1,047
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Organic-Inorganic Hybrid Nanoflower Production and Analytical Utilization: Fundamental to Cutting-Edge Technologies

ORCID Icon, , ORCID Icon, &
Pages 1488-1510 | Published online: 11 Mar 2021

References

  • Kulkarni, S. K. Nanotechnology: Principles and Practices; Springer: Cham, 2015, DOI: 10.1007/978-3-319-09171-6.
  • Sarmah, D.; Banerjee, M.; Datta, A.; Kalia, K.; Dhar, S.; Yavagal, D. R.; Bhattacharya, P.  Nanotechnology in the diagnosis and treatment of stroke. Drug Discov. Today 2020, 23, 1–8. DOI: 10.1016/j.drudis.2020.11.018.
  • Salama, D. M.; Abd El-Aziz, M. E.; Rizk, F. A.; Abd Elwahed, M. S. A. Applications of Nanotechnology on Vegetable Crops. Chemosphere 2020, 266, 129026. DOI: 10.1016/j.chemosphere.2020.129026.
  • Acharya, A.; Pal, P. K. Agriculture Nanotechnology: Translating Research Outcome to Field Applications by Influencing Environmental Sustainability. NanoImpact 2020, 19, 100232. DOI: 10.1016/j.impact.2020.100232.
  • Sahani, S.; Sharma, Y. C. Advancements in Applications of Nanotechnology in Global Food Industry. Food Chem. 2020, 342, 128318. DOI: 10.1016/j.foodchem.2020.128318.
  • Hassani, S. S.; Daraee, M.; Sobat, Z. Advanced Development in Upstream of Petroleum Industry Using Nanotechnology. Chinese J. Chem. Eng. 2020, 28, 1483–1491. DOI: 10.1016/j.cjche.2020.02.030.
  • Chao, X.; Zhao, L.; Ma, N.; Mou, Y.; Zhang, P. Nanotechnology-Based Drug Delivery Systems for the Improved Sensitization of Tamoxifen. J. Drug Deliv. Sci. Technol. 2021, 61, 102229. DOI: 10.1016/j.jddst.2020.102229.
  • Jandt, K. D.; Watts, D. C. Nanotechnology in Dentistry: Present and Future Perspectives on Dental Nanomaterials. Dent. Mater. 2020, 36, 1365–1378. DOI: 10.1016/j.dental.2020.08.006.
  • Malik, R.; Tomer, V. K.; Mishra, Y. K.; Lin, L. Functional Gas Sensing Nanomaterials: A Panoramic View. Appl. Phys. Rev. 2020, 7, 021301. DOI: 10.1063/1.5123479.
  • Chauhan, N.; Gupta, S.; Avasthi, D. K.; Adelung, R.; Mishra, Y. K.; Jain, U. Zinc Oxide Tetrapods Based Biohybrid Interface for Voltammetric Sensing of Helicobacter Pylori. ACS Appl. Mater. Interfaces 2018, 10, 30631–30639. DOI: 10.1021/acsami.8b08901.
  • Shondo, J.; Veziroglu, S.; Stefan, D.; Mishra, Y. K.; Strunskus, T.; Faupel, F.; Aktas, O. C. Tuning Wettability of TiO2 Thin Film by Photocatalytic Deposition of 3D Flower- and Hedgehog-like Au Nano- and Microstructures. Appl. Surf. Sci. 2021, 537, 147795. DOI: 10.1016/j.apsusc.2020.147795.
  • Ashaduzzaman, M.; Deshpande, S. R.; Murugan, N. A.; Mishra, Y. K.; Turner, A. P. F.; Tiwari, A. On/off-Switchable LSPR Nano-Immunoassay for Troponin-T. Sci. Rep. 2017, 7, 1–10. DOI: 10.1038/srep44027.
  • Chakraborty, U.; Bhanjana, G.; Adam, J.; Mishra, Y. K.; Kaur, G.; Chaudhary, G. R.; Kaushik, A. A Flower-like ZnO-Ag2O Nanocomposite for Label and Mediator Free Direct Sensing of Dinitrotoluene. RSC Adv. 2020, 10, 27764–27774. DOI: 10.1039/D0RA02826F.
  • Kalantzis, S.; Veziroglu, S.; Kohlhaas, T.; Flörke, C.; Mishra, Y. K.; Wiltfang, J.; Açil, Y.; Faupel, F.; Aktas, O. C.; Gülses, A. Early Osteoblastic Activity on TiO2thin Films Decorated with Flower-like Hierarchical Au Structures. RSC Adv. 2020, 10, 28935–28940. DOI: 10.1039/D0RA05141A.
  • Sarswat, P. K.; Mishra, Y. K.; Free, M. L. Fabrication and Response of Alpha-Hydroxybutyrate Sensors for Rapid Assessment of Cardiometabolic Disease Risk. Biosens. Bioelectron. 2017, 89, 334–342. DOI: 10.1016/j.bios.2016.07.019.
  • Ko, H.; Witherell, P.; Lu, Y.; Rosen, D. W. Nanomaterials: Applications, Waste-Handling, Environmental Toxicities, and Future Challenges - A Review. Addit. Manuf. 2020, 9, 105028. DOI: 10.1016/j.jece.2021.105028.
  • Zhang, M.; Peltier, R.; Zhang, M.; Lu, H.; Bian, H.; Li, Y.; Xu, Z.; Shen, Y.; Sun, H.; Wang, Z. In Situ Reduction of Silver Nanoparticles on Hybrid Polydopamine-Copper Phosphate Nanoflowers with Enhanced Antimicrobial Activity. J. Mater. Chem. B. 2017, 5, 5311–5317. DOI: 10.1039/c7tb00610a.
