621
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Chromium Determination in Leather and Other Matrices: A Review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1537-1556 | Published online: 06 Mar 2021

References

  • Dixit, S.; Yadav, A.; Dwivedi, P. D.; Das, M. Toxic Hazards of Leather Industry and Technologies to Combat Threat: A Review. J. Clean. Prod. 2015, 87, 39–49. DOI: 10.1016/j.jclepro.2014.10.017.
  • Kanagaraj, J.; Velappan, K. C.; Babu, N. K. C.; Sadulla, S. Solid Wastes Generation in the Leather Industry and Its Utilization for Cleaner Environment. J. Sci. Ind. Res. 2006, 65, 541–548. DOI: 10.1002/chin.200649273.
  • Ertani, A.; Mietto, A.; Borin, M.; Nardi, S. Chromium in Agricultural Soils and Crops: A Review. Water. Air. Soil Pollut. 2017, 228, 1–12. DOI: 10.1007/s11270-017-3356-y.
  • Dias da Silva, L. I.; Marinho Pontes, F. V.; Castro Carneiro, M.; Couto Monteiro, M. I.; Dominguez de Almeida, M.; Alcover Neto, A. Evaluation of the Chromium Bioavailability in Tanned Leather Shavings Using the SM&T Sequential Extractions Scheme. Chem. Speciation Bioavailability 2011, 23, 183–187. DOI: 10.3184/095422911X13027118597382.
  • Fontaine, M.; Clement, Y.; Blanc, N.; Demesmay, C. Hexavalent Chromium Release from Leather over Time Natural Ageing vs Accelerated Ageing according to a Multivariate Approach. J. Hazard. Mater. 2019, 368, 811–818. DOI: 10.1016/j.jhazmat.2018.12.112.
  • Hamilton, E. M.; Young, S. D.; Bailey, E. H.; Watts, M. J. Chromium Speciation in Foodstuffs: A Review. Food Chem. 2018, 250, 105–112. DOI: 10.1016/j.foodchem.2018.01.016.
  • Pyrzynska, K. Determination of Cr (VI) in Tea. MOJFPT 2017, 4, 1–2. DOI: 10.15406/mojfpt.2017.04.00096.
  • Milačič, R.; Štupar, J. Simultaneous Determination of Chromium(III) Complexes and Chromium(VI) by Fast Protein Anion-Exchange Liquid Chromatography–Atomic Absorption Spectrometry. Analyst 1994, 119, 627–632. DOI: 10.1039/AN9941900627.
  • IL & FS Environment. Technical EIA Guidance Manual for Leather/Skin/Hide Processing Industry Prepared for the Ministry of Environment and Forest, Government of India, New Delhi, India, 2010.
  • Sundar, V. J.; Raghava Rao, J.; Muralidharan, C. Cleaner Chrome Tanning—Emerging Options. J. Clean. Prod. 2002, 10, 69–74. DOI: 10.1016/S0959-6526(01)00015-4.
  • Fontaine, M. Étude de l’évolution de la teneur en chrome hexavalent dans le cuir, influence des conditions de fabrication et importance des facteurs environnementaux; Chimie analytique, Université de Lyon: Lyon, 2017.
  • Onem, E.; Yorgancioglu, A.; Karavana, H. A.; Yilmaz, O. Comparison of Different Tanning Agents on the Stabilization of Collagen via Differential Scanning Calorimetry. J. Therm. Anal. Calorim. 2017, 129, 615–622. DOI: 10.1007/s10973-017-6175-x.
  • Brown, E. M.; Dudley, R. L.; Elsetinow, A. R. A Conformational Study of Collagen as Affected by Tanning Procedures. J. Am. Leather Chem. Assoc. 1997, 92, 225–233.
  • NIIR Board of Consultants & Engineers. Leather Processing & Tanning Technology Handbook; NIIR Project Consultancy Services: Kamla Nagar, Delhi, 2011.
  • Kanth, S. V.; Venba, R.; Madhan, B.; Chandrababu, N. K.; Sadulla, S. Cleaner Tanning Practices for Tannery Pollution Abatement: Role of Enzymes in Eco-Friendly Vegetable Tanning. J. Clean. Prod. 2009, 17, 507–515. DOI: 10.1016/j.jclepro.2008.08.021.
