493
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Potentials of MicroRNA in Early Detection of Ovarian Cancer by Analytical Electrical Biosensors

, , , , , , , , , , , , , & show all
Pages 1511-1523 | Published online: 07 Jun 2021

References

  • Parmin, N. A.; Hashim, U.; Gopinath, S. C. B. Designing Probe from E6 Genome Region of Human Papillomavirus 16 for Sensing Applications. Int. J. Biol. Macromol. 2018, 107, 1738–1746. DOI: 10.1016/j.ijbiomac.2017.10.051.
  • Azizah, N.; Hashim, U.; Gopinath, S. C. B.; Nadzirah, S. Gold Nanoparticle Mediated Method for Spatially Resolved Deposition of DNA on Nano-Gapped Interdigitated Electrodes, and Its Application to the Detection of the Human Papillomavirus. Microchim. Acta 2016, 183, 3119–3126. DOI: 10.1007/s00604-016-1954-9.
  • Azizah, N.; Hashim, U.; Gopinath, S. C. B.; Nadzirah, S. A Direct Detection of Human Papillomavirus 16 Genomic DNA Using Gold Nanoprobes. Int. J. Biol. Macromol. 2017, 94, 571–575. DOI: 10.1016/j.ijbiomac.2016.10.060.
  • Carter, R. R.; DiFeo, A.; Bogie, K.; Zhang, G. Q.; Sun, J. Crowdsourcing Awareness: Exploration of the Ovarian Cancer Knowledge Gap through Amazon Mechanical Turk. PLoS One. 2014, 9, e85508 DOI: 10.1371/journal.pone.0085508.
  • Zhang, X. Y.; Zhang, P. Y. Recent Perspectives of Epithelial Ovarian Carcinoma (Review). Oncol. Lett. 2016, 12, 3055–3058. DOI: 10.3892/ol.2016.5107.
  • Jacobs, I. J.; Menon, U.; Ryan, A.; Gentry-Maharaj, A.; Burnell, M.; Kalsi, J. K.; Amso, N. N.; Apostolidou, S.; Benjamin, E.; Cruickshank, D.; et al. Ovarian Cancer Screening and Mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): A Randomised Controlled Trial. Lancet 2016, DOI: 10.1016/S0140-6736(15)01224-6.
  • Salama, O.; Herrmann, S.; Tziknovsky, A.; Piura, B.; Meirovich, M.; Trakht, I.; Reed, B.; Lobel, L. I.; Marks, R. S. Chemiluminescent Optical Fiber Immunosensor for Detection of Autoantibodies to Ovarian and Breast Cancer-Associated Antigens. Biosens. Bioelectron 2007, DOI: 10.1016/j.bios.2006..07.003.
  • Sölétormos, G.; Duffy, M. J.; Othman Abu Hassan, S.; Verheijen, R. H. M.; Tholander, B.; Bast, R. C.; Gaarenstroom, K. N.; Sturgeon, C. M.; Bonfrer, J. M.; Petersen, P. H.; et al. Clinical Use of Cancer Biomarkers in Epithelial Ovarian Cancer: UpdatedGuidelines from the European Group on Tumor Markers. Int. J. Gynecol. Cancer 2016, DOI: 10.1097/IGC.0000000000000586.
  • Jiang, T.; Huang, L.; Zhang, S. Preoperative Serum CA125: A Useful Marker for Surgical Management of Endometrial Cancer. BMC Cancer 2015, 15, 7. DOI: 10.1186/s12885-015-1260-.
  • George, A.; McLachlan, J.; Tunariu, N.; Della Pepa, C.; Migali, C.; Gore, M.; Kaye, S.; Banerjee, S. The Role of Hormonal Therapy in Patients with Relapsed High-Grade Ovarian Carcinoma: A Retrospective Series of Tamoxifen and Letrozole. BMC Cancer 2017, 17, DOI: 10.1186/s12885-017-3440-0.
  • Duan, R.; Xi, M. A Novel Label-Free Biosensor for Detection of HE4 in Urine Based on Localized Surface Plasmon Resonance and Protein G Directional Fixed. J. Nanomater 2020, 2020, 2020, 1–7. DOI: 10.1155/2020/8613240.