  • Tang, Q.; Zhang, L.; Tan, X.; Jiao, L.; Wei, Q.; Li, H. Bioinspired Synthesis of Organic–Inorganic Hybrid Nanoflowers for Robust Enzyme-Free Electrochemical Immunoassay. Biosens. Bioelectron. 2019, 133, 94–99. DOI: 10.1016/j.bios.2019.03.032.
  • Zheng, L.; Sun, Y.; Wang, J.; Huang, H.; Geng, X.; Tong, Y.; Wang, Z. Preparation of a Flower-like Immobilized D-Psicose 3-Epimerase with Enhanced Catalytic Performance. Catalysts 2018, 8, 468. DOI: 10.3390/catal8100468.
  • Zhang, B.; Li, P.; Zhang, H.; Wang, H.; Li, X.; Tian, L.; Ali, N.; Ali, Z.; Zhang, Q. Preparation of Lipase/Zn 3 (PO 4) 2 Hybrid Nanoflower and Its Catalytic Performance as an Immobilized Enzyme. Chem. Eng. J. 2016, 291, 287–297. DOI: 10.1016/j.cej.2016.01.104.
  • Subramani, I. G.; Perumal, V.; Gopinath, S. C. B.; Mohamed, N. M.; Joshi, N.; Ovinis, M.; Sze, L. L. 3D Nanoporous Hybrid Nanoflower for Enhanced Non-Faradaic Redox-Free Electrochemical Impedimetric Biodetermination. J. Taiwan Inst. Chem. Eng. 2020, 116, 26–35. DOI: 10.1016/j.jtice.2020.11.006.
  • Ye, R.; Xu, H.; Gu, J.; Chen, H. Bioinspired Synthesis of Protein-Posnjakite Organic-Inorganic Nanobiohybrid for Biosensing Applications. Anal. Chim. Acta 2021, 1143, 31–36. DOI: 10.1016/j.aca.2020.11.026.
  • Zhang, B.; Li, P.; Zhang, H.; Fan, L.; Wang, H.; Li, X.; Tian, L.; Ali, N.; Ali, Z.; Zhang, Q. Papain/Zn3(PO4)2 Hybrid Nanoflower: Preparation, Characterization and Its Enhanced Catalytic Activity as an Immobilized Enzyme. RSC Adv. 2016, 6, 46702–46710. DOI: 10.1039/C6RA05308D.
  • Zhang, T.; Zhou, Y.; Wang, Y.; Zhang, L.; Wang, H.; Wu, X. Fabrication of Hierarchical Nanostructured BSA/ZnO Hybrid Nanoflowers by a Self-Assembly Process. Mater. Lett. 2014, 128, 227–230. DOI: 10.1016/j.matlet.2014.04.166.
  • Rai, S. K.; Narnoliya, L. K.; Sangwan, R. S.; Yadav, S. K. Self-Assembled Hybrid Nanoflowers of Manganese Phosphate and l -Arabinose Isomerase: A Stable and Recyclable Nanobiocatalyst for Equilibrium Level Conversion of d -Galactose to d -Tagatose. ACS Sustainable Chem. Eng. 2018, 6, 6296–6304. DOI: 10.1021/acssuschemeng.8b00091.
  • Ocsoy, I.; Dogru, E.; Usta, S. A New Generation of Flowerlike Horseradish Peroxides as a Nanobiocatalyst for Superior Enzymatic Activity. Enzyme Microb Technol. 2015, 75–76, 25–29. DOI: 10.1016/j.enzmictec.2015.04.010.
  • He, L.; Zhang, S.; Ji, H.; Wang, M.; Peng, D.; Yan, F.; Fang, S.; Zhang, H.; Jia, C.; Zhang, Z. Protein-Templated Cobaltous Phosphate Nanocomposites for the Highly Sensitive and Selective Detection of Platelet-Derived Growth Factor-BB. Biosens. Bioelectron. 2016, 79, 553–560. DOI: 10.1016/j.bios.2015.12.095.
  • Jing, M.; Fei, X.; Ren, W.; Tian, J.; Zhi, H.; Xu, L.; Wang, X.; Wang, Y. Self-Assembled Hybrid Nanomaterials with Alkaline Protease and a Variety of Metal Ions. RSC Adv 2017, 7, 48360–48367. DOI: 10.1039/C7RA10597E.
  • Aydemir, D.; Gecili, F.; Özdemir, N.; Nuray Ulusu, N. Synthesis and Characterization of a Triple Enzyme-Inorganic Hybrid Nanoflower (TrpE@ihNF) as a Combination of Three Pancreatic Digestive Enzymes Amylase, Protease and Lipase. J. Biosci. Bioeng. 2020, 129, 679–686. DOI: 10.1016/j.jbiosc.2020.01.008.
  • Rong, J.; Zhang, T.; Qiu, F.; Zhu, Y. Preparation of Efficient, Stable, and Reusable Laccase-Cu 3 (PO 4) 2 Hybrid Microspheres Based on Copper Foil for Decoloration of Congo Red. ACS Sustainable Chem. Eng. 2017, 5, 4468–4477. DOI: 10.1021/acssuschemeng.7b00820.
  • Gao, J.; Liu, H.; Pang, L.; Guo, K.; Li, J. Biocatalyst and Colorimetric/Fluorescent Dual Biosensors of H2O2 Constructed via Hemoglobin-Cu3(PO4)2 Organic/Inorganic Hybrid Nanoflowers. ACS Appl. Mater. Interfaces 2018, 10, 36. DOI: 10.1021/acsami.8b10968.
