphar.2019.01115.
  • Fernández-Peralbo, M. A.; Calderón Santiago, M.; Priego-Capote, F.; Luque De Castro, M. D. Study of Exhaled Breath Condensate Sample Preparation for Metabolomics Analysis by LC-MS/MS in High Resolution Mode. Talanta 2015, 144, 1360–1369. DOI: 10.1016/j.talanta.2015.08.010.
  • Ladva, C. N.; Golan, R.; Greenwald, R.; Yu, T.; Sarnat, S. E.; Flanders, W. D.; Uppal, K.; Walker, D. I.; Tran, V.; Liang, D.; et al. Metabolomic Profiles of Plasma, Exhaled Breath Condensate, and Saliva Are Correlated with Potential for Air Toxics Detection. J. Breath Res. 2017, 12, 016008. DOI: 10.1088/1752-7163/aa863c.
  • Zang, X.; Monge, M. E.; McCarty, N. A.; Stecenko, A. A.; Fernández, F. M. Feasibility of Early Detection of Cystic Fibrosis Acute Pulmonary Exacerbations by Exhaled Breath Condensate Metabolomics: A Pilot Study. J. Proteome Res. 2017, 16, 550–558. DOI: 10.1021/acs.jproteome.6b00675.
  • Peralbo-Molina, A.; Calderón-Santiago, M.; Priego-Capote, F.; Jurado-Gámez, B.; Luque de Castro, M. D. Development of a Method for Metabolomic Analysis of Human Exhaled Breath Condensate by Gas Chromatography-Mass Spectrometry in High Resolution Mode. Anal. Chim. Acta 2015, 887, 118–126. DOI: 10.1016/j.aca.2015.07.008.
  • Peralbo-Molina, A.; Calderón-Santiago, M.; Priego-Capote, F.; Jurado-Gámez, B.; Luque De Castro, M. D. Metabolomics Analysis of Exhaled Breath Condensate for Discrimination between Lung Cancer Patients and Risk Factor Individuals. J. Breath Res. 2016, 10, 016011. DOI: 10.1088/1752-7155/10/1/016011.
  • Peralbo-Molina, A.; Calderón-Santiago, M.; Priego-Capote, F.; Jurado-Gámez, B.; Luque De Castro, M. D. Identification of Metabolomics Panels for Potential Lung Cancer Screening by Analysis of Exhaled Breath Condensate. J. Breath Res. 2016, 10, 026002. DOI: 10.1088/1752-7155/10/2/026002.
  • Konieczna, L.; Pyszka, M.; Okońska, M.; Niedźwiecki, M.; Bączek, T. Bioanalysis of Underivatized Amino Acids in Non-Invasive Exhaled Breath Condensate Samples Using Liquid Chromatography Coupled with Tandem Mass Spectrometry. J. Chromatogr. A 2018, 1542, 72–81. DOI: 10.1016/j.chroma.2018.02.019.
  • Arshad, A. Z.; Munajat, Y.; Ghoshal, S. K.; Jamal, R.; Johdi, N. A.; Ibrahim, R. K. R.; Zulkhairi, H. Volatolomics Combined Terahertz Time Domain Spectral Analyses of Colon Cancer in Vitro. J. Teknol. 2019, 81, 105–112. DOI: 10.11113/jt.v81.13310.
  • de Vries, R.; Muller, M.; van der Noort, V.; Theelen, W. S. M. E.; Schouten, R. D.; Hummelink, K.; Muller, S. H.; Wolf-Lansdorf, M.; Dagelet, J. W. F.; Monkhorst, K.; et al. Prediction of Response to Anti-PD-1 Therapy in Patients with Non-Small-Cell Lung Cancer by Electronic Nose Analysis of Exhaled Breath. Ann. Oncol. 2019, 30, 1660–1666. 10.1093/annonc/mdz279.
  • De Vries, R.; Dagelet, Y. W. F.; Spoor, P.; Snoey, E.; Jak, P. M. C.; Brinkman, P.; Dijkers, E.; Bootsma, S. K.; Elskamp, F.; de Jongh, F. H. C.; et al. Clinical and Inflammatory Phenotyping by Breathomics in Chronic Airway Diseases Irrespective of the Diagnostic Label. Eur. Respir. J. 2018, 51, 1701817. DOI: 10.1183/13993003.01817-2017.
  • Jaeschke, C.; Padilla, M.; Turppa, E.; Polaka, I.; Gonzalez, O.; Richardson, K.; Pajukanta, J.; Kortelainen, J. M.; Shani, G.; Shuster, G.; et al. Overview on SNIFFPHONE: A Portable Device for Disease Diagnosis. Presented at the ISOEN 2019 - 18th International Symposium on Olfaction and Electronic Nose, Fukuoka, Japan, 2019. DOI: 10.1109/ISOEN.2019.8823212.
  • Nakhleh, M. K.; Broza, Y. Y.; Haick, H. Monolayer-Capped Gold Nanoparticles for Disease Detection from Breath. Nanomedicine (London) 2014, 9, 1991–2002. DOI: 10.2217/nnm.14.121.
  • Tang, H.; Sacco, L. N.; Vollebregt, S.; Ye, H.; Fan, X.; Zhang, G. Recent Advances in 2D/Nanostructured Metal Sulfide-Based Gas Sensors: Mechanisms, Applications, and Perspectives. J. Mater. Chem. A 2020, 8, 24943–24976. DOI: 10.1039/D0TA08190F.
  • Scarlata, S.; Finamore, P.; Meszaros, M.; Dragonieri, S.; Bikov, A. The Role of Electronic Noses in Phenotyping Patients with Chronic Obstructive Pulmonary Disease. Biosensors 2020, 10, 171. DOI: 10.3390/bios10110171.
  • Mirzaei, H.; O'Brien, A.; Tasnim, N.; Ravishankara, A.; Tahmooressi, H.; Hoorfar, M. Topical Review on Monitoring Tetrahydrocannabinol in Breath. J. Breath Res. 2020, 14, 034002. DOI: 10.1088/1752-7163/ab6229.
  • Lawaetz, A. J.; Bro, R.; Kamstrup-Nielsen, M.; Christensen, I. J.; Jørgensen, L. N.; Nielsen, H. J. Fluorescence Spectroscopy as a Potential Metabonomic Tool for Early Detection of Colorectal Cancer. Metabolomics 2012, 8, 111–121. DOI: 10.1007/s11306-011-0310-7.
  • Rajasekaran, R.; Aruna, P. R.; Koteeswaran, D.; Padmanabhan, L.; Muthuvelu, K.; Rai, R. R.; Thamilkumar, P.; Murali Krishna, C.; Ganesan, S. Characterization and Diagnosis of Cancer by Native Fluorescence Spectroscopy of Human Urine. Photochem. Photobiol. 2013, 89, 483–491. DOI: 10.1111/j.1751-1097.2012.01239.x.
  • Hasanzadeh, M.; Mokhtari, F.; Shadjou, N.; Eftekhari, A.; Mokhtarzadeh, A.; Jouyban-Gharamaleki, V.; Mahboob, S. Poly Arginine-Graphene Quantum Dots as a Biocompatible and Non-Toxic Nanocomposite: Layer-by-Layer Electrochemical Preparation, Characterization and Non-Invasive Malondialdehyde Sensory Application in Exhaled Breath Condensate. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 75, 247–258. DOI: 10.1016/j.msec.2017.02.025.
  • Lačná, J.; Foret, F.; Kubáň, P. Sensitive Determination of Malondialdehyde in Exhaled Breath Condensate and Biological Fluids by Capillary Electrophoresis with Laser Induced Fluorescence Detection. Talanta 2017, 169, 85–90. DOI: 10.1016/j.talanta.2017.03.061.
