139
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

A Critical Review on Advancement in Analytical Strategies for the Quantification of Clinically Relevant Biological Transporters

ORCID Icon, , , & ORCID Icon
Pages 1557-1571 | Published online: 10 Mar 2021

References

  • Chu, X.; Korzekwa, K.; Elsby, R.; Fenner, K.; Galetin, A.; Lai, Y.; Matsson, P.; Moss, A.; Nagar, S.; Rosania, G. R.; International Transporter Consortium; et al. Intracellular Drug Concentrations and Transporters: Measurement, Modeling, and Implications for the Liver. Clin. Pharmacol. Ther. 2013, 94, 126–141. DOI: 10.1038/clpt.2013.78.
  • Sasongko, L.; Link, J.; Muzi, M.; Mankoff, D.; Yang, X.; Collier, A.; Shoner, S. C.; Unadkat, J. D. Imaging P-Glycoprotein Transport Activity at the Human Blood-Brain Barrier with Positron Emission Tomography. Clin. Pharmacol. Ther. 2005, 77, 503–514. DOI: 10.1016/j.clpt.2005.01.022.
  • Janneh, O.; Jones, E.; Chandler, B.; Owen, A.; Khoo, S. H. Inhibition of P-Glycoprotein and Multidrug Resistance-Associated Proteins Modulates the Intracellular Concentration of Lopinavir in Cultured CD4 T Cells and Primary Human Lymphocytes. J. Antimicrob. Chemother. 2007, 60, 987–993. DOI: 10.1093/jac/dkm353.
  • Tron, C.; Allard, M.; Petitcollin, A.; Ferrand-Sorre, M.-J.; Verdier, M.-C.; Querzerho-Raguideau, J.; Blanchet, B.; Priol, J. L.; Roussel, M.; Deugnier, Y.; et al. Tacrolimus Diffusion across the Peripheral Mononuclear Blood Cell Membrane: Impact of Drug Transporters. Fundam. Clin. Pharmacol. 2019, 33, 113–121. DOI: 10.1111/fcp.12412.
  • Estudante, M.; Morais, J. G.; Soveral, G.; Benet, L. Z. Intestinal Drug Transporters: An Overview. Adv. Drug Deliv. Rev. 2013, 65, 1340–1356. DOI: 10.1016/j.addr.2012.09.042.
  • Reznicek, J.; Ceckova, M.; Ptackova, Z.; Martinec, O.; Tupova, L.; Cerveny, L.; Staud, F. MDR1 and BCRP Transporter-Mediated Drug-Drug Interaction between Rilpivirine and Abacavir and Effect on Intestinal Absorption. Antimicrob. Agents Chemother. 2017, 61, e00837-17. DOI: 10.1128/AAC.00837-17.
  • Kis, O.; Zastre, J. A.; Hoque, M. T.; Walmsley, S. L.; Bendayan, R. Role of Drug Efflux and Uptake Transporters in Atazanavir Intestinal Permeability and Drug-Drug Interactions. Pharm. Res. 2013, 30, 1050–1064. DOI: 10.1007/s11095-012-0942-y.
  • Patel, M.; Taskar, K. S.; Zamek‐Gliszczynski, M. J. Importance of Hepatic Transporters in Clinical Disposition of Drugs and Their Metabolites. J. Clin. Pharmacol. 2016, 56, S23–S39. DOI: 10.1002/jcph.671.
  • DeGorter, M. K.; Kim, R. B. Hepatic Drug Transporters, Old and New: Pharmacogenomics, Drug Response, and Clinical Relevance. Hepatology 2009, 50, 1014–1016. DOI: 10.1002/hep.23233.
  • Li, P.; Wang, G.-J.; Robertson, T. A.; Roberts, M. S. Liver Transporters in Hepatic Drug Disposition: An Update. Curr. Drug Metab. 2009, 10, 482–498. DOI: 10.2174/138920009788898037.
  • Yin, J.; Wang, J. Renal Drug Transporters and Their Significance in Drug-Drug Interactions. Acta Pharm. Sin. B 2016, 6, 363–373. DOI: 10.1016/j.apsb.2016.07.013.