  • Altinkaynak, C.; Yilmaz, I.; Koksal, Z.; Özdemir, H. Preparation of Lactoperoxidase Incorporated Hybrid Nanoflower and Its Excellent Activity and Stability. Int. J. Biol. Macromol. 2016, 84, 402–409. DOI: 10.1016/j.ijbiomac.2015.12.018.
  • Yu, Y.; Fei, X.; Tian, J.; Xu, L.; Wang, X.; Wang, Y. Self-Assembled Enzyme – Inorganic Hybrid Nanoflowers and Their Application to Enzyme Purification. Colloids Surf. B: Biointerf. 2015, 130, 299–304.
  • Fan, Y.; Xu, L. A New Lipase-Inorganic Hybrid Nanoflower Enhanced Enzyme Activity. RSC Adv. 2016, 6, 19413–19416. DOI: 10.1039/C6RA01564F.
  • Somturk, B.; Hancer, M.; Ocsoy, I.; Özdemir, N. Synthesis of Copper Ion Incorporated Horseradish Peroxidase-Based Hybrid Nanoflowers for Enhanced Catalytic Activity and Stability. Dalt. Trans 2015, 44, 13845–13852. DOI: 10.1039/c5dt01250c.
  • Liang, L.; Fei, X.; Li, Y.; Tian, J.; Xu, L.; Wang, X.; Wang, Y. Hierarchical Assembly of Enzyme-Inorganic Composite Materials with Extremely High Enzyme Activity. RSC Adv. 2015, 5, 96997–97002. DOI: 10.1039/C5RA17754E.
  • Nadar, S. S.; Gawas, S. D.; Rathod, V. K. Self-Assembled Organic–Inorganic Hybrid Glucoamylase Nanoflowers with Enhanced Activity and Stability. Int. J. Biol. Macromol 2016, 92, 660–669. DOI: 10.1016/j.ijbiomac.2016.06.071.
  • Zhu, P.; Wang, Y.; Li, G.; Liu, K.; Liu, Y.; He, J.; Lei, J. Preparation and Application of a Chemically Modified Laccase and Copper Phosphate Hybrid Flower-like Biocatalyst. Biochem. Eng. J 2019, 144, 235–243. DOI: 10.1016/j.bej.2019.01.020.
  • Somturk, B.; Yilmaz, I.; Altinkaynak, C.; Karatepe, A.; Özdemir, N.; Ocsoy, I. Synthesis of Urease Hybrid Nanoflowers and Their Enhanced Catalytic Properties. Enzyme Microb. Technol 2016, 86, 134–142. DOI: 10.1016/j.enzmictec.2015.09.005.
  • Li, Y.; Fei, X.; Liang, L.; Tian, J.; Xu, L.; Wang, X.; Wang, Y. The Influence of Synthesis Conditions on Enzymatic Activity of Enzyme-Inorganic Hybrid Nanoflowers. J. Mol. Catal. B Enzym 2016, 133, 92–97. DOI: 10.1016/j.molcatb.2016.08.001.
  • Lin, Z.; Xiao, Y.; Wang, L.; Yin, Y.; Zheng, J.; Yang, H.; Chen, G. Facile Synthesis of Enzyme-Inorganic Hybrid Nanoflowers and Their Application as an Immobilized Trypsin Reactor for Highly Efficient Protein Digestion. RSC Adv 2014, 4, 13888–13891. DOI: 10.1039/C4RA00268G.
  • Altinkaynak, C.; Tavlasoglu, S.; Kalin, R.; Sadeghian, N.; Ozdemir, H.; Ocsoy, I.; Özdemir, N. A Hierarchical Assembly of Flower-like Hybrid Turkish Black Radish Peroxidase-Cu2+ Nanobiocatalyst and Its Effective Use in Dye Decolorization. Chemosphere 2017, 182, 122–128. DOI: 10.1016/j.chemosphere.2017.05.012.
  • Wu, Z.; Li, H.; Zhu, X.; Li, S.; Wang, Z.; Wang, L.; Li, Z.; Chen, G. Using Laccases in the Nanoflower to Synthesize Viniferin. Catalysts 2017, 7, 188–112. DOI: 10.3390/catal7060188.
  • Patel, S. K. S.; Otari, S. V.; Chan Kang, Y.; Lee, J. K. Protein-Inorganic Hybrid System for Efficient His-Tagged Enzymes Immobilization and Its Application in l-Xylulose Production. RSC Adv. 2017, 7, 3488–3494. DOI: 10.1039/C6RA24404A.
  • Yin, Y.; Xiao, Y.; Lin, G.; Xiao, Q.; Lin, Z.; Cai, Z. An Enzyme-Inorganic Hybrid Nanoflower Based Immobilized Enzyme Reactor with Enhanced Enzymatic Activity. J. Mater. Chem. B 2015, 3, 2295–2300. DOI: 10.1039/c4tb01697a.
  • Kumar, A.; Patel, S. K. S.; Mardan, B.; Pagolu, R.; Lestari, R.; Jeong, S. H.; Kim, T.; Haw, J. R.; Kim, S. Y.; Kim, I. W. Immobilization of Xylanase Using a Protein-Inorganic Hybrid System. J. Microbiol. Biotechnol 2018, 28, 638–644. DOI: 10.4014/jmb.1710.10037.
  • Zhang, Y.; Sun, W.; Elfeky, N. M.; Wang, Y.; Zhao, D.; Zhou, H.; Wang, J.; Bao, Y. Self-Assembly of Lipase Hybrid Nanoflowers with Bifunctional Ca2+ for Improved Activity and Stability. Enzyme Microb. Technol 2020, 132, 109408. DOI: 10.1016/j.enzmictec.2019.109408.