  • Wright, T. C.; Jr, Schiffman, M.; Solomon, D.; Cox, J. T.; Garcia, F.; Goldie, S.; Hatch, K.; Noller, K. L.; Roach, N.; Runowicz, C.; Saslow, D. Interim Guidance for the Use of Human Papillomavirus DNA Testing as an Adjunct to Cervical Cytology for Screening. Obstet. Gynecol. 2004, 103, 304–309. DOI: 10.1097/01.AOG.0000109426.82624.f8.
  • Goldie, S. J.; Gaffikin, L.; Goldhaber-Fiebert, J. D.; Gordillo-Tobar, A.; Levin, C.; Mahe, C.; Wright, T. C, Alliance for Cervical Cancer Prevention Cost Working Group Cost-Effectiveness of Cervical-Cancer Screening in Five Developing Countries. N Engl J Med 2005, 353, 2158–2168. DOI: 10.1056/NEJMsa044278.
  • Wentzensen, N.; von Knebel Doeberitz, M. Biomarkers in Cervical Cancer Screening. Dis. Markers. 2007, 23, 315–330. DOI: 10.1155/2007/678793.
  • Wang, S. Q.; Akbas, R.; Demirci, U. Microchip ELISA Coupled with Cell Phone to Detect Ovarian Cancer HE4 Biomarker in Urine. Methods Mol. Biol 2015, DOI: 10.1007/978-1-4939-2172-.0_8.
  • Raspagliesi, F.; Bogani, G.; Benedetti, S.; Grassi, S.; Ferla, S.; Buratti, S. Detection of Ovarian Cancer through Exhaled Breath by Electronic Nose: A Prospective Study. Cancers (Basel) 2020, 12, 2408. DOI: 10.3390/cancers12092408.
  • Wang, Z.; Yang, B.; Wang, Z.; Yang, B. Northern Blotting and Its Variants for Detecting Expression and Analyzing Tissue Distribution of MiRNAs. In MicroRNA Expression Detection Methods 2010, DOI: 10.1007/978-3-642-04928-6_3.
  • Rosenwald, S.; Gilad, S.; Benjamin, S.; Lebanony, D.; Dromi, N.; Faerman, A.; Benjamin, H.; Tamir, R.; Ezagouri, M.; Goren, E.; et al. Validation of a MicroRNA-Based QRT-PCR Test for Accurate Identification of Tumor Tissue Origin. Mod. Pathol 2010, DOI: 10.1038/modpathol.2010.57.
  • Martinez-Anton, A.; Sokolowska, M.; Kern, S.; Davis, A. S.; Alsaaty, S.; Taubenberger, J. K.; Sun, J.; Cai, R.; Danner, R. L.; Eberlein, M.; et al. Changes in MicroRNA and MRNA Expression with Differentiation of Human Bronchial Epithelial Cells. Am. J. Respir. Cell Mol. Biol 2013, DOI: 10.1165/rcmb.2012-0368OC.
  • Liao, X.; Xue, H.; Wang, Y. C.; Nazor, K. L.; Guo, S.; Trivedi, N.; Peterson, S. E.; Liu, Y.; Loring, J. F.; Laurent, L. C. Matched MiRNA and MRNA Signatures from an HESC-Based in Vitro Model of Pancreatic Differentiation Reveal Novel Regulatory Interactions. J. Cell Sci 2013, DOI: 10.1242/jcs.123570.
  • Lam, J. K. W.; Chow, M. Y. T.; Zhang, Y.; Leung, S. W. S. SiRNA versus MiRNA as Therapeutics for Gene Silencing. Mol Ther Nucleic Acids .. 2015, 4, e252 DOI: 10.1038/mtna.2015.23.
  • Mukai, N.; Nakayama, Y.; Ishi, S.; Murakami, T.; Ogawa, S.; Kageyama, K.; Murakami, S.; Sasada, Y.; Yoshioka, J.; Nakajima, Y. Cold Storage Conditions Modify MicroRNA Expressions for Platelet Transfusion. PLoS One 2019, 14, e0218797. DOI: 10.1371/journal.pone.0218797.