  • Alavijeh, M. S.; Chishty, M.; Qaiser, M. Z.; Palmer, A. M. Drug Metabolism and Pharmacokinetics, the Blood-Brain Barrier, and Central Nervous System Drug Discovery. NeuroRx 2005, 2, 554–571. DOI: 10.1602/neurorx.2.4.554.
  • Sanchez-Covarrubias, L.; Slosky, L. M.; Thompson, B. J.; Davis, T. P.; Ronaldson, P. T. Transporters at CNS Barrier Sites: Obstacles or Opportunities for Drug Delivery? Curr. Pharm. Des. 2014, 20, 1422–1449. DOI: 10.2174/13816128113199990463.
  • Eyal, S.; Hsiao, P.; Unadkat, J. D. Drug Interactions at the Blood-Brain Barrier: Fact or Fantasy? Pharmacol. Ther. 2009, 123, 80–104. DOI: 10.1016/j.pharmthera.2009.03.017.
  • Giraud, C.; Manceau, S.; Treluyer, J.-M. ABC Transporters in Human Lymphocytes: Expression, Activity and Role, Modulating Factors and Consequences for Antiretroviral Therapies. Expert Opin. Drug Metab. Toxicol. 2010, 6, 571–589. DOI: 10.1517/17425251003601953.
  • Gutierrez, F.; Fulladosa, X.; Barril, G.; Domingo, P. Renal Tubular Transporter-Mediated Interactions of HIV Drugs: Implications for Patient Management. AIDS Rev. 2014, 16, 199–212.
  • Li, Q.; Shu, Y. Role of Solute Carriers in Response to Anticancer Drugs. Mol. Cell. Ther. 2014, 2, 15–14. DOI: 10.1186/2052-8426-2-15.
  • Vervilled, J. Healthline. Understanding ART for HIV. https://www.healthline.com/health/hiv-aids/understanding-the-aids-cocktail#drug-classes (accessed Aug 20, 2020).
  • Soldin, O. P.; Elin, R. J.; Soldin, S. J. Therapeutic Drug Monitoring in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome. Quo Vadis? Arch. Pathol. Lab. Med. 2003, 127, 102–105. DOI: https://doi.org/10.1043/0003-9985(2003)127%3C102:TDMIHI%3E2.0.CO;2. DOI: 10.5858/2003-127-102-TDMIHI.
  • Minuesa, G.; Huber-Ruano, I.; Pastor-Anglada, M.; Koepsell, H.; Clotet, B.; Martinez-Picado, J.Drug Uptake Transporters in Antiretroviral Therapy. Pharmacol. Ther. 2011, 132, 268–279. DOI: 10.1016/j.pharmthera.2011.06.007.
  • Urquhart, B. L.; Tirona, R. G.; Kim, R. B. Nuclear Receptors and the Regulation of Drug-Metabolizing Enzymes and Drug Transporters: Implications for Interindividual Variability in Response to Drugs. J. Clin. Pharmacol. 2007, 47, 566–578. DOI: 10.1177/0091270007299930.
  • Klabusay, M.; Novakova, V.; Medalova, J.; Konieczna, A. Tyrosine Kinase Inhibitors to Regulate the Expression Level of ABC Transporters Related to Multidrug Resistance. J. Clin. Oncol. 2016, 34, e14112.
  • Parvez, M. M.; Kaisar, N.; Shin, J.-G. Role of Drug Metabolic Enzymes and Transporters in Drug-Drug Interactions between Antiretroviral and Antituberculosis Drugs. J. Adv. Biotechnol. Exp. Ther. 2018, 1, 17–24. DOI: 10.5455/jabet.d2.
  • Kumar, S.; Rao, P. S. S.; Earla, R.; Kumar, A. Drug-Drug Interactions between Anti-Retroviral Therapies and Drugs of Abuse in HIV Systems. Expert Opin. Drug Metab. Toxicol. 2015, 11, 343–355. DOI: 10.1517/17425255.2015.996546.
  • Liu, C.; Zhang, J.; You, G. Interaction of Anticancer Drugs with Human Organic Anion Transporter hOAT4. J. Oncol. 2019, 2019, 1951786. DOI: 10.1155/2019/1951786.