  • Covington, A. D.; Wise, W. R. Tanning Chemistry: The Science of Leather, 2nd ed.; Royal Society of Chemistry: Cambridge, UK, 2019.
  • Golka, K.; Kopps, S.; Myslak, Z. W. Carcinogenicity of Azo Colorants: Influence of Solubility and Bioavailability. Toxicol. Lett. 2004, 151, 203–210. DOI: 10.1016/j.toxlet.2003.11.016.
  • Chung, K.-T. Azo Dyes and Human Health: A Review. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2016, 34, 233–261. DOI: 10.1080/10590501.2016.1236602.
  • Directive 2002/61/EC of the European Parliament & of the Council of 19 July 2002. Amending for the Nineteenth Time Council Directive 76/769/EEC Relating to Restrictions on the Marketing & Use of Certain Dangerous Substances & Preparations (Azo Colourants). Off. J. Eur. Union 2002, L243, 4. September 11.
  • Hedberg, Y. S.; Lidén, C.; Odnevall Wallinder, I. Correlation between Bulk- and Surface Chemistry of Cr-Tanned Leather and the Release of Cr(III) and Cr(VI). J. Hazard. Mat. 2014, 280, 654–661. DOI: 10.1016/j.jhazmat.2014.08.061.
  • International Organization for Standardization. ISO 10195:2018 Leather – Chemical Determination of Chromium(VI) Content in Leather – Thermal Pre-Ageing of Leather and Determination of Hexavalent Chromium, 2018.
  • Thyssen, J. P.; Jensen, P.; Carlsen, B. C.; Engkilde, K.; Menné, T.; Johansen, J. D. The Prevalence of Chromium Allergy in Denmark Is Currently Increasing as a Result of Leather Exposure: The Development of Chromium Allergy. Br. J. Dermatol. 2009, 161, 1288–1293. DOI: 10.1111/j.1365-2133.2009.09405.x.
  • Danish Competent Authority for REACH. Annex XV Report. Proposal for a Restriction. January 19, 2012.
  • Thyssen, J. P.; Menné, T.; Johansen, J. D. Hexavalent Chromium in Leather is Now Regulated in European Union Member States to Limit Chromium Allergy and Dermatitis. Contact Dermatitis. 2014, 70, 1–2. DOI: 10.1111/cod.12182.
  • Commission Regulation (EU) No 301/2014. Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Chromium VI Compounds. Off. J. Eur. Union 2014, L90, 3. March 25.
  • International Organization for Standardization. ISO 17075-1:2017 [IULTCS/IUC 18-1] Leather—Chemical Determination of Chromium(VI) Content in Leather—Part 1: Colorimetric Method. February 2017.
  • International Organization for Standardization. ISO 17075-2:2017 [IULTCS/IUC 18-2] Leather—Chemical Determination of Chromium(VI) Content in Leather—Part 2: Chromatographic Method. February 2017.
  • Fontaine, M.; Blanc, N.; Cannot, J.-C.; Demesmay, C. Ion Chromatography with Post Column Derivatization for the Determination of Hexavalent Chromium in Dyed Leather. Influence of the Preparation Method and of the Sampling Location. J. Am. Leather Chem. Assoc. 2017, 112, 319–326.
  • British Standards Institution. BS EN 196-10:2006 Methods of Testing Cement. Part 10, Part 10, Determination of the Water-Soluble Chromium (VI) Content of Cement; 2006.
  • Gómez, V.; Callao, M. P. Chromium Determination and Speciation since 2000. Trends Anal. Chem. 2006, 25, 1006–1015. DOI: 10.1016/j.trac.2006.06.010.
  • Weng, W.; Wang, M.; Gong, X.; Wang, Z.; Wang, D.; Guo, Z. Direct Electro-Deposition of Metallic Chromium from K2CrO4 in the Equimolar CaCl2-KCl Molten Salt and Its Reduction Mechanism. Electrochim. Acta 2016, 212, 162–170. DOI: 10.1016/j.electacta.2016.06.142.