  • Maurya, S. S.; Nadar, S. S.; Rathod, V. K. Dual Activity of Laccase-Lysine Hybrid Organic–Inorganic Nanoflowers for Dye Decolourization. Environ. Technol. Innov 2020, 19, 100798. DOI: 10.1016/j.eti.2020.100798.
  • Liu, Y.; Shao, X.; Kong, D.; Li, G.; Li, Q. Immobilization of Thermophilic Lipase in Inorganic Hybrid Nanoflower through Biomimetic Mineralization. Colloids Surfaces B Biointerfaces 2021, 197, 111450. DOI: 10.1016/j.colsurfb.2020.111450.
  • Feng, N.; Zhang, H.; Li, Y.; Liu, Y.; Xu, L.; Wang, Y.; Fei, X.; Tian, J. A Novel Catalytic Material for Hydrolyzing Cow’s Milk Allergenic Proteins: Papain-Cu3(PO4)2·3H2O-Magnetic Nanoflowers. Food Chem. 2020, 311, 125911. DOI: 10.1016/j.foodchem.2019.125911.
  • Wu, Z.; Li, X.; Li, F.; Yue, H.; He, C.; Xie, F.; Wang, Z. Enantioselective Transesterification of (R,S)-2-Pentanol Catalyzed by a New Flower-like Nanobioreactor. RSC Adv. 2014, 4, 33998–34002. DOI: 10.1039/C4RA04431B.
  • Sharma, N.; Parhizkar, M.; Cong, W.; Mateti, S.; Kirkland, M. A.; Puri, M.; Sutti, A. Metal Ion Type Significantly Affects the Morphology but Not the Activity of Lipase-Metal-Phosphate Nanoflowers. RSC Adv. 2017, 7, 25437–25443. DOI: 10.1039/C7RA00302A.
  • Kokkinos, C.; Economou, A.; Prodromidis, M. I. Electrochemical Immunosensors: Critical Survey of Different Architectures and Transduction Strategies. TrAC - Trends Anal. Chem. 2016, 79, 88–105. DOI: 10.1016/j.trac.2015.11.020.
  • Yu, Y.; Fei, X.; Tian, J.; Xu, L.; Wang, X.; Wang, Y. Self-Assembled Enzyme-Inorganic Hybrid Nanoflowers and Their Application to Enzyme Purification. Colloids Surf. B Biointerfaces 2015, 130, 299–304. DOI: 10.1016/j.colsurfb.2015.04.033.
  • Talens-Perales, D.; Fabra, M. J.; Martínez-Argente, L.; Marín-Navarro, J.; Polaina, J. Recyclable Thermophilic Hybrid Protein-Inorganic Nanoflowers for the Hydrolysis of Milk Lactose. Int. J. Biol. Macromol. 2020, 151, 602–608. DOI: 10.1016/j.ijbiomac.2020.02.115.
  • Kim, K. H.; Jeong, J. M.; Lee, S. J.; Choi, B. G.; Lee, K. G. Protein-Directed Assembly of Cobalt Phosphate Hybrid Nanoflowers. J. Colloid Interface Sci 2016, 484, 44–50. DOI: 10.1016/j.jcis.2016.08.059.
  • Ghosh, K.; Balog, E. R. M.; Sista, P.; Williams, D. J.; Kelly, D.; Martinez, J. S.; Kelly, D.; Martinez, J. S.; Rocha, R. C. Temperature-Dependent Morphology of Hybrid Nanoflowers from Elastin-like Polypeptides from Elastin-like Polypeptides. APL Mater. 2014, 2, 021101. DOI: 10.1063/1.4863235.
  • Wang, X.; Shi, J.; Li, Z.; Zhang, S.; Wu, H.; Jiang, Z.; Yang, C.; Tian, C. Facile One-Pot Preparation of Chitosan/Calcium Pyrophosphate Hybrid Microflowers. ACS Appl. Mater. Interfaces 2014, 6, 14522–14532. DOI: 10.1021/am503787h.
  • Ye, R.; Zhu, C.; Song, Y.; Song, J.; Fu, S.; Lu, Q.; Yang, X.; Zhu, M. J.; Du, D.; Li, H.; et al. One-Pot Bioinspired Synthesis of All-Inclusive Protein-Protein Nanoflowers for Point-of-Care Bioassay: Detection of: E. Coli O157:H7 from Milk. Nanoscale 2016, 8, 18980–18986. DOI: 10.1039/c6nr06870g.
  • Wu, Z. F.; Wang, Z.; Zhang, Y.; Ma, Y. L.; He, C. Y.; Li, H.; Chen, L.; Huo, Q. S.; Wang, L.; Li, Z. Q. Amino Acids-Incorporated Nanoflowers with an Intrinsic Peroxidase-like Activity. Sci. Rep. 2016, 6, 1–7. DOI: 10.1038/srep22412.
  • Findik, M.; Bingol, H.; Erdem, A. Electrochemical Detection of Interaction between Daunorubicin and DNA by Hybrid Nanoflowers Modified Graphite Electrodes. Sensors Actuators, B Chem 2021, 329, 129120. DOI: 10.1016/j.snb.2020.129120.
  • Zhao, Z.; Zhang, J.; Wang, M.; Wang, Z.; Wang, L.; Ma, L.; Huang, X.; Li, Z. Structure Advantage and Peroxidase Activity Enhancement of Deuterohemin-Peptide-Inorganic Hybrid Flowers. RSC Adv. 2016, 6, 104265–104272. DOI: 10.1039/C6RA24192A.
  • Ildiz, N.; Baldemir, A.; Altinkaynak, C.; Özdemir, N.; Yilmaz, V.; Ocsoy, I. Self Assembled Snowball-like Hybrid Nanostructures Comprising Viburnum Opulus L. Extract and Metal Ions for Antimicrobial and Catalytic Applications. Enzyme Microb. Technol. 2017, 102, 60–66. DOI: 10.1016/j.enzmictec.2017.04.003.