  • Liao, J. Y.; Yin, J. Q.; Yue, J. C. A Novel Biosensor to Detect MicroRNAs Rapidly. J. Sens 2009, 2009, 2009, 1–6. DOI: 10.1155/2009/671896.
  • Winter, J.; Diederichs, S. MicroRNA Northern Blotting, Precursor Cloning, and Ago2-Improved RNA Interference. Methods Mol. Biol 2011, DOI: 10.1007/978-1-60761-863-8_7.
  • Kok, M. G. M.; Halliani, A.; Moerland, P. D.; Meijers, J. C. M.; Creemers, E. E.; Pinto-Sietsma, S. J. Normalization Panels for the Reliable Quantification of Circulating MicroRNAs by RT- QPCR. Faseb J 2015, DOI: 10.1096/fj.15-271312.
  • Zvara, Á.; Kitajka, K.; Faragó, N.; Puskás, L. G. Microarray Technology. Acta Biol. Szegediensis 2015, DOI: 10.1080/01926230213178.
  • Chu, Y.; De; Chen, H. K.; Huang, T.; Chan, S. P. A Novel Function for the DEAD-Box RNA Helicase DDX-23 in Primary MicroRNA Processing in Caenorhabditis Elegans. Dev. Biol 2016, DOI: 10.1016/j.ydbio.2015.11.011.
  • Maqbool, R.; Ismail, R.; Hussain, M.-U. Mutations in MicroRNA Genes and Their Binding Sites Are Infrequently Associated with Human Colorectal Cancer in the Kashmiri Population. Microrna 2014, 2, 219–224. DOI: 10.2174/2211536602666140102001007.
  • Arts, F. A.; Keogh, L.; Smyth, P.; O'Toole, S.; Ta, R.; Gleeson, N.; O’Leary, J. J.; Flavin, R.; Sheils, O. MiR-223 Potentially Targets SWI/SNF Complex Protein SMARCD1 in Atypical Proliferative Serous Tumor and High-Grade Ovarian Serous Carcinoma. Hum. Pathol 2017, DOI: 10.1016/j.humpath.2017.10.008.
  • Ramus, S. J.; Song, H.; Dicks, E.; Tyrer, J. P.; Rosenthal, A. N.; Intermaggio, M. P.; Fraser, L.; Gentry-Maharaj, A.; Hayward, J.; Philpott, S. Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women with Ovarian Cancer. J. Natl. Cancer Inst 2015, DOI: 10.1093/jnci/djv214.
  • Bernier, A.; Sagan, S. M. The Diverse Roles of MicroRNAs at the Host-Virus Interface. Viruses 2018, 10, 440. DOI: 10.3390/v10080440.
  • Ahmed, F. E.; Ahmed, N. C.; Mostafa Gouda, C. B. MicroRNAs as Molecular Markers for Screening of Colon Cancer. Case Rep. Surg. Invasive Proced 2017, DOI: 10.15761/MRI.1000108.
  • Nguyen, T.; Terpenning, M.; Giuliano, A. E.; Asaga, S.; Hoon, D. S. B.; Kuo, C. Direct Serum Assay for MicroRNA-21 Concentrations in Early and Advanced Breast Cancer. Clin. Chem 2011, 57, 84–91. DOI: 10.1373/clinchem.2010.151845.
  • Lowery, A. J.; Miller, N.; McNeill, R. E.; Kerin, M. J. MicroRNAs as Prognostic Indicators and Therapeutic Targets: Potential Effect on Breast Cancer Management. Clin Cancer Res 2008, 14, 360–365. DOI: 10.1158/1078-0432.CCR-07-0992.
  • Kiyono, M.; Fujiwara, T.; Yoshida, A.; Morita, T.; Uotani, K.; Mochizuki, Y.; Komatsubara, T.; Sugiu, K.; Hasei, J.; Kunisada, T.; et al. Selective Release of Exosomal MicroRNA Species from Metastatic and Non-Metastatic Osteosarcoma Cells. J. Orthop. Res 2017,
  • Research Network, C. G. A. Erratum: Integrated Genomic Analyses of Ovarian Carcinoma. Nature 2012, 490, 292–292. DOI: 10.1038/nature11453.