  • Wang, T.; Luo, D.; Chen, Z.; Qu, Y.; Ma, X.; Ye, J.; Chu, Q.; Huang, D. Sensitive Determination of Aldehyde Metabolites in Exhaled Breath Condensate Using Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Anal. Bioanal. Chem. 2018, 410, 7203–7210. DOI: 10.1007/s00216-018-1327-9.
  • Lačná, J.; Ďurč, P.; Greguš, M.; Skřičková, J.; Doubková, M.; Pokojová, E.; Kindlová, D.; Dolina, J.; Konečný.; Foret, F. Capillary Electrophoretic Analysis of Ionic Content in Exhaled Breath Condensate and PH Monitoring as a Non-Invasive Method in Gastroesophageal Reflux Disease Diagnostics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1134–1135, 121857. DOI: 10.1016/j.jchromb.2019.121857.
  • Madsen, R.; Lundstedt, T.; Trygg, J. Chemometrics in Metabolomics-A Review in Human Disease Diagnosis. Anal. Chim. Acta 2010, 659, 23–33. DOI: 10.1016/j.aca.2009.11.042.
  • Liu, X.; Locasale, J. W. Metabolomics: A Primer. Trends Biochem. Sci. 2017, 42, 274–284. DOI: 10.1016/j.tibs.2017.01.004.
  • Meier, R.; Ruttkies, C.; Treutler, H.; Neumann, S. Bioinformatics Can Boost Metabolomics Research. J. Biotechnol. 2017, 261, 137–141. DOI: 10.1016/j.jbiotec.2017.05.018.
  • Fiehn, O.; Robertson, D.; Griffin, J.; van der Werf, M.; Nikolau, B.; Morrison, N.; Sumner, L. W.; Goodacre, R.; Hardy, N. W.; Taylor, C.; et al. The Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 175–178. DOI: 10.1007/s11306-007-0070-6.
  • Haug, K.; Salek, R. M.; Conesa, P.; Hastings, J.; De Matos, P.; Rijnbeek, M.; Mahendraker, T.; Williams, M.; Neumann, S.; Rocca-Serra, P.; et al. MetaboLights - An Open-Access General-Purpose Repository for Metabolomics Studies and Associated Meta-Data. Nucleic Acids Res. 2013, 41, D781–786. DOI: 10.1093/nar/gks1004.
  • Saccenti, E.; Hoefsloot, H. C. J.; Smilde, A. K.; Westerhuis, J. A.; Hendriks, M. M. W. B. Reflections on Univariate and Multivariate Analysis of Metabolomics Data. Metabolomics 2014, 10, 361–374. DOI: 10.1007/s11306-013-0598-6.
  • Alonso, A.; Marsal, S.; Julià, A. Analytical Methods in Untargeted Metabolomics: State of the Art in 2015. Front. Bioeng. Biotechnol. 2015, 3, 23. DOI: 10.3389/fbioe.2015.00023.
  • Liland, K. H. Multivariate Methods in Metabolomics - From Pre-Processing to Dimension Reduction and Statistical Analysis. Trends in Analytical Chemistry 2011, 30, 827–841. DOI: 10.1016/j.trac.2011.02.007.
  • Boots, A. W.; Bos, L. D.; van der Schee, M. P.; van Schooten, F. J.; Sterk, P. J. Exhaled Molecular Fingerprinting in Diagnosis and Monitoring: Validating Volatile Promises. Trends Mol. Med. 2015, 21, 633–644. DOI: 10.1016/j.molmed.2015.08.001.
  • Bennett, L.; Ciaffoni, L.; Denzer, W.; Hancock, G.; Lunn, A. D.; Peverall, R.; Praun, S.; Ritchie, G. A. D. A Chemometric Study on Human Breath Mass Spectra for Biomarker Identification in Cystic Fibrosis. J. Breath Res. 2009, 3, 046002. DOI: 10.1088/1752-7155/3/4/046002.
  • Härdle, W. K.; Hlávka, Z. Canonical correlation analysis. In Multivariate Statistics Springer: Berlin, 2015. DOI: 10.1007/978-3-642-36005-3_16.
  • Wilks, D. S. Canonical Correlation Analysis (CCA); Elsevier, 2011. DOI: 10.1016/B978-0-12-385022-5.00013-0.
  • Smolinska, A.; Tedjo, D. I.; Blanchet, L.; Bodelier, A.; Pierik, M. J.; Masclee, A. A. M.; Dallinga, J.; Savelkoul, P. H. M.; Jonkers, D. M. A. E.; Penders, J.; et al. Volatile Metabolites in Breath Strongly Correlate with Gut Microbiome in CD Patients. Anal. Chim. Acta 2018, 1025, 1–11. DOI: 10.1016/j.aca.2018.03.046.
  • Fens, N.; Van Rossum, A. G. J.; Zanen, P.; Van Ginneken, B.; Van Klaveren, R. J.; Zwinderman, A. H.; Sterk, P. J. Subphenotypes of Mild-to-Moderate COPD by Factor and Cluster Analysis of Pulmonary Function, CT Imaging and Breathomics in a Population-Based Survey. COPD J. Chronic Obstr. Pulm. Dis. 2013. 10, 277–285. DOI:  DOI: 10.3109/15412555.2012.744388.
  • Weatherall, M.; Shirtcliffe, P.; Travers, J.; Beasley, R. Use of Cluster Analysis to Define COPD Phenotypes. Eur. Respir. J. 2010, 36, 472–474. DOI: 10.1183/09031900035210.
  • Blekherman, G.; Laubenbacher, R.; Cortes, D. F.; Mendes, P.; Torti, F. M.; Akman, S.; Torti, S. V.; Shulaev, V. Bioinformatics Tools for Cancer Metabolomics. Metabolomics 2011, 7, 329–343. DOI: 10.1007/s11306-010-0270-3.
  • Montuschi, P.; Santini, G.; Mores, N.; Vignoli, A.; Macagno, F.; Shoreh, R.; Tenori, L.; Zini, G.; Fuso, L.; Mondino, C.; et al. Breathomics for Assessing the Effects of Treatment and Withdrawal with Inhaled Beclomethasone/Formoterol in Patients with COPD. Front. Pharmacol. 2018, 9, 258. DOI: 10.3389/fphar.2018.00258.
  • Smolinska, A.; Klaassen, E. M. M.; Dallinga, J. W.; Van De Kant, K. D. G.; Jobsis, Q.; Moonen, E. J. C.; Van Schayck, O. C. P.; Dompeling, E.; Van Schooten, F. J. Profiling of Volatile Organic Compounds in Exhaled Breath as a Strategy to Find Early Predictive Signatures of Asthma in Children. PLoS One 2014, 9, e95668. DOI: 10.1371/journal.pone.0095668.
  • Saei, A. A.; Beusch, C. M.; Chernobrovkin, A.; Sabatier, P.; Zhang, B.; Tokat, Ü. G.; Stergiou, E.; Gaetani, M.; Végvári, Á.; Zubarev, R. A. ProTargetMiner as a Proteome Signature Library of Anticancer Molecules for Functional Discovery. Nat. Commun. 2019, 10, 5715. DOI: 10.1038/s41467-019-13582-8.
  • Triba, M. N.; Le Moyec, L.; Amathieu, R.; Goossens, C.; Bouchemal, N.; Nahon, P.; Rutledge, D. N.; Savarin, P. PLS/OPLS Models in Metabolomics: The Impact of Permutation of Dataset Rows on the K-Fold Cross-Validation Quality Parameters. Mol. Biosyst. 2015, 11, 13–19. DOI: 10.1039/C4MB00414K.
  • Daniel, D.; Thangavel, K. Breathomics for Gastric Cancer Classification Using Back-Propagation Neural Network. J. Med. Signals Sens. 2016, 6, 172–182. DOI: 10.4103/2228-7477.186879.
  • Vanden Branden, K.; Hubert, M. Robust Classification in High Dimensions Based on the SIMCA Method. Chemom. Intell. Lab. Syst. 2005, 79, 10–21. DOI: 10.1016/j.chemolab.2005.03.002.