  • Ferreira, E. S. C.; Pereira, C. M.; Silva, A. F. Electrochemical Studies of Metallic Chromium Electrodeposition from a Cr(III) Bath. J. Electroanal. Chem. 2013, 707, 52–58. DOI: 10.1016/j.jelechem.2013.08.005.
  • Sharma, S.; Agrawal, R. P.; Choudhary, M.; Jain, S.; Goyal, S.; Agarwal, V. Beneficial Effect of Chromium Supplementation on Glucose, HbA1C and Lipid Variables in Individuals with Newly Onset Type-2 Diabetes. J. Trace Elem. Med. Biol. 2011, 25, 149–153. DOI: 10.1016/j.jtemb.2011.03.003.
  • Paiva, A. N.; Lima, J. G.; de, Medeiros, A. C. Q.; de, Figueiredo, H. A. O.; Andrade, R. L.; de, Ururahy, M. A. G.; Rezende, A. A.; Brandão-Neto, J.; Almeida, M. d G. Beneficial Effects of Oral Chromium Picolinate Supplementation on Glycemic Control in Patients with Type 2 Diabetes: A Randomized Clinical Study. J. Trace Elem. Med. Biol. 2015, 32, 66–72. DOI: 10.1016/j.jtemb.2015.05.006.
  • Vincent, J. B. The Biochemistry of Chromium. J. Nutr. 2000, 130, 715–718. DOI: 10.1093/jn/130.4.715.
  • Chen, Y.; Chen, J.; Xi, Z.; Yang, G.; Wu, Z.; Li, J.; Fu, F. Simultaneous Analysis of Cr(III), Cr(VI), and Chromium Picolinate in Foods Using Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry: CE and CEC. Electrophoresis 2015, 36, 1208–1215. DOI: 10.1002/elps.201500015.
  • Bailey, C. H. Improved Meta-Analytic Methods Show No Effect of Chromium Supplements on Fasting Glucose. Biol. Trace Elem. Res. 2014, 157, 1–8. DOI: 10.1007/s12011-013-9863-9.
  • Marmett, B.; Nunes, R. B. Effects of Chromium Picolinate Supplementation on Control of Metabolic Variables: A Systematic Review. Food Nutr. Res. 2016, 4, 633–639. DOI: 10.12691/jfnr-4-10-1.
  • Do Nascimento Monteiro, J. A.; Araújo da Cunha, L.; Pestana da Costa, M. H.; Souza dos Reis, H.; Da Silva Aguiar, A. C.; Lobato de Oliveira-Bahia, V. R.; Rodríguez Burbano, R. M.; Machado da Rocha, C. A. Mutagenic and Histopathological Effects of Hexavalent Chromium in Tadpoles of Lithobates Catesbeianus (Shaw, 1802) (Anura, Ranidae). Ecotoxicol. Environ. Saf. 2018, 163, 400–407. DOI: 10.1016/j.ecoenv.2018.07.083.
  • Jin, W.; Du, H.; Zheng, S.; Zhang, Y. Electrochemical Processes for the Environmental Remediation of Toxic Cr(VI): A Review. Electrochim. Acta 2016, 191, 1044–1055. DOI: 10.1016/j.electacta.2016.01.130.
  • Saha, R.; Nandi, R.; Saha, B. Sources and Toxicity of Hexavalent Chromium. J. Coord. Chem. 2011, 64, 1782–1806. DOI: 10.1080/00958972.2011.583646.
  • Martone, N.; Rahman, G. M. M.; Pamuku, M.; Skip Kingston, H. M. Determination of Chromium Species in Dietary Supplements Using Speciated Isotope Dilution Mass Spectrometry with Mass Balance. J. Agric. Food Chem. 2013, 61, 9966–9976. DOI: 10.1021/jf403067c.
  • Novotnik, B.; Zuliani, T.; Ščančar, J.; Milačič, R. Chromate in Food Samples: An Artefact of Wrongly Applied Analytical Methodology? J. Anal. At. Spectrom. 2013, 28, 558–566. DOI: 10.1039/c3ja30233d.