  • Curtis, C.; et al. The Cancer Genome Atlas Network. Nature 2012, DOI: 10.1038/nature11412.Comprehensive.
  • Kinose, Y.; Sawada, K.; Nakamura, K.; Sawada, I.; Toda, A.; Nakatsuka, E.; Hashimoto, K.; Mabuchi, S.; Takahashi, K.; Kurachi, H.; et al. The Hypoxia-Related MicroRNA miR-199a-3p displays tumor suppressor functions in ovarian carcinoma. Oncotarget 2015, 6, 11342–11356. DOI: 10.18632/oncotarget.3604.
  • Naito, Y.; Yoshioka, Y.; Yamamoto, Y.; Ochiya, T. How Cancer Cells Dictate Their Microenvironment: Present Roles of Extracellular Vesicles. Cell Mol Life Sci .. 2017, 74, 697–713. DOI: 10.1007/s00018-016-2346-3.
  • Mitchell, P. S.; Parkin, R. K.; Kroh, E. M.; Fritz, B. R.; Wyman, S. K.; Pogosova-Agadjanyan, E. L.; Peterson, A.; Noteboom, J.; Briant, K. C. O.; Allen, A.; et al. Circulating MicroRNAs as Stable Blood-Based Markers for Cancer Detection. Proc. Natl. Acad. Sci. U S A. 2008, 105, 10513–10518. DOI: 10.1073/pnas.0804549105.
  • Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of MicroRNAs in Serum: A Novel Class of Biomarkers for Diagnosis of Cancer and Other Diseases. Cell Res. 2008, 18, 997–1006. DOI: 10.1038/cr.2008.282.
  • Yanaihara, N.; Noguchi, Y.; Saito, M.; Takenaka, M.; Takakura, S.; Yamada, K.; Okamoto, A. MicroRNA Gene Expression Signature Driven by MIR-9 Overexpression in Ovarian Clear Cell Carcinoma. PLoS One. 2016, 11, e0162584 DOI: 10.1371/journal.pone.0162584.
  • Han, J.; Chen, Q. MiR-16 Modulate Temozolomide Resistance by Regulating BCL-2 in Human Glioma Cells. Int. J. Clin. Exp. Pathol 2015,
  • Liu, P.; Qi, X.; Bian, C.; Yang, F.; Lin, X.; Zhou, S.; Xie, C.; Zhao, X.; Yi, T. MicroRNA-18a Inhibits Ovarian Cancer Growth via Directly Targeting TRIAP1 and IPMK. Oncol. Lett 2017, DOI: 10.3892/ol.2017.5961.
  • Pink, R. C.; Samuel, P.; Massa, D.; Caley, D. P.; Brooks, S. A.; Carter, D. R. F. The Passenger Strand, MiR-21-3p, Plays a Role in Mediating Cisplatin Resistance in Ovarian Cancer Cells. Gynecol. Oncol 2015, DOI: 10.1016/j.ygyno.2014.12.042.
  • Ohyagi-Hara, C.; Sawada, K.; Kamiura, S.; Tomita, Y.; Isobe, A.; Hashimoto, K.; Kinose, Y.; Mabuchi, S.; Hisamatsu, T.; Takahashi, T.; et al. MiR-92a Inhibits Peritoneal Dissemination of Ovarian Cancer Cells by Inhibiting Integrin A5 Expression. Am. J. Pathol 2013, DOI: 10.1016/j.ajpath.2013.01.039.
  • Jiang, L.; Huang, J.; Li, L.; Chen, Y.; Chen, X.; Zhao, X.; Yang, D. MicroRNA-93 Promotes Ovarian Granulosa Cells Proliferation through Targeting CDKN1A in Polycystic Ovarian Syndrome. J. Clin. Endocrinol. Metab 2015, DOI: 10.1210/jc.2014-3827.
  • Xu, Y.; Xu, L.; Zheng, J.; Geng, L.; Zhao, S. MiR-101 Inhibits Ovarian Carcinogenesis by Repressing the Expression of brain-derived neurotrophic factor. FEBS Open Bio. 2017, 7, 1258–1266. DOI: 10.1002/2211-5463.12257.