  • Kigen, G.; Edwards, G. Drug-Transporter Mediated Interactions between Anthelminthic and Antiretroviral Drugs across the Caco-2 Cell Monolayers. BMC Pharmacol. Toxicol. 2017, 18, 1–13. DOI: 10.1186/s40360-017-0129-6.
  • Griffin, L.; Annaert, P.; Brouwer, K. L. R. Influence of Drug Transport Proteins on the Pharmacokinetics and Drug Interactions of HIV Protease Inhibitors. J. Pharm. Sci. 2011, 100, 3636–3654. DOI: 10.1002/jps.22655.
  • Maideen, N. M. P.; Jumale, A.; Balasubramaniam, R. Drug Interactions of Metformin Involving Drug Transporter Proteins. Adv. Pharm. Bull.2017, 7, 501–505. DOI: https://dx.doi.org/10.15171/apb.2017.062. DOI: 10.15171/apb.2017.062.
  • Kusuhara, H.; Sugiyama, Y. Efflux Transport Systems at the Blood–Brain Barrier and Blood CSF Barrier. Int. Congr. Ser. 2005, 1277, 111–122. DOI: 10.1016/j.ics.2005.02.015.
  • Simonson, S. G.; Raza, A.; Martin, P. D.; Mitchell, P. D.; Jarcho, J. A.; Brown, C. D. A.; Windass, A. S.; Schneck, D. W. Rosuvastatin Pharmacokinetics in Heart Transplant Recipients Administered an Antirejection Regimen Including Cyclosporine. Clin. Pharmacol. Ther. 2004, 76, 167–177. DOI: 10.1016/j.clpt.2004.03.010.
  • Fahrmayr, C.; Fromm, M. F.; König, J. Hepatic OATP and OCT Uptake Transporters: Their Role for Drug-Drug Interactions and Pharmacogenetic Aspects. Drug Metab. Rev. 2010, 42, 380–401. DOI: 10.3109/03602530903491683.
  • Kwan, W. S.; Janneh, O.; Hartkoorn, R.; Chandler, B.; Khoo, S.; Back, D.; Owen, A. Intracellular ‘Boosting’ of Darunavir Using Known Transport Inhibitors in Primary PBMC. Br. J. Clin. Pharmacol. 2009, 68, 375–380. DOI: 10.1111/j.1365-2125.2009.03462.x.
  • Bola, B. M.; Chadwick, A. L.; Michopoulos, F.; Blount, K. G.; Telfer, B. A.; Williams, K. J.; Smith, P. D.; Critchlow, S. E.; Stratford, I. J. Inhibition of Monocarboxylate Transporter-1 (MCT1) by AZD3965 Enhances Radiosensitivity by Reducing Lactate Transport. Mol. Cancer Ther. 2014, 13, 2805–2816. DOI: 10.1158/1535-7163.MCT-13-1091.
  • Monocarboxylate Transporter. https://www.medchemexpress.com/Targets/MonocarboxylateTransporter.html (accessed Nov 26, 2020).
  • Knütter, I.; Theis, S.; Hartrodt, B.; Born, I.; Brandsch, M.; Daniel, H.; Neubert, K. A Novel Inhibitor of the Mammalian Peptide Transporter PEPT1. Biochemistry 2001, 40, 4454–4458. DOI: 10.1021/bi0026371.
  • Zhang, Y.; Panfen, E.; Fancher, M.; Sinz, M.; Marathe, P.; Shen, H. Dissecting the Contribution of OATP1B1 to Hepatic Uptake of Statins Using the OATP1B1 Selective Inhibitor Estropipate. Mol. Pharm. 2019, 16, 2342–2353. DOI: 10.1021/acs.molpharmaceut.8b01226.
  • Karlgren, M.; Vildhede, A.; Norinder, U.; Wisniewski, J. R.; Kimoto, E.; Lai, Y.; Haglund, U.; Artursson, P. Classification of Inhibitors of Hepatic Organic Anion Transporting Polypeptides (OATPs): Influence of Protein Expression on Drug-Drug Interactions. J. Med. Chem. 2012, 55, 4740–4763. DOI: 10.1021/jm300212s.
  • Human Transporters OCT1. https://www.solvobiotech.com/transporters/oct1 (accessed Nov 26, 2020).
  • Monoamine Transporter. https://www.medchemexpress.com/Targets/MonoamineTransporter.html (accessed Nov 26, 2020).