  • Pastore, P.; Favaro, G.; Ballardin, A.; Danieletto, D. Evidence of Cr(VI) Formation during Analysis of Leather Proposal of an Alternative Method of Analysis through the Ion-Chromatographic Approach and Post-Column Reaction. Talanta 2004, 63, 941–947. DOI: 10.1016/j.talanta.2004.01.010.
  • Marczenko, Z.; Balcerzak, M. Separation, Preconcentration and Spectrophotometry in Inorganic Analysis, 1st ed.; Elsevier Science: Amsterdam, Netherlands, 2000; Vol. 10.
  • Duffy, G.; Maguire, I.; Heery, B.; Gers, P.; Ducrée, J.; Regan, F. ChromiSense: A Colourimetric Lab-on-a-Disc Sensor for Chromium Speciation in Water. Talanta 2018, 178, 392–399. DOI: 10.1016/j.talanta.2017.09.066.
  • Byrdy, F. A.; Olson, L. K.; Vela, N. P.; Caruso, J. A. Chromium Speciation by Anion-Exchange High-Performance Liquid Chromatography with Both Inductively Coupled Plasma Atomic Emission Spectroscopic and Inductively Coupled Plasma Mass Spectrometric Detection. J. Chromatogr. A. 1995, 712, 311–320. https://doi.org/10.1016/0021-9673. (95)00528-u. DOI: 10.1016/0021-9673(95)00528-U.
  • Gürleyük, H.; Wallschläger, D. Determination of Chromium(III) and Chromium(VI) Using Suppressed Ion Chromatography Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 2001, 16, 926–930. DOI: 10.1039/B102740A.
  • Chen, Z.; Megharaj, M.; Naidu, R. Speciation of Chromium in Waste Water Using Ion Chromatography Inductively Coupled Plasma Mass Spectrometry. Talanta 2007, 72, 394–400. DOI: 10.1016/j.talanta.2006.10.041.
  • Chen, Z.; Naidu, R.; Subramanian, A. Separation of Chromium (III) and Chromium (VI) by Capillary Electrophoresis Using 2,6-Pyridinedicarboxylic Acid as a Pre-Column Complexation Agent. J. Chromatogr. A. 2001, 927, 219–227. https://doi.org/10.1016/S0021-9673. (01)01116-5. DOI: 10.1016/S0021-9673(01)01116-5.
  • Padarauskas, A.; Schwedt, G. Speciation of Cr(III) and Cr(VI) and Separation of Common Anions by Ion Pair Chromatography with trans-1,2-Diaminecyclohexane-N,N,N',N'-Tetraacetic Acid. Talanta 1995, 42, 693–699. https://doi.org/10.1016/0039-9140. (95)01457-M. DOI: 10.1016/0039-9140(95)01457-M.
  • Girish Kumar, K.; Muthuselvi, R. Spectrophotometric Determination of Chromium(III) with 2-Hydroxybenzaldiminoglycine. J. Anal. Chem. 2006, 61, 28–31. DOI: 10.1134/S1061934806010072.
  • Rezić, I.; Zeiner, M. Determination of Extractable Chromium from Leather. Monatsh. Chem. 2009, 140, 325–328. DOI: 10.1007/s00706-008-0026-1.
  • Costa, V.; Neiva, A.; Pereira-Filho, E. Chromium Speciation in Leather Samples: An Experiment Using Digital Images, Mobile Phones and Environmental Concepts. Eclet. Quim. J. 2019, 44, 62–74. DOI: 10.26850/1678-4618eqj.v44.1.2019.p62-74.
  • U.S. Environmental Protection Agency. SW-846 Test Method 3060A: Alkaline Digestion for Hexavalent Chromium. December 1996.
  • Petrucci, F.; Senofonte, O. Determination of Cr(VI) in Cosmetic Products Using Ion Chromatography with Dynamic Reaction Cell-Inductively Coupled Plasma-Mass Spectrometry (DRC-ICP-MS). Anal. Methods 2015, 7, 5269–5274. DOI: 10.1039/C4AY03042G.