  • Lu, B.; Liu, L.; Wang, J.; Chen, Y.; Li, Z.; Gopinath, S. C. B. Detection of MicroRNA-335-5p on an Interdigitated Electrode Surface for Determination of the Severity of Abdominal Aortic Aneurysms. Nanoscale Res. Lett 2020, 15, 1–8.
  • Mak, C. S. L.; Yung, M. M. H.; Hui, L. M. N.; Leung, L. L.; Liang, R.; Chen, K.; Liu, S. S.; Qin, Y.; Leung, T. H. Y.; Lee, K. F.; et al. MicroRNA-141 Enhances Anoikis Resistance in Metastatic Progression of Ovarian Cancer through Targeting KLF12/Sp1/Survivin Axis. Mol. Cancer 2017, DOI: 10.1186/s12943-017-0582-2.
  • Zhan, Y.; Xiang, F.; Wu, R.; Xu, J.; Ni, Z.; Jiang, J.; Kang, X. MiRNA-149 Modulates Chemosensitivity of Ovarian Cancer A2780 Cells to Paclitaxel by Targeting MyD88. J. Ovarian Res 2015, DOI: 10.1186/s13048-015-0178-7.
  • Sun, K. X.; Jiao, J. W.; Chen, S.; Liu, B. L.; Zhao, Y. MicroRNA-186 Induces Sensitivity of Ovarian Cancer Cells to Paclitaxel and Cisplatin by Targeting ABCB1. J. Ovarian Res 2015, DOI: 10.1186/s13048-015-0207-6.
  • Tian, X.; Xu, L.; Wang, P. MiR-191 Inhibits TNF-a Induced Apoptosis of Ovarian Endometriosis and Endometrioid Carcinoma Cells by Targeting DAPK1. Int. J. Clin. Exp. Pathol 2015,
  • Niu, K.; Shen, W.; Zhang, Y.; Zhao, Y.; Lu, Y. MiR-205 Promotes Motility of Ovarian Cancer Cells via Targeting ZEB1. Gene 2015, 574, 330–336. DOI: 10.1016/j.gene.2015.08.017.
  • Liu, Y.; Niu, Z.; Lin, X.; Tian, Y. MiR-216b Increases Cisplatin Sensitivity in Ovarian Cancer Cells by Targeting PARP1. Cancer Gene Ther. 2017, 24, 208–214. DOI: 10.1038/cgt.2017.6.
  • Li, J.; Li, Q.; Huang, H.; Li, Y.; Li, L.; Hou, W.; You, Z. Overexpression of MiRNA-221 Promotes Cell Proliferation by Targeting the Apoptotic Protease Activating Factor-1 and Indicates a Poor Prognosis in Ovarian Cancer. Int. J. Oncol 2017, DOI: 10.3892/ijo.2017.3898.
  • Tan, H.; He, Q.; Gong, G.; Wang, Y.; Li, J.; Wang, J.; Zhu, D.; Wu, X. MiR 382 Inhibits Migration and Invasion by Targeting ROR1 through Regulating EMT in Ovarian Cancer. Int. J. Oncol 2016, DOI: 10.3892/ijo.2015.3241.
  • Sun, Y.; Hu, L.; Zheng, H.; Bagnoli, M.; Guo, Y.; Rupaimoole, R.; Rodriguez-Aguayo, C.; Lopez-Berestein, G.; Ji, P.; Chen, K.; et al. MiR-506 Inhibits Multiple Targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer . J. Pathol. 2015, 235, 25–36. DOI: 10.1002/path.4443.
  • Fu, X.; Cui, Y.; Yang, S.; Xu, Y.; Zhang, Z. MicroRNA-613 Inhibited Ovarian Cancer Cell Proliferation and Invasion by Regulating KRAS. Tumour Biol. 2016, 37, 6477–6483. DOI: 10.1007/s13277-015-4507-7.