  • Arasaradnam, R. P.; McFarlane, M.; Ling, K.; Wurie, S.; O'Connell, N.; Nwokolo, C. U.; Bardhan, K. D.; Skinner, J.; Savage, R. S.; Covington, J. A. Breathomics - Exhaled Volatile Organic Compound Analysis to Detect Hepatic Encephalopathy: A Pilot Study. J. Breath Res. 2016, 10, 016012. DOI: 10.1088/1752-7155/10/1/016012.
  • Broadhurst, D. I.; Kell, D. B. Statistical Strategies for Avoiding False Discoveries in Metabolomics and Related Experiments. Metabolomics 2007, 2, 171–196. DOI: 10.1007/s11306-006-0037-z.
  • Gardinassi, L. G.; Xia, J.; Safo, S. E.; Li, S. Bioinformatics Tools for the Interpretation of Metabolomics Data. Curr. Pharmacol. Rep. 2017, 3, 374–383. DOI: 10.1007/s40495-017-0107-0.
  • Sugimoto, M.; Kawakami, M.; Robert, M.; Soga, T.; Tomita, M. Bioinformatics Tools for Mass Spectroscopy-Based Metabolomic Data Processing and Analysis. Curr. Bioinform. 2012, 7, 96–108. DOI: 10.2174/157489312799304431.
  • Szymańska, E.; Davies, A. N.; Buydens, L. M. C. Chemometrics for Ion Mobility Spectrometry Data: Recent Advances and Future Prospects. Analyst 2016, 141, 5689–5708. DOI: 10.1039/C6AN01008C.
  • Smith, C. A.; Maille, G. O. ?; Want, E. J.; Qin, C.; Trauger, S. A.; Brandon, T. R.; Custodio, D. E.; Abagyan, R.; Siuzdak, G. METLIN: A Metabolite Mass Spectral Database. Ther. Drug Monit. 2005, 27, 747–751. DOI: 10.1097/01.ftd.0000179845.53213.39.
  • Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; et al. MassBank: A Public Repository for Sharing Mass Spectral Data for Life Sciences. J. Mass Spectrom. 2010, 45, 703–714. DOI: 10.1002/jms.1777.
  • Alkhalifah, Y.; Phillips, I.; Soltoggio, A.; Darnley, K.; Nailon, W. H.; McLaren, D.; Eddleston, M.; Thomas, C. L. P.; Salman, D. VOCCluster: Untargeted Metabolomics Feature Clustering Approach for Clinical Breath Gas Chromatography/Mass Spectrometry Data. Anal. Chem. 2020, 92, 2937–2945. DOI: 10.1021/acs.analchem.9b03084.
  • Wheelock, C. E.; Goss, V. M.; Balgoma, D.; Nicholas, B.; Brandsma, J.; Skipp, P. J.; Snowden, S.; Burg, D.; D'Amico, A.; Horvath, I.; et al.; U-BIOPRED Study Group. Application of ’Omics Technologies to Biomarker Discovery in Inflammatory Lung Diseases. Eur. Respir. J. 2013, 42, 802–825. DOI: 10.1183/09031936.00078812.
  • Leopold, J. H.; Bos, L. D. J.; Sterk, P. J.; Schultz, M. J.; Fens, N.; Horvath, I.; Bikov, A.; Montuschi, P.; Di Natale, C.; Yates, D. H.; et al. Comparison of Classification Methods in Breath Analysis by Electronic Nose. J. Breath Res. 2015, 9, 046002. DOI: 10.1088/1752-7155/9/4/046002.
  • Miekisch, W.; Herbig, J.; Schubert, J. K. Data Interpretation in Breath Biomarker Research: Pitfalls and Directions. J. Breath Res. 2012, 6, 036007. DOI: 10.1088/1752-7155/6/3/036007.
  • Agusti, A. The Path to Personalised Medicine in Copd. Thorax 2014, 69, 857–864. DOI: 10.1136/thoraxjnl-2014-205507.
  • Maniscalco, M.; Motta, A. Metabolomics of Exhaled Breath Condensate: A Means for Phenotyping Respiratory Diseases? Biomark. Med. 2017, 11, 405–407. DOI: 10.2217/bmm-2017-0068.
  • Kazeminasab, S.; Emamalizadeh, B.; Jouyban, A.; Shoja, M. M.; Khoubnasabjafari, M. Macromolecular Biomarkers of Chronic Obstructive Pulmonary Disease in Exhaled Breath Condensate. Biomark. Med. 2020, 14, 1047–1063. DOI: 10.2217/bmm-2020-0121.
  • Kononikhin, A. S.; Starodubtseva, N. L.; Chagovets, V.; V; Ryndin, A. Y.; Burov, A. A.; Popov, I. A.; Bugrova, A. E.; Dautov, R. A.; Tokareva, A. O.; Podurovskaya, Y. L.; et al. Exhaled Breath Condensate Analysis from Intubated Newborns by Nano-HPLC Coupled to High Resolution MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1047, 97–105. DOI: 10.1016/j.jchromb.2016.12.036.
  • Antypkin, Y. G.; Chumachenko, N. G. Amino Acid Composition of Blood Serum and Exhaled Breath Condensate in Children with Bronchial Asthma. Perinatol. I Pediatr. 2017, 4, 99–105. DOI: 10.15574/pp.2017.72.99.
  • Cruickshank-Quinn, C.; Armstrong, M.; Powell, R.; Gomez, J.; Elie, M.; Reisdorph, N. Determining the Presence of Asthma-Related Molecules and Salivary Contamination in Exhaled Breath Condensate. Respir. Res. 2017, 18, 57. DOI: 10.1186/s12931-017-0538-5.
  • Bos, L. D. J.; Weda, H.; Wang, Y.; Knobel, H. H.; Nijsen, T. M. E.; Vink, T. J.; Zwinderman, A. H.; Sterk, P. J.; Schultz, M. J. Exhaled Breath Metabolomics as a Noninvasive Diagnostic Tool for Acute Respiratory Distress Syndrome. Eur. Respir. J. 2014, 44, 188–197. DOI: 10.1183/09031936.00005614.
  • Carraro, S.; Rezzi, S.; Reniero, F.; Héberger, K.; Giordano, G.; Zanconato, S.; Guillou, C.; Baraldi, E. Metabolomics Applied to Exhaled Breath Condensate in Childhood Asthma. Am. J. Respir. Crit. Care Med. 2007, 175, 986–990. DOI: 10.1164/rccm.200606-769OC.
  • Čáp, P.; Chládek, J.; Pehal, F.; Malý, M.; Petrů, V.; Barnes, P. J.; Montuschi, P. Gas Chromatography/Mass Spectrometry Analysis of Exhaled Leukotrienes in Asthmatic Patients. Thorax 2004, 59, 465–470. DOI: 10.1136/thx.2003.011866.
  • Dallinga, J. W.; Robroeks, C. M. H. H.; T.; Van Berkel, J. J. B. N.; Moonen, E. J. C.; Godschalk, R. W. L.; Jöbsis, Q.; Dompeling, E.; Wouters, E. F. M.; Van Schooten, F. J. Volatile Organic Compounds in Exhaled Breath as a Diagnostic Tool for Asthma in Children. Clin. Exp. Allergy 2010, 40, 68–76. DOI: 10.1111/j.1365-2222.2009.03343.x.
  • De Laurentiis, G.; Paris, D.; Melck, D.; Montuschi, P.; Maniscalco, M.; Bianco, A.; Sofia, M.; Motta, A. Separating Smoking-Related Diseases Using NMR-Based Metabolomics of Exhaled Breath Condensate. J. Proteome Res. 2013, 12, 1502–1511. DOI: 10.1021/pr301171p.