  • Li, P.; Li, L.; Xia, J.; Cao, S.; Hu, X.; Lian, H.-Z.; Ji, S. Determination of Hexavalent Chromium in Traditional Chinese Medicines by High-Performance Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometry: Liquid Chromatography. J. Sep. Sci. 2015, 38, 4043–4047. DOI: 10.1002/jssc.201500814.
  • Hernandez, F.; Séby, F.; Millour, S.; Noël, L.; Guérin, T. Optimisation of Selective Alkaline Extraction for Cr(VI) Determination in Dairy and Cereal Products by HPIC-ICPMS Using an Experimental Design. Food Chem. 2017, 214, 339–346. DOI: 10.1016/j.foodchem.2016.07.099.
  • Hernandez, F.; Jitaru, P.; Cormant, F.; Noël, L.; Guérin, T. Development and Application of a Method for Cr(III) Determination in Dairy Products by HPLC–ICP-MS. Food Chem. 2018, 240, 183–188. DOI: 10.1016/j.foodchem.2017.07.110.
  • Vacchina, V.; de la Calle, I.; Séby, F. Cr(VI) Speciation in Foods by HPLC-ICP-MS: Investigation of Cr(VI)/Food Interactions by Size Exclusion and Cr(VI) Determination and Stability by Ion-Exchange on-Line Separations. Anal. Bioanal. Chem. 2015, 407, 3831–3839. DOI: 10.1007/s00216-015-8616-3.
  • Mathebula, M. W.; Mandiwana, K.; Panichev, N. Speciation of Chromium in Bread and Breakfast Cereals. Food Chem. 2017, 217, 655–659. DOI: 10.1016/j.foodchem.2016.09.020.
  • Mandiwana, K. L.; Panichev, N.; Panicheva, S. Determination of Chromium(VI) in Black, Green and Herbal Teas. Food Chem. 2011, 129, 1839–1843. DOI: 10.1016/j.foodchem.2011.05.124.
  • Soares, M. E.; Vieira, E.; Bastos, M. d. L. Chromium Speciation Analysis in Bread Samples. J. Agric. Food Chem. 2010, 58, 1366–1370. DOI: 10.1021/jf903118v.
  • Bosch Ojeda, C.; Sánchez Rojas, F. Separation and Preconcentration by a Cloud Point Extraction Procedure for Determination of Metals: An Overview. Anal. Bioanal. Chem. 2009, 394, 759–782. DOI: 10.1007/s00216-009-2660-9.
  • Pytlakowska, K.; Kozik, V.; Dabioch, M. Complex-Forming Organic Ligands in Cloud-Point Extraction of Metal Ions: A Review. Talanta 2013, 110, 202–228. DOI: 10.1016/j.talanta.2013.02.037.
  • Mortada, W. I. Recent Developments and Applications of Cloud Point Extraction: A Critical Review. Microchem. J. 2020, 157, 105055. DOI: 10.1016/j.microc.2020.105055.
  • Kiran, K.; Kumar, K. S.; Prasad, B.; Suvardhan, K.; Lekkala, R. B.; Janardhanam, K. Speciation Determination of Chromium(III) and (VI) Using Preconcentration Cloud Point Extraction with Flame Atomic Absorption Spectrometry (FAAS). J. Hazard. Mater. 2008, 150, 582–586. DOI: 10.1016/j.jhazmat.2007.05.007.
  • Tiwari, S.; Deb, M. K.; Sen, B. K. Cloud Point Extraction and Diffuse Reflectance-Fourier Transform Infrared Spectroscopic Determination of Chromium(VI): A Probe to Adulteration in Food Stuffs. Food Chem. 2017, 221, 47–53. DOI: 10.1016/j.foodchem.2016.10.034.
  • Narin, I.; Kars, A.; Soylak, M. A Novel Solid Phase Extraction Procedure on Amberlite XAD-1180 for Speciation of Cr(III), Cr(VI) and Total Chromium in Environmental and Pharmaceutical Samples. J. Hazard. Mater. 2008, 150, 453–458. DOI: 10.1016/j.jhazmat.2007.04.125.
  • U.S. Environmental Protection Agency. SW-846 Test Method 3052: Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices. December 1996.