  • Liu, X.; Ma, L.; Rao, Q.; Mao, Y.; Xin, Y.; Xu, H.; Li, C.; Wang, X. MiR-1271 Inhibits Ovarian Cancer Growth by Targeting Cyclin G1. Med. Sci. Monit 2015, DOI: 10.12659/MSM.895562.
  • Uda, M. N. A.; Hasfalina, C. M.; Samsuzanaa, A. A.; Faridah, S.; Gopinath, S. C. B.; Parmin, N. A.; Hashim, U.; Mat, M. A. Disposable Biosensor Based on Antibody-Antigen Interaction for Tungro Disease Detection; Elsevier Inc., 2018. DOI: 10.1016/B978-0-12-813900-4.00006-3.
  • Lakshmipriya, T.; Hashim, U.; Gopinath, S. C. B.; Azizah, N. Microfluidic-Based Biosensor. Signal Enhancement by Gold Nanoparticle. Microsyst. Technol 2016, DOI: 10.1007/s00542-.016-3074-1.
  • Parmin, N. A.; Hashim, U.; Gopinath, S. C. B. Designing Probe from E6 Genome Region of Human Papillomavirus 16 for Sensing Applications. Int. J. Biol. Macromol 2018, 107. DOI: 10.1016/j.ijbiomac.2017.10.051.
  • Parmin, N. A.; Hashim, U.; Gopinath, S. C. B.; Nadzirah, S.; Rejali, Z.; Afzan, A.; Uda, M. N. A. Human Papillomavirus E6 Biosensing: Current Progression on Early Detection Strategies for Cervical Cancer. Int. J. Biol. Macromol 2019, 126. DOI: 10.1016/j.ijbiomac.2018.12.235.
  • Azizah, N.; Hashim, U.; Gopinath, S. C. B.; Nadzirah, S. A Direct Detection of Human Papillomavirus 16 Genomic DNA Using Gold Nanoprobes. Int. J. Biol. Macromol 2017, 94. DOI: 10.1016/j.ijbiomac.2016.10.060.
  • Parmin, N. A.; Hashim, U.; Gopinath, S. C. B.; Nadzirah, S.; Rejali, Z.; Afzan, A.; Uda, M. N. A.; Hong, V. C.; Rajapaksha, R. D. A. A. Voltammetric Determination of Human Papillomavirus 16 DNA by Using Interdigitated Electrodes Modified with Titanium Dioxide Nanoparticles. Microchim. Acta 2019, 186. DOI: 10.1007/s00604-019-3445-2.
  • Nadzirah, S.; Gopinath, S. C. B.; Parmin, N. A.; Hamzah, A. A.; Mohamed, M. A.; Chang, E. Y.; Dee, C. F. State-of-the-Art on Functional Titanium Dioxide-Integrated Nano-Hybrids in Electrical Biosensors. Crit. Rev. Anal. Chem 2020, DOI: 10.1080/10408347.2020.1816447.
  • Azizah, N.; Hashim, U.; Gopinath, S. C. B.; Nadzirah, S. Gold Nanoparticle Mediated Method for Spatially Resolved Deposition of DNA on Nano-Gapped Interdigitated Electrodes, and Its Application to the Detection of the Human Papillomavirus. Microchim. Acta 2016, 183. DOI: 10.1007/s00604-016-1954-9.
  • Fang, G.; Liu, J.; Wang, Q.; Huang, X.; Yang, R.; Pang, Y.; Yang, M. MicroRNA-223-3p Regulates Ovarian Cancer Cell Proliferation and Invasion by Targeting SOX11 Expression. Int. J. Mol. Sci 2017, 18. DOI: 10.3390/ijms18061208.
  • Kilic, T.; Erdem, A.; Ozsoz, M.; Carrara, S. MicroRNA Biosensors: Opportunities and Challenges among Conventional and Commercially Available Techniques. Biosens. Bioelectron. 2018, 99, 525–546. DOI: 10.1016/j.bios.2017.08.007.
  • Parmin, N. A.; Hashim, U.; Gopinath, S. C. B.; Nadzirah, S.; Rejali, Z.; Afzan, A.; Uda, M. N. A. Human Papillomavirus E6 Biosensing: Current Progression on Early Detection Strategies for Cervical Cancer. Int. J. Biol. Macromol. 2019, 126, 877–890. DOI: 10.1016/j.ijbiomac.2018.12.235.