  • Zang, X.; Monge, M. E.; Gaul, D. A.; McCarty, N. A.; Stecenko, A.; Fernández, F. M. Early Detection of Cystic Fibrosis Acute Pulmonary Exacerbations by Exhaled Breath Condensate Metabolomics. J. Proteome Res. 2020, 19, 144–152. DOI: 10.1021/acs.jproteome.9b00443.
  • Robroeks, C. M. H. H. T.; Van Berkel, J. J. B. N.; Dallinga, J. W.; Jöbsis, Q.; Zimmermann, L. J. I.; Hendriks, H. J. E.; Wouters, M. F. M.; Van Der Grinten, C. P. M.; Van De Kant, K. D. G.; Van Schooten, F. J.; et al. Metabolomics of Volatile Organic Compounds in Cystic Fibrosis Patients and Controls. Pediatr. Res. 2010, 68, 75–80. DOI: 10.1203/PDR.0b013e3181df4ea0.
  • Montuschi, P.; Paris, D.; Melck, D.; Lucidi, V.; Ciabattoni, G.; Raia, V.; Calabrese, C.; Bush, A.; Barnes, P. J.; Motta, A. NMR Spectroscopy Metabolomic Profiling of Exhaled Breath Condensate in Patients with Stable and Unstable Cystic Fibrosis. Thorax 2012, 67, 222–228. DOI: 10.1136/thoraxjnl-2011-200072.
  • Gordon, S. M.; Szidon, J. P.; Krotoszynski, B. K.; Gibbons, R. D.; O'Neill, H. J. Volatile Organic Compounds in Exhaled Air from Patients with Lung Cancer. Clin. Chem. 1985, 31, 1278–1282. DOI: 10.1093/clinchem/31.8.1278.
  • O'Neill, H. J.; Gordon, S. M.; O'Neill, M. H.; Gibbons, R. D.; Szidon, J. P. A Computerized Classification Technique for Screening for the Presence of Breath Biomarkers in Lung Cancer. Clin. Chem. 1988, 34, 1613–1618. DOI: 10.1093/clinchem/34.8.1613.
  • Phillips, M.; Gleeson, K.; Hughes, J. M. B.; Greenberg, J.; Cataneo, R. N.; Baker, L.; McVay, W. P. Volatile Organic Compounds in Breath as Markers of Lung Cancer: A Cross-Sectional Study. Lancet 1999, 353, 1930–1933. DOI: 10.1016/S0140-6736(98)07552-7.
  • Barash, O.; Peled, N.; Hirsch, F. R.; Haick, H. Sniffing the Unique “Odor Print” of Non-Small-Cell Lung Cancer with Gold Nanoparticles. Small 2009, 5, 2618–2624. DOI: 10.1002/smll.200900937.
  • Song, G.; Qin, T.; Liu, H.; Xu, G. B.; Pan, Y. Y.; Xiong, F. X.; Gu, K. S.; Sun, G. P.; Chen, Z. D. Quantitative Breath Analysis of Volatile Organic Compounds of Lung Cancer Patients. Lung Cancer 2010, 67, 227–231. DOI: 10.1016/j.lungcan.2009.03.029.
  • Broza, Y. Y.; Kremer, R.; Tisch, U.; Gevorkyan, A.; Shiban, A.; Best, L. A.; Haick, H. A Nanomaterial-Based Breath Test for Short-Term Follow-up after Lung Tumor Resection. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 15–21. DOI: 10.1016/j.nano.2012.07.009.
  • Bajtarevic, A.; Ager, C.; Pienz, M.; Klieber, M.; Schwarz, K.; Ligor, M.; Ligor, T.; Filipiak, W.; Denz, H.; Fiegl, M.; et al. ;. Noninvasive Detection of Lung Cancer by Analysis of Exhaled Breath. BMC Cancer 2009, 9, 348. DOI: 10.1186/1471-2407-9-348.
  • Bousamra, M.; Schumer, E.; Li, M.; Knipp, R. J.; Nantz, M. H.; Van Berkel, V.; Fu, X. A. Quantitative Analysis of Exhaled Carbonyl Compounds Distinguishes Benign from Malignant Pulmonary Disease. J. Thorac. Cardiovasc. Surg. 2014, 148, 1074–1080. DOI: 10.1016/j.jtcvs.2014.06.006.
  • Buszewski, B.; Ligor, T.; Jezierski, T.; Wenda-Piesik, A.; Walczak, M.; Rudnicka, J. Identification of Volatile Lung Cancer Markers by Gas Chromatography-Mass Spectrometry: Comparison with Discrimination by Canines. Anal. Bioanal. Chem. 2012, 404, 141–146. DOI: 10.1007/s00216-012-6102-8.
  • Chen, X.; Cao, M.; Li, Y.; Hu, W.; Wang, P.; Ying, K.; Pan, H. A Study of an Electronic Nose for Detection of Lung Cancer Based on a Virtual SAW Gas Sensors Array and Imaging Recognition Method. Meas. Sci. Technol. 2005, 16, 1535–1546. DOI: 10.1088/0957-0233/16/8/001.
  • Corradi, M.; Poli, D.; Banda, I.; Bonini, S.; Mozzoni, P.; Pinelli, S.; Alinovi, R.; Andreoli, R.; Ampollini, L.; Casalini, A.; et al. Exhaled Breath Analysis in Suspected Cases of Non-Small-Cell Lung Cancer: A Cross-Sectional Study. J. Breath Res. 2015, 9, 027101. DOI: 10.1088/1752-7155/9/2/027101.
  • Crohns, M.; Saarelainen, S.; Laitinen, J.; Peltonen, K.; Alho, H.; Kellokumpu-Lehtinen, P. Exhaled Pentane as a Possible Marker for Survival and Lipid Peroxidation during Radiotherapy for Lung Cancera Pilot Study. Free Radic. Res. 2009, 43, 965–974. DOI: 10.1080/10715760903159162.
  • Deng, C.; Zhang, X.; Li, N. Investigation of Volatile Biomarkers in Lung Cancer Blood Using Solid-Phase Microextraction and Capillary Gas Chromatography-Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 808, 269–277. DOI: 10.1016/j.jchromb.2004.05.015.
  • Feinberg, T.; Alkoby-Meshulam, L.; Herbig, J.; Cancilla, J. C.; Torrecilla, J. S.; Gai Mor, N.; Bar, J.; Ilouze, M.; Haick, H.; Peled, N. Peled, N. Cancerous Glucose Metabolism in Lung Cancer - Evidence from Exhaled Breath Analysis. J. Breath Res. 2016, 10, 026012. DOI: 10.1088/1752-7155/10/2/026012.
  • Filipiak, W.; Filipiak, A.; Sponring, A.; Schmid, T.; Zelger, B.; Ager, C.; Klodzinska, E.; Denz, H.; Pizzini, A.; Lucciarini, P.; et al. Comparative Analyses of Volatile Organic Compounds (VOCs) from Patients, Tumors and Transformed Cell Lines for the Validation of Lung Cancer-Derived Breath Markers. J. Breath Res. 2014, 8, 027111. DOI: 10.1088/1752-7155/8/2/027111.
  • Fu, X.-A.; Li, M.; Knipp, R. J.; Nantz, M. H.; Bousamra, M. Noninvasive Detection of Lung Cancer Using Exhaled Breath. Cancer Med. 2014, 3, 174–181. DOI: 10.1002/cam4.162.
  • Fuchs, P.; Loeseken, C.; Schubert, J. K.; Miekisch, W. Breath Gas Aldehydes as Biomarkers of Lung Cancer. Int. J. Cancer 2009, 126, 2663–2670. DOI: 10.1002/ijc.24970.
  • Gaspar, E. M.; Lucena, A. F.; Duro da Costa, J. Chaves Das Neves, H. Organic Metabolites in Exhaled Human Breath-A Multivariate Approach for Identification of Biomarkers in Lung Disorders. J. Chromatogr. A 2009, 1216, 2749–2756. DOI: 10.1016/j.chroma.2008.10.125.