  • U.S. Environmental Protection Agency. SW-846 Test Method 7196A: Chromium, Hexavalent (Colorimetric). July 1992.
  • U.S. Environmental Protection Agency. SW-846 Test Method 7199: Determination of Hexavalent Chromium in Drinking Water, Groundwater, and Industrial Wastewater Effluents by Ion Chromatography. December 1996.
  • Environmental Monitoring Systems Laboratory. Method 218.6 – Determination of Dissolved Hexavalent Chromium in Drinking Water, Groundwater and Industrial Wastewater Effluents by Ion Chromatography. In Methods for the Determination of Metals in Environmental Samples; Elsevier: Cincinnati, Ohio, 1996; pp 290–304. DOI: 10.1016/B978-0-8155-1398-8.50016-1.
  • Phesatcha, T.; Worawirunwong, W.; Rohrer, J. Application Update 165: Separation of Chromium (III) and Chromium (VI) by Ion Chromatography (AN70416_E 09/16S). Thermo Fisher Scientific, 2016.
  • Jabłońska-Czapla, M.; Szopa, S.; Grygoyć, K.; Łyko, A.; Michalski, R. Development and Validation of HPLC-ICP-MS Method for the Determination Inorganic Cr, As and Sb Speciation Forms and Its Application for Pławniowice Reservoir (Poland) Water and Bottom Sediments Variability Study. Talanta 2014, 120, 475–483. DOI: 10.1016/j.talanta.2013.11.092.
  • Séby, F.; Charles, S.; Gagean, M.; Garraud, H.; Donard, O. F. X. Chromium Speciation by Hyphenation of High-Performance Liquid Chromatography to Inductively Coupled Plasma-Mass Spectrometry—Study of the Influence of Interfering Ions. J. Anal. At. Spectrom. 2003, 18, 1386–1390. DOI: 10.1039/B306249J.
  • Hu, L.; Cai, Y.; Jiang, G. Occurrence and Speciation of Polymeric Chromium(III), Monomeric Chromium(III) and Chromium(VI) in Environmental Samples. Chemosphere 2016, 156, 14–20. DOI: 10.1016/j.chemosphere.2016.04.100.
  • Araujo-Barbosa, U.; Peña-Vazquez, E.; Barciela-Alonso, M. C.; Costa Ferreira, S. L.; Pinto dos Santos, A. M.; Bermejo-Barrera, P. Simultaneous Determination and Speciation Analysis of Arsenic and Chromium in Iron Supplements Used for Iron-Deficiency Anemia Treatment by HPLC-ICP-MS. Talanta 2017, 170, 523–529. DOI: 10.1016/j.talanta.2017.04.034.
  • Kutscher, D.; McSheehy, S.; Wills, J.; Jensen, D. Speciation Analysis of Cr (III) and Cr (VI) in Drinking Waters Using Anion Exchange Chromatography Coupled to the Thermo Scientific ICAP Q ICP-MS. Thermo Fisher Scientific, 2016.
  • Schmelzel, J.; Kutscher, D.; Fisher, C. Determination of Chromium Species Using Ion Chromatography Coupled to Inductively Coupled Plasma Mass Spectrometry. Thermo Fisher Scientific, 2018.
  • Kutscher, D.; McSheehy, S.; Rottmann, L. The Migration of Elements from Toys and Speciation of Chromium (VI) in Toy Material Using a Low Cost IC-ICP-MS Solution. Thermo Fisher Scientific, 2016.
  • Hagendorfer, H.; Goessler, W. Separation of Chromium(III) and Chromium(VI) by Ion Chromatography and an Inductively Coupled Plasma Mass Spectrometer as Element-Selective Detector. Talanta 2008, 76, 656–661. DOI: 10.1016/j.talanta.2008.04.010.
  • Kadar, A.; Noël, L.; Chekri, R.; Vastel, C.; Millour, S.; Guérin, T. Optimisation of ICP-MS Collision/Reaction Cell Conditions for the Determination of Elements Likely to Be Interfered (V, Cr, Fe, Co, Ni, as and Se) in Foodstuffs. Talanta 2011, 85, 2605–2613. DOI: 10.1016/j.talanta.2011.08.027.