  • P-Glycoprotein. https://www.medchemexpress.com/Targets/P-glycoprotein.html#:∼:text=Valspodar (accessed Nov 26, 2020).
  • Billat, P.-A.; Saint-Marcoux, F. Liquid Chromatography-Mass Spectrometry Methods for the Intracellular Determination of Drugs and Their Metabolites: A Focus on Antiviral Drugs. Anal. Bioanal. Chem. 2017, 409, 5837–5853. DOI: 10.1007/s00216-017-0449-9.
  • BCRP. https://www.medchemexpress.com/Targets/BCRP.html (accessed Nov 26, 2020).
  • Burhenne, J.; Matthée, A.-K.; Pasáková, I.; Röder, C.; Heinrich, T.; Haefeli, W. E.; Mikus, G.; Weiss, J. No Evidence for Induction of ABC Transporters in Peripheral Blood Mononuclear Cells in Humans after 14 Days of Efavirenz Treatment. Antimicrob. Agents Chemother. 2010, 54, 4185–4191. DOI: 10.1128/AAC.00283-10.
  • Evers, R.; Piquette‐Miller, M.; Polli, J. W.; Russel, F. G. M.; Sprowl, J. A.; Tohyama, K.; Ware, J. A.; de Wildt, S. N.; Xie, W.; Brouwer, K. L. R.; International Transporter Consortium. Disease-Associated Changes in Drug Transporters May Impact the Pharmacokinetics and/or Toxicity of Drugs: A White Paper From the International Transporter Consortium. Clin. Pharmacol. Ther. 2018, 104, 900–915. DOI: 10.1002/cpt.1115.
  • Arya, V.; Kiser, J. J. Role of Transporters in Drug Development. J. Clin. Pharmacol. 2016, 56, S7–S10. DOI: 10.1002/jcph.784.
  • Bernard-Patrzynski, F.; Lécuyer, M.-A.; Puscas, I.; Boukhatem, I.; Charabati, M.; Bourbonnière, L.; Ramassamy, C.; Leclair, G.; Prat, A.; Roullin, V. G. Isolation of Endothelial Cells, Pericytes and Astrocytes from Mouse Brain. PLoS One 2019, 14, e0226302. DOI: 10.1371/journal.pone.0226302.
  • Roulis, M.; Armaka, M.; Manoloukos, M.; Apostolaki, M.; Kollias, G. Intestinal Epithelial Cells as Producers but Not Targets of Chronic TNF Suffice to Cause Murine Crohn-Like Pathology. Proc. Natl. Acad. Sci. U S A 2011, 108, 5396–5401. DOI: 10.1073/pnas.1007811108.
  • Kreamer, B. L.; Staecker, J. L.; Sawada, N.; Sattler, G. L.; Hsia, M. T. S.; Pitot, H. C. Use of a Low-Speed, Iso-Density Percoll Centrifugation Method to Increase the Viability of Isolated Rat Hepatocyte Preparations. In Vitro Cell. Dev. Biol. 1986, 22, 201–211. DOI: 10.1007/BF02623304.
  • Histopaque-1077. https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/1/10771pis.pdf (accessed Nov 26, 2020).
  • Van der Hauwaert, C.; Savary, G.; Gnemmi, V.; Glowacki, F.; Pottier, N.; Bouillez, A.; Maboudou, P.; Zini, L.; Leroy, X.; Cauffiez, C.; et al. Isolation and Characterization of a Primary Proximal Tubular Epithelial Cell Model from Human Kidney by CD10/CD13 Double Labeling. PLoS One 2013, 8, e66750. DOI: 10.1371/journal.pone.0066750.
  • Deepak, S. A.; Kottapalli, K. R.; Rakwal, R.; Oros, G.; Rangappa, K. S.; Iwahashi, H.; Masuo, Y.; Agrawal, G. K. Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes. Curr. Genomics 2007, 8, 234–251. DOI: 10.2174/138920207781386960.
  • Albermann, N.; Schmitz-Winnenthal, F. H.; Z’Graggen, K.; Volk, C.; Hoffmann, M. M.; Haefeli, W. E.; Weiss, J. Expression of the Drug Transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in Peripheral Blood Mononuclear Cells and Their Relationship with the Expression in Intestine and Liver. Biochem. Pharmacol. 2005, 70, 949–958. DOI: 10.1016/j.bcp.2005.06.018.