  • Nadzirah, S.; Azizah, N.; Hashim, U.; Gopinath, S. C. B.; Kashif, M. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. Coli O157:H7. PLoS One. 2015, 10, e0139766 DOI: 10.1371/journal.pone.0139766.
  • Parmin, N. A.; Hashim, U.; Gopinath, S. C. B.; Nadzirah, S.; Rejali, Z.; Afzan, A. Voltammetric Determination of Human Papillomavirus 16 DNA by Using Interdigitated Electrodes Modified with Titanium Dioxide Nanoparticles. Microchim. Acta 2019, 186, 336.
  • Isin, D.; Eksin, E.; Erdem, A. Graphene Oxide Modified SingleUse Electrodes and Their Application for Voltammetric MiRNA Analysis. Mater. Sci. Eng. C 2017, DOI: 10.1016/j.msec.2017.02.166.
  • Cheng, F. F.; He, T. T.; Miao, H. T.; Shi, J. J.; Jiang, L. P.; Zhu, J. J. Electron Transfer Mediated Electrochemical Biosensor for MicroRNAs Detection Based on Metal Ion Functionalized Titanium Phosphate Nanospheres at Attomole Level. ACS Appl Mater Interfaces 2015, 7, 2979–2985. DOI: 10.1021/am508690x.
  • Liu, L.; Xia, N.; Liu, H.; Kang, X.; Liu, X.; Xue, C.; He, X. Highly Sensitive and Label-Free Electrochemical Detection of MicroRNAs Based on Triple Signal Amplification of Multifunctional Gold Nanoparticles, Enzymes and RedoxCycling Reaction. Biosens. Bioelectron 2014, DOI: 10.1016/j.bios.2013.10.026.
  • Miao, P.; Wang, B.; Yu, Z.; Zhao, J.; Tang, Y. Ultrasensitive Electrochemical Detection of MicroRNA with Star Trigon Structure and Endonuclease Mediated Signal Amplification. Biosens. Bioelectron 2015, DOI: 10.1016/j.bios.2014.07.075.
  • Liu, S.; Su, W.; Li, Z.; Ding, X. Electrochemical Detection of Lung Cancer Specific MicroRNAs Using 3D DNA Origami Nanostructures. Biosens. Bioelectron 2015, DOI: 10.1016/j.bios.2015.04.006.
  • Li, F.; Peng, J.; Zheng, Q.; Guo, X.; Tang, H.; Yao, S. Carbon Nanotube-Polyamidoamine Dendrimer Hybrid-Modified Electrodes for Highly Sensitive Electrochemical Detection of MicroRNA24. Anal. Chem. 2015, 87, 4806–4813. DOI: 10.1021/acs.analchem.5b00093.
  • Erdem, A.; Eksin, E.; Congur, G. Indicator-Free Electrochemical Biosensor for MicroRNA Detection Based on Carbon Nanofibers Modified Screen Printed Electrodes. J. Electroanal. Chem 2015, DOI: 10.1016/j.jelechem.2015.07.031.
  • Wan, J.; Liu, X.; Zhang, Y.; Gao, Q.; Qi, H.; Zhang, C. Sensitive Impedimetric Detection of MicroRNAs Using a Hairpin Probe Based on DNAzyme-Functionalized Gold Nanoparticle Tag- Initiated Deposition of an Insulating Film on Gold Electrode. Sens. Actuators B Chem 2015, DOI: 10.1016/j.snb.2015.02.123.
  • Congur, G.; Eksin, E.; Erdem, A. Impedimetric Detection of MicroRNA at Graphene Oxide Modified Sensors. Electrochim. Acta 2015, 172, 20–27. DOI: 10.1016/j.electacta.2015.03.210.
  • Lin, M.; Wen, Y.; Li, L.; Pei, H.; Liu, G.; Song, H.; Zuo, X.; Fan, C.; Huang, Q. Target-Responsive, DNA Nanostructure-Based E-DNA sensor for microRNA analysis. Anal. Chem. 2014, 86, 2285–2288. DOI: 10.1021/ac500251t.