  • Park, K. S.; Batule, B. S.; Chung, M.; Kang, K. S.; Park, T. J.; Kim, M.; Il; Park, H. G. A Simple and Eco-Friendly One-Pot Synthesis of Nuclease-Resistant DNA-Inorganic Hybrid Nanoflowers. J. Mater. Chem. B. 2017, 5, 2231–2234. DOI: 10.1039/c6tb03047e.
  • Zhao, H.; Lv, J.; Li, F.; Zhang, Z.; Zhang, C.; Gu, Z.; Yang, D. Enzymatical Biomineralization of DNA Nanoflowers Mediated by Manganese Ions for Tumor Site Activated Magnetic Resonance Imaging. Biomaterials 2021, 268, 2020. DOI: 10.1016/j.biomaterials.2020.120591.
  • Xie, W. Y.; Song, F.; Wang, X. L.; Wang, Y. Z. Development of Copper Phosphate Nanoflowers on Soy Protein toward a Superhydrophobic and Self-Cleaning Film. ACS Sustainable Chem. Eng. 2017, 5, 869–875. DOI: 10.1021/acssuschemeng.6b02199.
  • Altinkaynak, C.; Kocazorbaz, E.; Özdemir, N.; Zihnioglu, F. Egg White Hybrid Nanoflower (EW-HNF) with Biomimetic Polyphenol Oxidase Reactivity: Synthesis, Characterization and Potential Use in Decolorization of Synthetic Dyes. Int. J. Biol. Macromol. 2018, 109, 205–211. DOI: 10.1016/j.ijbiomac.2017.12.072.
  • Koca, F. D.; Demirezen Yilmaz, D.; Ertas Onmaz, N. Ocsoy, I. Peroxidase-like Activity and Antimicrobial Properties of Curcumin-Inorganic Hybrid Nanostructure. Saudi J. Biol. Sci. 2020, 27, 2574–2579. DOI: 10.1016/j.sjbs.2020.05.025.
  • Wang, A.; Chen, X.; Yu, J.; Li, N.; Li, H.; Yin, Y.; Xie, T.; Wu, S. G. Green Preparation of Lipase@Ca3(PO4)2 Hybrid Nanoflowers Using Bone Waste from Food Production for Efficient Synthesis of Clindamycin Palmitate. J. Ind. Eng. Chem. 2020, 89, 383–391. DOI: 10.1016/j.jiec.2020.06.007.
  • Li, K.; Wang, J.; He, Y.; Abdulrazaq, M. A.; Yan, Y. Carbon Nanotube-Lipase Hybrid Nanoflowers with Enhanced Enzyme Activity and Enantioselectivity. J. Biotechnol 2018, 281, 87–98. DOI: 10.1016/j.jbiotec.2018.06.344.
  • Li, H.; Hou, J.; Duan, L.; Ji, C.; Zhang, Y.; Chen, V. Graphene Oxide-Enzyme Hybrid Nanoflowers for Efficient Water Soluble Dye Removal. J. Hazard. Mater. 2017, 338, 93–101. DOI: 10.1016/j.jhazmat.2017.05.014.
  • Zhao, F.; Wang, Q.; Dong, J.; Xian, M.; Yu, J.; Yin, H.; Chang, Z.; Mu, X.; Hou, T.; Wang, J. Enzyme-Inorganic Nanoflowers/Alginate Microbeads: An Enzyme Immobilization System and Its Potential Application. Process Biochem. 2017, 57, 87–94. DOI: 10.1016/j.procbio.2017.03.026.
  • Lee, I.; Cheon, H. J.; Adhikari, M. D.; Tran, T. D.; Yeon, K. M.; Kim, M.; Il.; Kim, J. Glucose Oxidase-Copper Hybrid Nanoflowers Embedded with Magnetic Nanoparticles as an Effective Antibacterial Agent. Int. J. Biol. Macromol 2019, 155, 1520–1531 DOI: 10.1016/j.ijbiomac.2019.11.129.
  • Li, M.; Luo, M.; Li, F.; Wang, W.; Liu, K.; Liu, Q.; Wang, Y.; Lu, Z.; Wang, D. Biomimetic Copper-Based Inorganic-Protein Nanoflower Assembly Constructed on the Nanoscale Fibrous Membrane with Enhanced Stability and Durability. J. Phys. Chem. C. 2016, 120, 17348–17356. DOI: 10.1021/acs.jpcc.6b03537.
  • Baek, S. H.; Roh, J.; Park, C. Y.; Kim, M. W.; Shi, R.; Kailasa, S. K.; Park, T. J. Cu-Nanoflower Decorated Gold Nanoparticles-Graphene Oxide Nanofiber as Electrochemical Biosensor for Glucose Detection. Mater. Sci. Eng. C. 2020, 107, 110273. DOI: 10.1016/j.msec.2019.110273.
  • Luo, M.; Li, M.; Jiang, S.; Shao, H.; Razal, J.; Wang, D.; Fang, J. Supported Growth of Inorganic-Organic Nanoflowers on 3D Hierarchically Porous Nanofibrous Membrane for Enhanced Enzymatic Water Treatment. J. Hazard. Mater 2020, 381, 120947. DOI: 10.1016/j.jhazmat.2019.120947.
  • Lee, H. R.; Chung, M.; Kim, M.; Il; Ha, S. H. Preparation of Glutaraldehyde-Treated Lipase-Inorganic Hybrid Nanoflowers and Their Catalytic Performance as Immobilized Enzymes. Enzyme Microb. Technol. 2017, 105, 24–29. DOI: 10.1016/j.enzmictec.2017.06.006.