  • U.S. Environmental Protection Agency. SW-846 Test Method 6800: Elemental and Molecular Speciated Isotope Dilution Mass Spectrometry. July 2014.
  • Mädler, S.; Sun, F.; Tat, C.; Sudakova, N.; Drouin, P.; Tooley, R. J.; Reiner, E. J.; Switzer, T. A.; Dyer, R.; Kingston, H. M. S.; et al. Trace-Level Analysis of Hexavalent Chromium in Lake Sediment Samples Using Ion Chromatography Tandem Mass Spectrometry. JEP 2016, 07, 422–434. DOI: 10.4236/jep.2016.73037.
  • Mädler, S.; Todd, A.; Skip Kingston, H. M.; Pamuku, M.; Sun, F.; Tat, C.; Tooley, R. J.; Switzer, T. A.; Furdui, V. I. Ultra-Trace Level Speciated Isotope Dilution Measurement of Cr(VI) Using Ion Chromatography Tandem Mass Spectrometry in Environmental Waters. Talanta 2016, 156-157, 104–111. DOI: 10.1016/j.talanta.2016.04.064.
  • Drinčić, A.; Zuliani, T.; Ščančar, J.; Milačič, R. Determination of Hexavalent Cr in River Sediments by Speciated Isotope Dilution Inductively Coupled Plasma Mass Spectrometry. Sci. Total Environ. 2018, 637-638, 1286–1294. DOI: 10.1016/j.scitotenv.2018.05.112.
  • Fabregat-Cabello, N.; Rodríguez-González, P.; Castillo, Á.; Malherbe, J.; Roig-Navarro, A. F.; Long, S. E.; Alonso, J. I. G. Fast and Accurate Procedure for the Determination of Cr(VI) in Solid Samples by Isotope Dilution Mass Spectrometry. Environ. Sci. Technol. 2012, 46, 12542–12549. DOI: 10.1021/es3022864.
  • Guidotti, L.; Abad, S. Q.; Rodríguez-González, P.; Alonso, J. I. G.; Beone, G. M. Quantification of Cr(VI) in Soil Samples from a Contaminated Area in Northern Italy by Isotope Dilution Mass Spectrometry. Environ. Sci. Pollut. Res. Int. 2015, 22, 17569–17576. DOI: 10.1007/s11356-015-4963-z.
  • Wolle, M. M.; Rahman, G. M. M.; Skip Kingston, H. M.; Pamuku, M. Optimization and Validation of Strategies for Quantifying Chromium Species in Soil Based on Speciated Isotope Dilution Mass Spectrometry with Mass Balance. J. Anal. At. Spectrom. 2014, 29, 1640–1647. DOI: 10.1039/C4JA00133H.
  • Moktadir, M. A.; Ahmadi, H. B.; Sultana, R.; Zohra, F.-T.; Liou, J. J. H.; Rezaei, J. Circular Economy Practices in the Leather Industry: A Practical Step towards Sustainable Development. J. Clean. Prod. 2020, 251, 119737 1–13. DOI: 10.1016/j.jclepro.2019.119737.
  • Hu, J.; Xiao, Z.; Zhou, R.; Deng, W.; Wang, M.; Ma, S. Ecological Utilization of Leather Tannery Waste with Circular Economy Model. J. Clean. Prod. 2011, 19, 221–228. DOI: 10.1016/j.jclepro.2010.09.018.
  • Abdel-Shafy, H. I.; El-Khateeb, M. A.; Mansour, M. S. M. Treatment of Leather Industrial Wastewater via Combined Advanced Oxidation and Membrane Filtration. Water Sci. Technol. 2016, 74, 586–594. DOI: 10.2166/wst.2016.234.
  • El-Khateeb, M. A.; Nashy, E.-S. H. A.; Ghany, N. A. A.; Awad, A. M. Environmental Impact Elimination of Chrome Tanning Effluent Using Electrocoagulation Process Assisted by Chemical Oxidation. Dwt. 2017, 65, 147–152. DOI: 10.5004/dwt.2017.20250.