  • Ha, H.; Usuba, A.; Maddula, S.; Baumbach, J. I.; Mineshita, M.; Miyazawa, T. Exhaled Breath Analysis for Lung Cancer Detection Using Ion Mobility Spectrometry. PLoS One 2014, 9, e114555. DOI: 10.1371/journal.pone.0114555.
  • Kischkel, S.; Miekisch, W.; Sawacki, A.; Straker, E. M.; Trefz, P.; Amann, A.; Schubert, J. K. Breath Biomarkers for Lung Cancer Detection and Assessment of Smoking Related Effects - Confounding Variables, Influence of Normalization and Statistical Algorithms. Clin. Chim. Acta 2010, 411, 1637–1644. DOI: 10.1016/j.cca.2010.06.005.
  • Li, M.; Yang, D.; Brock, G.; Knipp, R. J.; Bousamra, M.; Nantz, M. H.; Fu, X. A. Breath Carbonyl Compounds as Biomarkers of Lung Cancer. Lung Cancer 2015, 90, 92–97. DOI: 10.1016/j.lungcan.2015.07.005.
  • Ligor, T.; Pater, Ł.; Buszewski, B. Application of an Artificial Neural Network Model for Selection of Potential Lung Cancer Biomarkers. J. Breath Res. 2015, 9, 027106. DOI: 10.1088/1752-7155/9/2/027106.
  • Ma, H.; Li, X.; Chen, J.; Wang, H.; Cheng, T.; Chen, K.; Xu, S. Analysis of Human Breath Samples of Lung Cancer Patients and Healthy Controls with Solid-Phase Microextraction (SPME) and Flow-Modulated Comprehensive Two-Dimensional Gas Chromatography (GC × GC). Anal. Methods 2014, 6, 6841. DOI: 10.1039/C4AY01220H.
  • Ma, W.; Gao, P.; Fan, J.; Hashi, Y.; Chen, Z. Determination of Breath Gas Composition of Lung Cancer Patients Using Gas Chromatography/Mass Spectrometry with Monolithic Material Sorptive Extraction. Biomed. Chromatogr. 2015, 29, 961–965. DOI: 10.1002/bmc.3385.
  • Peled, N.; Hakim, M.; Bunn, P. A.; Miller, Y. E.; Kennedy, T. C.; Mattei, J.; Mitchell, J. D.; Hirsch, F. R.; Haick, H. Non-Invasive Breath Analysis of Pulmonary Nodules. J. Thorac. Oncol. 2012, 90, 92–97. DOI: 10.1097/JTO.0b013e3182637d5f.
  • Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y. Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosing Lung Cancer in Exhaled Breath Using Gold Nanoparticles. Nat. Nanotechnol. 2009, 4, 669–673. DOI: 10.1038/nnano.2009.235.
  • Peng, G.; Hakim, M.; Broza, Y. Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of Lung, Breast, Colorectal, and Prostate Cancers from Exhaled Breath Using a Single Array of Nanosensors. Br. J. Cancer 2010, 103, 542–551. DOI: 10.1038/sj.bjc.6605810.
  • Phillips, M.; Cataneo, R. N.; Cummin, A. R. C.; Gagliardi, A. J.; Gleeson, K.; Greenberg, J.; Maxfield, R. A.; Rom, W. N. Detection of Lung Cancer with Volatile Markers in the Breath. Chest 2003, 123, 2115–2123. DOI: 10.1378/chest.123.6.2115.
  • Phillips, M.; Altorki, N.; Austin, J. H. M.; Cameron, R. B.; Cataneo, R. N.; Kloss, R.; Maxfield, R. A.; Munawar, M. I.; Pass, H. I.; Rashid, A.; et al. Detection of Lung Cancer Using Weighted Digital Analysis of Breath Biomarkers. Clin. Chim. Acta 2008, 393, 76–84. DOI: 10.1016/j.cca.2008.02.021.
  • Poli, D.; Carbognani, P.; Corradi, M.; Goldoni, M.; Acampa, O.; Balbi, B.; Bianchi, L.; Rusca, M.; Mutti, A. Exhaled Volatile Organic Compounds in Patients with Non-Small Cell Lung Cancer: Cross Sectional and Nested Short-Term Follow-up Study. Respir. Res. 2005, 6, 71. DOI: 10.1186/1465-9921-6-71.
  • Poli, D.; Goldoni, M.; Corradi, M.; Acampa, O.; Carbognani, P.; Internullo, E.; Casalini, A.; Mutti, A. Determination of Aldehydes in Exhaled breath of patients with Lung Cancer by Means of on-Fiber-Derivatisation SPME-GC/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 2643–2651. DOI: 10.1016/j.jchromb.2010.01.022.
  • Rudnicka, J.; Kowalkowski, T.; Ligor, T.; Buszewski, B. Determination of Volatile Organic Compounds as Biomarkers of Lung Cancer by SPME-GC-TOF/MS and Chemometrics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 3360–3366. DOI: 10.1016/j.jchromb.2011.09.001.
  • Sakumura, Y.; Koyama, Y.; Tokutake, H.; Hida, T.; Sato, K.; Itoh, T.; Akamatsu, T.; Shin, W. Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm. Sensors (Switzerland) 2017, 17, 287. DOI: 10.3390/s17020287.
  • Schallschmidt, K.; Becker, R.; Jung, C.; Bremser, W.; Walles, T.; Neudecker, J.; Leschber, G.; Frese, S.; Nehls, I. Comparison of Volatile Organic Compounds from Lung Cancer Patients and Healthy Controls - Challenges and Limitations of an Observational Study. J. Breath Res. 2016, 10, 046007. DOI: 10.1088/1752-7155/10/4/046007.
  • Schumer, E. M.; Trivedi, J. R.; van Berkel, V.; Black, M. C.; Li, M.; Fu, X.-A.; Bousamra, M. High Sensitivity for Lung Cancer Detection Using Analysis of Exhaled Carbonyl Compounds. J. Thorac. Cardiovasc. Surg. 2015, 150, 1517–1522. DOI: 10.1016/j.jtcvs.2015.08.092.
  • Schumer, E. M.; Black, M. C.; Bousamra, M.; Trivedi, J. R.; Li, M.; Fu, X. A.; van Berkel, V. Normalization of Exhaled Carbonyl Compounds after Lung Cancer Resection. .Ann. Thorac. Surg. 2016, 102, 1095–1100. DOI: 10.1016/j.athoracsur.2016.04.068.
  • Skeldon, K. D.; McMillan, L. C.; Wyse, C. A.; Monk, S. D.; Gibson, G.; Patterson, C.; France, T.; Longbottom, C.; Padgett, M. J. Application of Laser Spectroscopy for Measurement of Exhaled Ethane in Patients with Lung Cancer. Respir. Med. 2006, 100, 300–306. DOI: 10.1016/j.rmed.2005.05.006.
  • Ulanowska, A.; Kowalkowski, T.; Trawińska, E.; Buszewski, B. The Application of Statistical Methods Using VOCs to Identify Patients with Lung Cancer. J. Breath Res. 2011, 5, 046008. DOI: 10.1088/1752-7155/5/4/046008.
  • Wang, Y.; Hu, Y.; Wang, D.; Yu, K.; Wang, L.; Zou, Y.; Zhao, C.; Zhang, X.; Wang, P.; Ying, K. The Analysis of Volatile Organic Compounds Biomarkers for Lung Cancer in Exhaled Breath, Tissues and Cell Lines. CBM. 2012, 11, 129–137. DOI: 10.3233/CBM-2012-00270.
  • Wehinger, A.; Schmid, A.; Mechtcheriakov, S.; Ledochowski, M.; Grabmer, C.; Gastl, G. A.; Amann, A. Lung Cancer Detection by Proton Transfer Reaction Mass-Spectrometric Analysis of Human Breath Gas. Int. J. Mass Spectrom. 2007, 265, 49–59. DOI: 10.1016/j.ijms.2007.05.012.