  • Patel, S. K. S.; Otari, S. V.; Li, J.; Kim, D. R.; Kim, S. C.; Cho, B. K.; Kalia, V. C.; Kang, Y. C.; Lee, J. K. Synthesis of Cross-Linked Protein-Metal Hybrid Nanoflowers and Its Application in Repeated Batch Decolorization of Synthetic Dyes. J. Hazard. Mater. 2018, 347, 442–450. DOI: 10.1016/j.jhazmat.2018.01.003.
  • Liu, Y.; Zhang, Y.; Li, X.; Yuan, Q.; Liang, H. Self-Repairing Metal-Organic Hybrid Complexes for Reinforcing Immobilized Chloroperoxidase Reusability. Chem. Commun 2017, 53, 3216–3219. DOI: 10.1039/c6cc10319g.
  • Zhang, Z.; Zhang, Y.; He, L.; Yang, Y.; Liu, S.; Wang, M.; Fang, S.; Fu, G. A Feasible Synthesis of Mn3(PO4)2@BSA Nanoflowers and Its Application as the Support Nanomaterial for Pt Catalyst. J. Power Sources 2015, 284, 170–177. DOI: 10.1016/j.jpowsour.2015.03.011.
  • Cao, H.; Yang, D. P.; Ye, D.; Zhang, X.; Fang, X.; Zhang, S.; Liu, B.; Kong, J. Protein-Inorganic Hybrid Nanoflowers as Ultrasensitive Electrochemical Cytosensing Interfaces for Evaluation of Cell Surface Sialic Acid. Biosens. Bioelectron. 2015, 68, 329–335. DOI: 10.1016/j.bios.2015.01.003.
  • Li, Y.; Xie, G.; Qiu, J.; Zhou, D.; Gou, D.; Tao, Y.; Li, Y.; Chen, H. A New Biosensor Based on the Recognition of Phages and the Signal Amplification of Organic-Inorganic Hybrid Nanoflowers for Discriminating and Quantitating Live Pathogenic Bacteria in Urine. Sensors Actuators, B Chem. 2018, 258, 803–812. DOI: 10.1016/j.snb.2017.11.155.
  • Song, Y.; Ji, H.; Wang, M.; He, L.; Song, R.; Zhang, Z. Feasible Synthesis of Protein-Templated Zinc Phosphate-Supported Pt Nanoparticle with Enhanced Electrocatalysis for Methanol Oxidation. Appl. Surf. Sci. 2017, 422, 228–238. DOI: 10.1016/j.apsusc.2017.06.018.
  • Gao, J.; Liu, H.; Tong, C.; Pang, L.; Feng, Y.; Zuo, M.; Wei, Z.; Li, J. Hemoglobin-Mn3(PO4)2 Hybrid Nanoflower with Opulent Electroactive Centers for High-Performance Hydrogen Peroxide Electrochemical Biosensor. Sensors Actuators, B Chem 2020, 307, 127628. DOI: 10.1016/j.snb.2019.127628.
  • Xu, L.; Lei, S.; Liu, Z.; Ouyang, G.; Zou, L.; Ye, B. A Label-Free IFN-γ Aptasensor Based on Target-Triggered Allosteric Switching of Aptamer Beacon and Streptavidin-Inorganic Hybrid Composites. Anal. Chim. Acta 2019, 1087, 29–35. DOI: 10.1016/j.aca.2019.08.034.
  • Zhang, X.; Yu, Y.; Shen, J.; Qi, W.; Wang, H. Design of Organic/Inorganic Nanocomposites for Ultrasensitive Electrochemical Detection of a Cancer Biomarker Protein. Talanta 2020, 212, 120794. DOI: 10.1016/j.talanta.2020.120794.
  • Chung, M.; Nguyen, T. L.; Tran, T. Q. N.; Yoon, H. H.; Kim, I. T.; Kim, M. I. Ultrarapid Sonochemical Synthesis of Enzyme-Incorporated Copper Nanoflowers and Their Application to Mediatorless Glucose Biofuel Cell. Appl. Surf. Sci. 2018, 429, 203–209. DOI: 10.1016/j.apsusc.2017.06.242.
  • Pandey, C. M.; Sumana, G.; Tiwari, I. Copper Oxide Assisted Cysteine Hierarchical Structures for Immunosensor Application. Appl. Phys. Lett. 2014, 105, 103706. DOI: 10.1063/1.4895579.
  • Zhao, F.; Bai, Y.; Cao, L.; Han, G.; Fang, C.; Wei, S.; Chen, Z. New Electrochemical DNA Sensor Based on Nanoflowers of Cu3(PO4)2-BSA-GO for Hepatitis B Virus DNA Detection. J. Electroanal. Chem. 2020, 867, 114184. DOI: 10.1016/j.jelechem.2020.114184.
  • Zhang, Z.; Zhang, Y.; Song, R.; Wang, M.; Yan, F.; He, L.; Feng, X.; Fang, S.; Zhao, J.; Zhang, H. Manganese(II) Phosphate Nanoflowers as Electrochemical Biosensors for the High-Sensitivity Detection of Ractopamine. Sensors Actuators, B Chem. 2015, 211, 310–317. DOI: 10.1016/j.snb.2015.01.106.
  • Munyemana, J. C.; He, H.; Ding, S.; Yin, J.; Xi, P.; Xiao, J. Synthesis of Manganese Phosphate Hybrid Nanoflowers by Collagen-Templated Biomineralization. RSC Adv. 2018, 8, 2708–2713. DOI: 10.1039/C7RA12628J.