  • El-Khateeb, M. A.; Nashy, E. H. A.; Nayl, A.-A. A. Combining Chemical Coagulation Process and Innovative Aerobic Reactor for the Treatment of De-Hairing Wastewater. Waste Biomass Valorization 2020. DOI: 10.1007/s12649-020-01204-0.
  • Ferreira, M. J.; Almeida, M. F.; Pinho, S. C.; Santos, I. C. Finished Leather Waste Chromium Acid Extraction and Anaerobic Biodegradation of the Products. Waste Manag. 2010, 30, 1091–1100. DOI: 10.1016/j.wasman.2009.12.006.
  • Popiolski, A. S.; Dallago, R. M.; Steffens, J.; Mignoni, M. L.; Venquiaruto, L. D.; Santos, D.; Duarte, F. A. Ultrasound-Assisted Extraction of Cr from Residual Tannery Leather: Feasibility of Ethylenediaminetetraacetic Acid as the Extraction Solution. ACS Omega. 2018, 3, 16074–16080. DOI: 10.1021/acsomega.8b02241.
  • Zhang, C.; Xia, F.; Long, J.; Peng, B. An Integrated Technology to Minimize the Pollution of Chromium in Wet-End Process of Leather Manufacture. J. Clean. Prod. 2017, 154, 276–283. DOI: 10.1016/j.jclepro.2017.03.216.
  • Mengistie, E.; Smets, I.; Van Gerven, T. Ultrasound Assisted Chrome Tanning: Towards a Clean Leather Production Technology. Ultrason. Sonochem. 2016, 32, 204–212. DOI: 10.1016/j.ultsonch.2016.03.002.
  • Zhang, J.; Chen, W. A Rapid and Cleaner Chrome Tanning Technology Based on Ultrasound and Microwave. J. Clean. Prod. 2020, 247, 119452. DOI: 10.1016/j.jclepro.2019.119452.
  • Jia, X.; Zhang, C.; Ali Chattha, S.; Peng, B. A Salt-Free Pickling Chrome Tanning Technology: Pretreatment with the Collective Polyoxyethylene Diepoxy Ether and Urotropine. J. Clean. Prod. 2020, 244, 118706. DOI: 10.1016/j.jclepro.2019.118706.
  • Zuriaga-Agustí, E.; Galiana-Aleixandre, M. V.; Bes-Piá, A.; Mendoza-Roca, J. A.; Risueño-Puchades, V.; Segarra, V. Pollution Reduction in an Eco-Friendly Chrome-Free Tanning and Evaluation of the Biodegradation by Composting of the Tanned Leather Wastes. J. Clean. Prod. 2015, 87, 874–881. DOI: 10.1016/j.jclepro.2014.10.066.
  • Krishnamoorthy, G.; Sadulla, S.; Sehgal, P. K.; Mandal, A. B. Green Chemistry Approaches to Leather Tanning Process for Making Chrome-Free Leather by Unnatural Amino Acids. J. Hazard. Mat. 2012, 215–216, 173–182. DOI: 10.1016/j.jhazmat.2012.02.046.
  • Krishnamoorthy, G.; Sadulla, S.; Sehgal, P. K.; Mandal, A. B. Greener Approach to Leather Tanning Process: D-Lysine Aldehyde as Novel Tanning Agent for Chrome-Free Tanning. J. Clean. Prod. 2013, 42, 277–286. DOI: 10.1016/j.jclepro.2012.11.004.
  • Wu, X.; Qiang, X.; Liu, D.; Yu, L.; Wang, X. An Eco-Friendly Tanning Process to Wet-White Leather Based on Amino Acids. J. Clean. Prod. 2020, 270, 122399. DOI: 10.1016/j.jclepro.2020.122399.
  • Gao, D.; Cheng, Y.; Wang, P.; Li, F.; Wu, Y.; Lyu, B.; Ma, J.; Qin, J. An Eco-Friendly Approach for Leather Manufacture Based on P(POSS-MAA)-Aluminum Tanning Agent Combination Tannage. J. Clean. Prod. 2020, 257, 120546. DOI: 10.1016/j.jclepro.2020.120546.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.