  • Liu, L.; Jiang, S.; Wang, L.; Zhang, Z.; Xie, G. Direct Detection of MicroRNA-126 at a Femtomolar Level Using a Glassy Carbon Electrode Modified with Chitosan, Graphene Sheets, and a Poly(Amidoamine) Dendrimer Composite with Gold and Silver Nanoclusters. Microchim. Acta 2015, DOI: 10.1007/s00604-014-1273-y.
  • Wu, X.; Chai, Y.; Yuan, R.; Zhuo, Y.; Chen, Y. Dual Signal Amplification Strategy for Enzyme-Free Electrochemical Detection of MicroRNAs. Sens. Actuators B Chem 2014, DOI: 10.1016/j.snb.2014.06.131.
  • Wang, L.; Veselinovic, M.; Yang, L.; Geiss, B. J.; Dandy, D. S.; Chen, T. A Sensitive DNA Capacitive Biosensor Using Interdigitated Electrodes. Biosens. Bioelectron. 2017, 87, 646–653. DOI: 10.1016/j.bios.2016.09.006.
  • Gopinath, S. C. B.; Perumal, V.; Xuan, S. MicroRNA-155 Complementation on a Chemically Functionalized Dual Electrode Surface for Determining Breast Cancer. 3 Biotech 2020, 10, 10. DOI: 10.1007/s13205-020-02261-x.
  • Condrat, C. E.; Thompson, D. C.; Barbu, M. G.; Bugnar, O. L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S. M.; Voinea, S. C. MiRNAs as Biomarkers in Disease: Latest Findings regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. DOI: 10.3390/cells9020276.
  • Noferesti, S. S.; Sohel, M. M. H.; Hoelker, M.; Salilew-Wondim, D.; Tholen, E.; Looft, C.; Rings, F.; Neuhoff, C.; Schellander, K.; Tesfaye, D. Controlled Ovarian Hyperstimulation Induced Changes in the Expression of Circulatory MiRNA in Bovine Follicular Fluid and Blood Plasma. J. Ovarian Res 2015, DOI: 10.1186/s13048-015-0208-5.
  • Arroyo, J. D.; Chevillet, J. R.; Kroh, E. M.; Ruf, I. K.; Pritchard, C. C.; Gibson, D. F.; Mitchell, P. S.; Bennett, C. F.; Pogosova-Agadjanyan, E. L.; Stirewalt, D. L.; et al. Argonaute2 Complexes Carry a Population of Circulating MicroRNAs Independent of Vesicles in Human Plasma. Proc. Natl. Acad. Sci. USA 2011 DOI: 10.1073/pnas.1019055108.
  • Chim, S. S. C.; Shing, T. K. F.; Hung, E. C. W.; Leung, T.; Lau, T.; Chiu, R. W. K.; Lo, Y. M. D. Detection and Characterization of Placental MicroRNAs in Maternal Plasma. Clin. Chem. 2008, 54, 482–490. DOI: 10.1373/clinchem.2007.097972.
  • da Silveira, J. C.; de Ávila, A. C. F.; Garrett, H. L.; Bruemmer, J. E.; Winger, Q. A.; Bouma, G. J. Cell-Secreted Vesicles Containing MicroRNAs as Regulators of Gamete Maturation. J. Endocrinol. 2018, 236, R15–R27. DOI: 10.1530/JOE-17-0200.
  • Sang, Q.; Yao, Z.; Wang, H.; Feng, R. Characterization of MicroRNAs That Govern. No. C 2013, 1–13. DOI: 10.1210/jc.2013-1715.
  • Sohel, M. H.; Hoelker, M.; Noferesti, S. S.; Salilew-Wondim, D.; Tholen, E.; Looft, C.; Rings, F.; Uddin, M. J.; Spencer, T. E.; Schellander, K.; Tesfaye, D. Exosomal and Non-Exosomal Transport of Extra-Cellular MicroRNAs in Follicular Fluid: Implications for Bovine Oocyte Developmental Competence. PloS One 2013, 8, e78505. DOI: 10.1371/journal.pone.0078505.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.