  • Wang, L.; Huo, X.; Guo, R.; Zhang, Q.; Lin, J. Exploring Protein-Inorganic Hybrid Nanoflowers and Immune Magnetic Nanobeads to Detect Salmonella Typhimurium. Nanomaterials 2018, 8, 1006. DOI: 10.3390/nano8121006.
  • Huang, F.; Xue, L.; Qi, W.; Cai, G.; Liu, Y.; Lin, J. An Ultrasensitive Impedance Biosensor for Salmonella Detection Based on Rotating High Gradient Magnetic Separation and Cascade Reaction Signal Amplification. Biosens. Bioelectron. 2021, 176, 112921. DOI: 10.1016/j.bios.2020.112921.
  • McCracken, K. E.; Yoon, J. Y. Recent Approaches for Optical Smartphone Sensing in Resource-Limited Settings: A Brief Review. Anal. Methods 2016, 8, 6591–6601. DOI: 10.1039/C6AY01575A.
  • Zhang, M.; Yang, N.; Liu, Y.; Tang, J. Synthesis of Catalase-Inorganic Hybrid Nanoflowers via Sonication for Colorimetric Detection of Hydrogen Peroxide. Enzyme Microb. Technol 2019, 128, 22–25. DOI: 10.1016/j.enzmictec.2019.04.016.
  • Zhu, L.; Gong, L.; Zhang, Y.; Wang, R.; Ge, J.; Liu, Z.; Zare, R. N. Rapid Detection of Phenol Using a Membrane Containing Laccase Nanoflowers. Chem. - an Asian J. 2013, 8, 2358–2360. DOI: 10.1002/asia.201300020.
  • Lin, Z.; Xiao, Y.; Yin, Y.; Hu, W.; Liu, W.; Yang, H. Facile Synthesis of Enzyme-Inorganic Hybrid Nanoflowers and Its Application as a Colorimetric Platform for Visual Detection of Hydrogen Peroxide and Phenol. ACS Appl. Mater. Interfaces 2014, 6(13), 10775–10782. https://doi.org/10.1021/acsami.6b04715. DOI: 10.1021/am502757e.
  • Thawari, A. G.; Rao, C. P. Peroxidase-like Catalytic Activity of Copper-Mediated Protein-Inorganic Hybrid Nanoflowers and Nanofibers of β-Lactoglobulin and α-Lactalbumin: Synthesis, Spectral Characterization, Microscopic Features, and Catalytic Activity. ACS Appl. Mater. Interfaces 2016, 8, 10392–10402. DOI: 10.1021/acsami.5b12591.
  • Zhang, B.; Li, P.; Zhang, H.; Li, X.; Tian, L.; Wang, H.; Chen, X.; Ali, N.; Ali, Z.; Zhang, Q. Red-Blood-Cell-like BSA/Zn 3 (PO 4) 2 Hybrid Particles: Preparation and Application to Adsorption of Heavy Metal Ions. Appl. Surf. Sci. 2016, 366, 328–338. DOI: 10.1016/j.apsusc.2016.01.074.
  • Polepalli, S.; Rao, C. P. Drum Stick Seed Powder as Smart Material for Water Purification: Role of Moringa Oleifera Coagulant Protein-Coated Copper Phosphate Nanoflowers for the Removal of Heavy Toxic Metal Ions and Oxidative Degradation of Dyes from Water. ACS Sustainable Chem. Eng. 2018, 6, 15634–15643. DOI: 10.1021/acssuschemeng.8b04138.
  • Alhayali, N. I.; Kalaycioğlu Özpozan, N.; Dayan, S.; Özdemir, N.; Yılmaz, B. S. Catalase/Fe3O4@Cu2+ Hybrid Biocatalytic Nanoflowers Fabrication and Efficiency in the Reduction of Organic Pollutants. Polyhedron 2021, 194, 114888. DOI: 10.1016/j.poly.2020.114888.
  • Sun, J.; Ge, J.; Liu, W.; Lan, M.; Zhang, H.; Wang, P.; Wang, Y.; Niu, Z. Multi-Enzyme Co-Embedded Organic-Inorganic Hybrid Nanoflowers: Synthesis and Application as a Colorimetric Sensor. Nanoscale 2014, 6, 255–262. DOI: 10.1039/c3nr04425d.
  • Li, Z.; Zhang, Y.; Su, Y.; Ouyang, P.; Ge, J.; Liu, Z. Spatial Co-Localization of Multi-Enzymes by Inorganic Nanocrystal-Protein Complexes. Chem. Commun. 2014, 50, 12465–12468. DOI: 10.1039/c4cc05478d.
  • Weng, X.; Gaur, G.; Neethirajan, S. Rapid Detection of Food Allergens by Microfluidics ELISA-Based Optical Sensor. Biosensors 2016, 6, 1–10. DOI: 10.3390/bios6020024.
  • Zhu, X.; Huang, J.; Liu, J.; Zhang, H.; Jiang, J.; Yu, R. A Dual Enzyme-Inorganic Hybrid Nanoflower Incorporated Microfluidic Paper-Based Analytic Device (ΜPAD) Biosensor for Sensitive Visualized Detection of Glucose. Nanoscale 2017, 9, 5658–5663. DOI: 10.1039/c7nr00958e.
  • Ariza-Avidad, M.; Salinas-Castillo, A.; Capitán-Vallvey, L. F. A 3D ΜPAD Based on a Multi-Enzyme Organic-Inorganic Hybrid Nanoflower Reactor. Biosens. Bioelectron. 2016, 77, 51–55. DOI: 10.1016/j.bios.2015.09.012.