  • Van Oort, P. M. P.; De Bruin, S.; Hans, W.; Knobel, H. H.; Schultz, M. J.; Bos, L. D., On Behalf of the MARS Consortium. Exhaled Breath Metabolomics for the Diagnosis of Pneumonia in Intubated and Mechanically-Ventilated Intensive Care Unit (ICU)-Patients. IJMS. 2017, 18, 449. DOI: 10.3390/ijms18020449.
  • Fowler, S. J.; Basanta-Sanchez, M.; Xu, Y.; Goodacre, R.; Dark, P. M. Surveillance for Lower Airway Pathogens in Mechanically Ventilated Patients by Metabolomic Analysis of Exhaled Breath: A Case-Control Study. Thorax 2015, 70, 320–325. DOI: 10.1136/thoraxjnl-2014-206273.
  • Mitropoulos, K.; Katsila, T.; Patrinos, G. P.; Pampalakis, G. Multi-Omics for Biomarker Discovery and Target Validation in Biofluids for Amyotrophic Lateral Sclerosis Diagnosis. OMICS 2018, 22, 52–64. DOI: 10.1089/omi.2017.0183. [InsertedFromOnline[pubmedMismatch]]
  • Bannaga, A. S.; Farrugia, A.; Arasaradnam, R. P. Diagnosing Inflammatory Bowel Disease Using Noninvasive Applications of Volatile Organic Compounds: A Systematic Review. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 1113–1122. DOI: 10.1080/17474124.2019.1685873.
  • Karyakin, A. A.; Nikulina, S. V.; Vokhmyanina, D. V.; Karyakina, E. E.; Anaev, E. K. H.; Chuchalin, A. G. Diabetes through Analysis of the Exhaled Breath Condensate (Aerosol). Electrochem. Commun. 2017, 83, 81–84. DOI: 10.1016/j.elecom.2017.09.005.
  • Nelson, N.; Lagesson, V.; Nosratabadi, A. R.; Ludvigsson, J.; Tagesson, C. Exhaled Isoprene and Acetone in Newborn Infants and in Children with Diabetes Mellitus. Pediatr. Res. 1998, 44, 363–367. DOI: 10.1203/00006450-199809000-00016.
  • Turner, C. Potential of Breath and Skin Analysis for Monitoring Blood Glucose Concentration in Diabetes. Expert Rev. Mol. Diagn. 2011, 11, 497–503. DOI: 10.1586/erm.11.31.
  • Minh, T. D. C.; Blake, D. R.; Galassetti, P. R. The Clinical Potential of Exhaled Breath Analysis for Diabetes Mellitus. Diabetes Res. Clin. Pract. 2012, 97, 195–205. DOI: 10.1016/j.diabres.2012.02.006.
  • Robles, L.; Priefer, R. Lactose Intolerance: What Your Breath Can Tell You. Diagnostics 2020, 10, 412. DOI: 10.3390/diagnostics10060412.
  • Obermeier, J.; Trefz, P.; Happ, J.; Schubert, J. K.; Staude, H.; Fischer, D.-C.; Miekisch, W. Exhaled Volatile Substances Mirror Clinical Conditions in Pediatric Chronic Kidney Disease. PLoS One 2017, 12, e0178745. DOI: 10.1371/journal.pone.0178745.
  • Shuster, G.; Gallimidi, Z.; Reiss, A. H.; Dovgolevsky, E.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Engel, A.; Shiban, A.; Tisch, U.; et al. Classification of Breast Cancer Precursors through Exhaled Breath. Breast Cancer Res. Treat 2011, 126, 791–796. DOI: 10.1007/s10549-010-1317-x.
  • Barash, O.; Zhang, W.; Halpern, J. M.; Hua, Q. L.; Pan, Y. Y.; Kayal, H.; Khoury, K.; Liu, H.; Davies, M. P. A.; Haick, H. Differentiation between Genetic Mutations of Breast Cancer by Breath Volatolomics. Oncotarget 2015, 6, 44864–44876. DOI: 10.18632/oncotarget.6269.
  • Li, J.; Peng, Y.; Liu, Y.; Li, W.; Jin, Y.; Tang, Z.; Duan, Y. Investigation of Potential Breath Biomarkers for the Early Diagnosis of Breast Cancer Using Gas Chromatography-Mass Spectrometry. Clin. Chim. Acta 2014, 436, 59–67. DOI: 10.1016/j.cca.2014.04.030.
  • Phillips, M.; Cataneo, R. N.; Ditkoff, B. A.; Fisher, P.; Greenberg, J.; Gunawardena, R.; Kwon, C. S.; Rahbari-Oskoui, F.; Wong, C. Volatile Markers of Breast Cancer in the Breath. Breast J. 2003, 9, 184–191. DOI: 10.1046/j.1524-4741.2003.09309.x.
  • Wang, C.; Sun, B.; Guo, L.; Wang, X.; Ke, C.; Liu, S.; Zhao, W.; Luo, S.; Guo, Z.; Zhang, Y.; et al. Volatile Organic Metabolites Identify Patients with Breast Cancer, Cyclomastopathy, and Mammary Gland Fibroma. Sci. Rep. 2014, 4, 5383. DOI: 10.1038/srep05383.
  • Bodelier, A. G. L.; Smolinska, A.; Baranska, A.; Dallinga, J. W.; Mujagic, Z.; Vanhees, K.; Van Den Heuvel, T.; Masclee, A. A. M.; Jonkers, D.; Pierik, M. J.; et al. Volatile Organic Compounds in Exhaled Air as Novel Marker for Disease Activity in Crohn’s Disease: A Metabolomic Approach. Inflamm. Bowel Dis. 2015, 21, 1776–1785. DOI: 10.1097/MIB.0000000000000436.
  • Obermeier, J.; Trefz, P.; Happ, J.; Schubert, J. K.; Staude, H.; Fischer, D.-C.; Miekisch, W. Exhaled Volatile Substances Mirror Clinical Conditions in Pediatric Chronic Kidney Disease. PLoS One 2017, 12, e0178745. DOI: 10.1371/journal.pone.0178745.
  • Altomare, D. F.; Di Lena, M.; Porcelli, F.; Trizio, L.; Travaglio, E.; Tutino, M.; Dragonieri, S.; Memeo, V.; De Gennaro, G. Exhaled Volatile Organic Compounds Identify Patients with Colorectal Cancer. Br. J. Surg. 2013, 100, 144–150. DOI: 10.1002/bjs.8942.
  • Amal, H.; Leja, M.; Funka, K.; Lasina, I.; Skapars, R.; Sivins, A.; Ancans, G.; Kikuste, I.; Vanags, A.; Tolmanis, I.; et al. Breath Testing as Potential Colorectal Cancer Screening Tool. Int. J. Cancer 2016, 138, 229–236. DOI: 10.1002/ijc.29701.
  • Wang, C.; Ke, C.; Wang, X.; Chi, C.; Guo, L.; Luo, S.; Guo, Z.; Xu, G.; Zhang, F.; Li, E. Noninvasive Detection of Colorectal Cancer by Analysis of Exhaled Breath. Anal. Bioanal. Chem. 2014. DOI: 10.1007/s00216-014-7865-x.
  • Yan, Y.; Wang, Q.; Li, W.; Zhao, Z.; Yuan, X.; Huang, Y.; Duan, Y. Discovery of Potential Biomarkers in Exhaled Breath for Diagnosis of Type 2 Diabetes Mellitus Based on GC-MS with Metabolomics. RSC Adv. 2014, 4, 25430–25439. DOI: 10.1039/C4RA01422G.
  • Abela, J. E.; Skeldon, K. D.; Stuart, R. C.; Padgett, M. J. Exhaled Ethane Concentration in Patients with Cancer of the Upper Gastrointestinal Tract - A Proof of Concept Study. Biosci. Trends 2009, 3, 110–114.
  • Kumar, S.; Huang, J.; Abbassi-Ghadi, N.; Španěl, P.; Smith, D.; Hanna, G. B. Selected Ion Flow Tube Mass Spectrometry Analysis of Exhaled Breath for Volatile Organic Compound Profiling of Esophago-Gastric Cancer. Anal. Chem. 2013, 85, 6121–6128. DOI: 10.1021/ac4010309.
  • Kumar, S.; Huang, J.; Abbassi-Ghadi, N.; MacKenzie, H. A.; Veselkov, K. A.; Hoare, J. M.; Lovat, L. B.; Spanel, P.; Smith, D.; Hanna, G. B. Mass Spectrometric Analysis of Exhaled Breath for the Identification of Volatile Organic Compound Biomarkers in Esophageal and Gastric Adenocarcinoma. Ann. Surg. 2015, 262, 981–990. DOI: 10.1097/SLA.0000000000001101.
  • Amal, H.; Leja, M.; Broza, Y. Y.; Tisch, U.; Funka, K.; Liepniece-Karele, I.; Skapars, R.; Xu, Z. Q.; Liu, H.; Haick, H. Geographical Variation in the Exhaled Volatile Organic Compounds. J. Breath Res. 2013, 7, 047102. DOI: 10.1088/1752-7155/7/4/047102.
  • Amal, H.; Leja, M.; Funka, K.; Skapars, R.; Sivins, A.; Ancans, G.; Liepniece-Karele, I.; Kikuste, I.; Lasina, I.; Haick, H. Detection of Precancerous Gastric Lesions and Gastric Cancer through Exhaled Breath. Gut 2016, 65, 400–407. DOI: 10.1136/gutjnl-2014-308536.
  • Xu, Z. Q.; Broza, Y. Y.; Ionsecu, R.; Tisch, U.; Ding, L.; Liu, H.; Song, Q.; Pan, Y. Y.; Xiong, F. X.; Gu, K. S.; et al. A Nanomaterial-Based Breath Test for Distinguishing Gastric Cancer from Benign Gastric Conditions. Br. J. Cancer 2013, 108, 941–950. DOI: 10.1038/bjc.2013.44.
  • Gruber, M.; Tisch, U.; Jeries, R.; Amal, H.; Hakim, M.; Ronen, O.; Marshak, T.; Zimmerman, D.; Israel, O.; Amiga, E.; et al. Analysis of Exhaled Breath for Diagnosing Head and Neck Squamous Cell Carcinoma: A Feasibility Study. Br. J. Cancer 2014, 111, 790–798. DOI: 10.1038/bjc.2014.361.
  • Hakim, M.; Billan, S.; Tisch, U.; Peng, G.; Dvrokind, I.; Marom, O.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosis of Head-and-Neck Cancer from Exhaled Breath. Br. J. Cancer 2011, 104, 1649–1655. DOI: 10.1038/bjc.2011.128.
  • Patel, N.; Alkhouri, N.; Eng, K.; Cikach, F.; Mahajan, L.; Yan, C.; Grove, D.; Rome, E. S.; Lopez, R.; Dweik, R. A. Metabolomic Analysis of Breath Volatile Organic Compounds Reveals Unique Breathprints in Children with Inflammatory Bowel Disease: A Pilot Study. Aliment. Pharmacol. Ther. 2014, 40, 498–507. DOI: 10.1111/apt.12861.
  • Tiele, A.; Wicaksono, A.; Kansara, J.; Arasaradnam, R. P.; Covington, J. A. Breath Analysis Using Enose and Ion Mobility Technology to Diagnose Inflammatory Bowel Disease — A Pilot Study. Biosensors 2019, 9, 55. DOI: 10.3390/bios9020055.
  • Monasta, L.; Pierobon, C.; Princivalle, A.; Martelossi, S.; Marcuzzi, A.; Pasini, F.; Perbellini, L. Inflammatory Bowel Disease and Patterns of Volatile Organic Compounds in the Exhaled Breath of Children: A Case-Control Study Using Ion Molecule Reaction-Mass Spectrometry. PLoS One 2017, 12, e0184118. DOI: 10.1371/journal.pone.0184118.
  • Dryahina, K.; Smith, D.; Bortlík, M.; Machková, N.; Lukáš, M.; Španěl, P. Pentane and Other Volatile Organic Compounds, Including Carboxylic Acids, in the Exhaled Breath of Patients with Crohn’s Disease and Ulcerative Colitis. J. Breath Res. 2017, 12, 016002. DOI: 10.1088/1752-7163/aa8468.
  • Arasaradnam, R. P.; McFarlane, M.; Daulton, E.; Skinner, J.; O’Connell, N.; Wurie, S.; Chambers, S.; Nwokolo, C.; Bardhan, K.; Savage, R.; et al. Non-Invasive Exhaled Volatile Organic Biomarker Analysis to Detect Inflammatory Bowel Disease (IBD). Dig. Liver Dis. 2016, 48, 148–153. DOI: 10.1016/j.dld.2015.10.013.
  • Hicks, L. C.; Huang, J.; Kumar, S.; Powles, S. T.; Orchard, T. R.; Hanna, G. B.; Williams, H. R. T. Analysis of Exhaled Breath Volatile Organic Compounds in Inflammatory Bowel Disease: A Pilot Study. J. Crohns Colitis 2015, 9, 731–737. DOI: 10.1093/ecco-jcc/jjv102.
  • Smolinska, A.; Bodelier, A. G. L.; Dallinga, J. W.; Masclee, A. A. M.; Jonkers, D. M.; van Schooten, F. J.; Pierik, M. J. The Potential of Volatile Organic Compounds for the Detection of Active Disease in Patients with Ulcerative Colitis. Aliment. Pharmacol. Ther 2017, 45, 1244–1254. DOI: 10.1111/apt.14004.
  • Rieder, F.; Kurada, S.; Grove, D.; Cikach, F.; Lopez, R.; Patel, N.; Singh, A.; Alkhouri, N.; Shen, B.; Brzezinski, A.; et al. A Distinct Colon-Derived Breath Metabolome is Associated with Inflammatory Bowel Disease, but Not Its Complications. Clin. Transl. Gastroenterol. 2016, 7, e201. DOI: 10.1038/ctg.2016.57.
  • García, R. A.; Morales, V.; Martín, S.; Vilches, E.; Toledano, A. Volatile Organic Compounds Analysis in Breath Air in Healthy Volunteers and Patients Suffering Epidermoid Laryngeal Carcinomas. Chromatographia 2014, 77, 501–509. DOI: 10.1007/s10337-013-2611-7.
  • Qin, T.; Liu, H.; Song, Q.; Song, G.; Wang, H. Z.; Pan, Y. Y.; Xiong, F. X.; Gu, K. S.; Sun, G. P.; Chen, Z. D. The Screening of Volatile Markers for Hepatocellular Carcinoma. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 2247–2253. DOI: 10.1158/1055-9965.EPI-10-0302.
  • Ionescu, R.; Broza, Y.; Shaltieli, H.; Sadeh, D.; Zilberman, Y.; Feng, X.; Glass-Marmor, L.; Lejbkowicz, I.; Müllen, K.; Miller, A.; et al. Detection of Multiple Sclerosis from Exhaled Breath Using Bilayers of Polycyclic Aromatic Hydrocarbons and Single-Wall Carbon Nanotubes. ACS Chem. Neurosci. 2011, 2, 687–693. DOI: 10.1021/cn2000603.
  • Sukul, P.; Schubert, J. K.; Trefz, P.; Miekisch, W. Natural Menstrual Rhythm and Oral Contraception Diversely Affect Exhaled Breath Compositions. Sci. Rep. 2018, 8, 10838. DOI: 10.1038/s41598-018-29221-z.