  • Li, W. Y.; Lu, S. Y.; Bao, S. J.; Shi, Z. Z.; Lu, Z.; Li, C. M.; Yu, L. Efficient in Situ Growth of Enzyme-Inorganic Hybrids on Paper Strips for the Visual Detection of Glucose. Biosens. Bioelectron. 2018, 99, 603–611. DOI: 10.1016/j.bios.2017.08.015.
  • Guo, J.; Wang, Y.; Zhao, M. A Self-Activated Nanobiocatalytic Cascade System Based on an Enzyme-Inorganic Hybrid Nanoflower for Colorimetric and Visual Detection of Glucose in Human Serum. Sensors Actuators, B Chem. 2019, 284, 45–54. DOI: 10.1016/j.snb.2018.12.102.
  • Batule, B. S.; Park, K. S.; Kim, M.; Il.; Park, H. G. Ultrafast Sonochemical Synthesis of Protein-Inorganic Nanoflowers. Int. J. Nanomed. 2015, 10, 137–142. DOI: 10.2147/IJN.S90274..
  • Chung, M.; Jang, Y. J.; Kim, M. I. Convenient Colorimetric Detection of Cholesterol Using Multi-Enzyme Co-Incorporated Organic–Inorganic Hybrid Nanoflowers. J. Nanosci. Nanotechnol. 2018, 18, 6555–6561. DOI: 10.1166/jnn.2018.15697.
  • Wang, K. Y.; Bu, S. J.; Ju, C. J.; Li, C. T.; Li, Z. Y.; Han, Y.; Ma, C. Y.; Wang, C. Y.; Hao, Z.; Liu, W.; Sen.; et al. Hemin-Incorporated Nanoflowers as Enzyme Mimics for Colorimetric Detection of Foodborne Pathogenic Bacteria. Bioorganic Med. Chem. Lett. 2018, 28, 3802–3807. DOI: 10.1016/j.bmcl.2018.07.017.
  • Wei, T.; Du, D.; Zhu, M. J.; Lin, Y.; Dai, Z. An Improved Ultrasensitive Enzyme-Linked Immunosorbent Assay Using Hydrangea-Like Antibody-Enzyme-Inorganic Three-in-One Nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 6329–6335. DOI: 10.1021/acsami.5b11834.
  • Liu, Y.; Chen, J.; Du, M.; Wang, X.; Ji, X.; He, Z. The Preparation of Dual-Functional Hybrid Nanoflower and Its Application in the Ultrasensitive Detection of Disease-Related Biomarker. Biosens. Bioelectron. 2017, 92, 68–73. (November 2016), . DOI: 10.1016/j.bios.2017.02.004.
  • Zeinhom, M. M. A.; Wang, Y.; Sheng, L.; Du, D.; Li, L.; Zhu, M. J.; Lin, Y. Smart Phone Based Immunosensor Coupled with Nanoflower Signal Amplification for Rapid Detection of Salmonella Enteritidis in Milk, Cheese and Water. Sensors Actuators, B Chem. 2018, 261, 75–82. DOI: 10.1016/j.snb.2017.11.093.
  • Liang, G.; Luo, Z.; Liu, K.; Wang, Y.; Dai, J. Fiber-Optic Surface Plasmon Resonance Based Biosensor Technique : Fabrication, Advancement and Application. Crit. Rev. Anal. Chem. 2016, 46, 213–223. DOI: 10.1080/10408347.2015.1045119.
  • Olaru, A.; Bala, C.; Jaffrezic-Renault, N.; Aboul, H. Y. Surface Plasmon Resonance (SPR) Biosensors in Pharmaceutical Analysis. Crit. Rev. Anal. Chem. 2015, 45, 97–105. DOI: 10.1080/10408347.2014.881250.
  • Kong, W.; Wu, D.; Hu, N.; Li, N.; Dai, C.; Chen, X.; Suo, Y.; Li, G.; Wu, Y. Robust Hybrid Enzyme Nanoreactor Mediated Plasmonic Sensing Strategy for Ultrasensitive Screening of anti-Diabetic Drug. Biosens. Bioelectron. 2018, 99, 653–659. DOI: 10.1016/j.bios.2017.08.009.
  • Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer: Boston, MA, 2006. DOI: 10.1007/978-0-387-46312-4.
  • Peng, T.; Wang, J.; Zhao, S.; Xie, S.; Yao, K.; Zheng, P.; Wang, S.; Ke, Y.; Jiang, H. A Fluorometric Clenbuterol Immunoassay Based on the Use of Organic/Inorganic Hybrid Nanoflowers Modified with Gold Nanoclusters and Artificial Antigen. Microchim. Acta 2018, 185, 2–9. DOI: 10.1007/s00604-018-2889-0..
  • Liu, Y.; Wang, B.; Ji, X.; He, Z. Self-Assembled Protein-Enzyme Nanoflower-Based Fluorescent Sensing for Protein Biomarker. Anal. Bioanal. Chem. 2018, 410, 7591–7598. DOI: 10.1007/s00216-018-1398-7.
  • Batule, B. S.; Park, K. S.; Gautam, S.; Cheon, H. J.; Kim, M.; Il; Park, H. G. Intrinsic Peroxidase-like Activity of Sonochemically Synthesized Protein Copper Nanoflowers and Its Application for the Sensitive Detection of Glucose. Sensors Actuators, B. Chem. 2019, 283, 749–754. DOI: 10.1016/j.snb.2018.12.028.
  • Yu, X.; Hu, L.; He, H.; Zhang, F.; Wang, M.; Wei, W.; Xia, Z. Y-Shaped DNA-Mediated Hybrid Nanoflowers as Efficient Gene Carriers for Fluorescence Imaging of Tumor-Related MRNA in Living Cells. Anal. Chim. Acta 2019, 1057, 114–122. DOI: 10.1016/j.aca.2018.12.062.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.