  • Mendis, S.; Sobotka, P. A.; Euler, D. E. Pentane and Isoprene in Expired Air from Humans: Gas-Chromatographic Analysis of Single Breath. Clin. Chem. 1994, 40, 1485–1488. DOI: 10.1093/clinchem/40.8.1485.
  • Phillips, M.; Greenberg, J.; Sabas, M. Alveolar Gradient of Pentane in Normal Human Breath. Free Radic. Res. 1994, 20, 333–337. DOI: 10.3109/10715769409145633.
  • Bouza, M.; Gonzalez-Soto, J.; Pereiro, R.; De Vicente, J. C.; Sanz-Medel, A. Exhaled Breath and Oral Cavity VOCs as Potential Biomarkers in Oral Cancer Patients. J. Breath Res. 2017, 11, 016015. DOI: 10.1088/1752-7163/aa5e76.
  • Szabó, A.; Tarnai, Z.; Berkovits, C.; Novák, P.; Mohácsi, Á.; Braunitzer, G.; Rakonczay, Z.; Turzó, K.; Nagy, K.; Szabó, G. Volatile Sulphur Compound Measurement with OralChromaTM: A methodological Improvement. J. Breath Res. 2015, 9, 016001. DOI: 10.1088/1752-7155/9/1/016001.
  • Amal, H.; Shi, D. Y.; Ionescu, R.; Zhang, W.; Hua, Q. L.; Pan, Y. Y.; Tao, L.; Liu, H.; Haick, H. Assessment of Ovarian Cancer Conditions from Exhaled Breath. Int. J. Cancer 2015, 136, E614–E622. DOI: 10.1002/ijc.29166.
  • Guo, L.; Wang, C.; Chi, C.; Wang, X.; Liu, S.; Zhao, W.; Ke, C.; Xu, G.; Li, E. Exhaled Breath Volatile Biomarker Analysis for Thyroid Cancer. Transl. Res. 2015, 166, 188–195. DOI: 10.1016/j.trsl.2015.01.005.
  • Carlos, G.; dos Santos, F. P.; Fröehlich, P. E. Canine Metabolomics Advances. Metabolomics 2020, 16, 16–19. DOI: 10.1007/s11306-020-1638-7.
  • Aksenov, A. A.; Yeates, L.; Pasamontes, A.; Siebe, C.; Zrodnikov, Y.; Simmons, J.; McCartney, M. M.; Deplanque, J.-P.; Wells, R. S.; Davis, C. E. Metabolite Content Profiling of Bottlenose Dolphin Exhaled Breath. Anal. Chem. 2014, 86, 10616–10624. DOI: 10.1021/ac5024217.
  • Zamuruyev, K. O.; Aksenov, A. A.; Baird, M.; Pasamontes, A.; Parry, C.; Foutouhi, S.; Venn-Watson, S.; Weimer, B. C.; Delplanque, J.-P.; Davis, C. E. Enhanced Non-Invasive Respiratory Sampling from Bottlenose Dolphins for Breath Metabolomics Measurements. J. Breath Res. 2016, 10, 046005. DOI: 10.1088/1752-7155/10/4/046005.
  • Pasamontes, A.; Aksenov, A. A.; Schivo, M.; Rowles, T.; Smith, C. R.; Schwacke, L. H.; Wells, R. S.; Yeates, L.; Venn-Watson, S.; Davis, C. E. Noninvasive Respiratory Metabolite Analysis Associated with Clinical Disease in Cetaceans: A Deepwater Horizon Oil Spill Study. Environ. Sci. Technol. 2017, 51, 5737–5746. DOI: 10.1021/acs.est.6b06482.
  • Borras, E.; Aksenov, A. A.; Baird, M.; Novick, B.; Schivo, M.; Zamuruyev, K. O.; Pasamontes, A.; Parry, C.; Foutouhi, S.; Venn-Watson, S.; et al. Exhaled Breath Condensate Methods Adapted from Human Studies Using Longitudinal Metabolomics for Predicting Early Health Alterations in Dolphins. Anal. Bioanal. Chem. 2017, 409, 6523–6536. DOI: 10.1007/s00216-017-0581-6.
  • Cumeras, R.; Cheung, W. H. K.; Gulland, F.; Goley, D.; Davis, C. E. Chemical Analysis of Whale Breath Volatiles: A Case Study for Non-Invasive Field Health Diagnostics of Marine Mammals. Metabolites 2014, 4, 790–806. DOI: 10.3390/metabo4030790.
  • Burgess, E. A.; Hunt, K. E.; Kraus, S. D.; Rolland, R. M. Quantifying Hormones in Exhaled Breath for Physiological Assessment of Large Whales at Sea. Sci. Rep. 2018, 8, 10031. DOI: 10.1038/s41598-018-28200-8.
  • Hogg, C. J.; Vickers, E. R.; Rogers, T. L. Determination of Testosterone in Saliva and Blow of Bottlenose Dolphins (Tursiops Truncatus) Using Liquid Chromatography–Mass Spectrometry. J. Chromatogr. B 2005, 814, 339–346. DOI: 10.1016/j.jchromb.2004.10.058.
  • Dunstan, J.; Gledhill, A.; Hall, A.; Miller, P.; Ramp, C. Quantification of the Hormones Progesterone and Cortisol in Whale Breath Samples Using Novel, Non-Invasive Sampling and Analysis with Highly-Sensitive ACQUITY UPLC and Xevo TQ-S. Waters Appl. Note 2012, 1–8.
  • Fulcher, Y. G.; Fotso, M.; Chang, C.-H.; Rindt, H.; Reinero, C. R.; Van Doren, S. R. Noninvasive Recognition and Biomarkers of Early Allergic Asthma in Cats Using Multivariate Statistical Analysis of NMR Spectra of Exhaled Breath Condensate. PLoS One 2016, 11, e0164394. DOI: 10.1371/journal.pone.0164394.
  • Bos, L. D. J.; Van Walree, I. C.; Kolk, A. H. J.; Janssen, H.-G.; Sterk, P. J.; Schultz, M. J. Alterations in Exhaled Breath Metabolite-Mixtures in Two Rat Models of Lipopolysaccharide-Induced Lung Injury. J. Appl. Physiol. (1985) 2013, 115, 1487–1495. DOI: 10.1152/japplphysiol.00685.2013.
  • Fischer, S.; Bergmann, A.; Steffens, M.; Trefz, P.; Ziller, M.; Miekisch, W.; Schubert, J. S.; Köhler, H.; Reinhold, P. Impact of Food Intake on in Vivo VOC Concentrations in Exhaled Breath Assessed in a Caprine Animal Model. J. Breath Res. 2015, 9, 047113. DOI: 10.1088/1752-7155/9/4/047113.
  • Küntzel, A.; Oertel, P.; Trefz, P.; Miekisch, W.; Schubert, J. K.; Köhler, H.; Reinhold, P. Animal Science Meets Agricultural Practice: Preliminary Results of an Innovative Technical Approach for Exhaled Breath Analysis in Cattle under Field Conditions. Berl. Munch. Tierarztl. Wochenschr. 2018, 131, 444–452. DOI: 10.2376/0005-9366-17101.
  • Bazzano, M.; Laghi, L.; Zhu, C.; Magi, G. E.; Serri, E.; Spaterna, A.; Tesei, B.; Laus, F. Metabolomics of Tracheal Wash Samples and Exhaled Breath Condensates in Healthy Horses and Horses Affected by Equine Asthma. J. Breath Res. 2018, 12, 046015. DOI: 10.1088/1752-7163/aade13.
  • Neuhaus, S.; Seifert, L.; Vautz, W.; Nolte, J.; Bufe, A.; Peters, M. Comparison of Metabolites in Exhaled Breath and Bronchoalveolar Lavage Fluid Samples in a Mouse Model of Asthma. J. Appl. Physiol. (1985) 2011, 111, 1088–1095. DOI: 10.1152/japplphysiol.00476.2011.