  • Bustin, S. A.; Nolan, T. Analysis of mRNA Expression by Real-Time PCR. In Real-Time PCR. An Essential Guide; Edwards, K.; Logan, J.; Saunders, N., Eds.; Horizon Bioscience: Norfolk, 2004, pp 125–184.
  • The Basics: RNA Isolation. https://www.thermofisher.com/in/en/home/references/ambion-tech-support/rna-isolation/general-articles/the-basics-rna-isolation.html (accessed Nov 26, 2020).
  • Duan, J.; Cai, X.; Zhou, L.; Wang, J. Single-Step Method of Total RNA Isolation by Sodium Dodecyl Sulfate/Phenol Extraction from Cultured Cells. Anal. Biochem. 1997, 251, 291–292. DOI: 10.1006/abio.1997.2275.
  • Ribeiro-Silva, A.; Zhang, H.; Jeffrey, S. S. RNA Extraction from Ten Year Old Formalin-Fixed Paraffin-Embedded Breast Cancer Samples: A Comparison of Column Purification and Magnetic Bead-Based Technologies. BMC Mol. Biol. 2007, 8, 118. DOI: 10.1186/1471-2199-8-118.
  • Le, A. V.-P.; Huang, D.; Blick, T.; Thompson, E. W.; Dobrovic, A. An Optimised Direct Lysis Method for Gene Expression Studies on Low Cell Numbers. Sci. Rep. 2015, 5, 12859. DOI: 10.1038/srep12859.
  • Kusser, W.; Javorschi, S.; Gleeson, M. A. Real-Time RT-PCR: cDNA Synthesis. Cold Spring Harb. Protoc. 2006, 4, 1–12. DOI: 10.1101/pdb.prot4114.
  • Kozera, B.; Rapacz, M. Reference Genes in Real-Time PCR. J. Appl. Genet. 2013, 54, 391–406. DOI: 10.1007/s13353-013-0173-x.
  • Real-Time PCR Handbook. https://www.thermofisher.com/content/dam/LifeTech/global/Forms/PDF/real-time-pcr-handbook.pdf (accessed Nov 26, 2020).
  • Van de Merbel, N. C. Protein Quantification by LC-MS: A Decade of Progress through the Pages of Bioanalysis. Bioanalysis 2019, 11, 629–644. DOI: 10.4155/bio-2019-0032.
  • Prasad, B.; Unadkat, J. D. Optimized Approaches for Quantification of Drug Transporters in Tissues and Cells by MRM Proteomics. AAPS J. 2014, 16, 634–648. DOI: 10.1208/s12248-014-9602-y.
  • Meng, F.; Zou, L.; Zhang, T.; Jiang, L.; Ding, Y.; Yu, P.; Peng, J. Using LC-MS/MS-Based Targeted Proteomics to Monitor the Pattern of ABC Transporters Expression in the Development of Drug Resistance. Cancer Manag. Res. 2018, 10, 2859–2859. DOI: https://dx.doi.org/10.2147/CMAR.S164766. DOI: 10.2147/CMAR.S164766.
  • Prasad, B.; Evers, R.; Gupta, A.; Hop, C. E. C. A.; Salphati, L.; Shukla, S.; Ambudkar, V.; Unadkat, J. Interindividual Variability in Hepatic Organic Anion-Transporting Polypeptides and P-Glycoprotein (ABCB1) Protein Expression: Quantification by Liquid Chromatography Tandem Mass Spectroscopy and Influence of Genotype, Age, and Sex. Drug Metab. Dispos. 2014, 42, 78–88. DOI: 10.1124/dmd.113.053819.
  • Gomez-Zepeda, D.; Taghi, M.; Smirnova, M.; Sergent, P.; Liu, W.-Q.; Chhuon, C.; Vidal, M.; Picard, M.; Thioulouse, E.; Broutin, I.; et al. LC-MS/MS-Based Quantification of Efflux Transporter Proteins at the BBB. J. Pharm. Biomed. Anal. 2019, 164, 496–508. DOI: 10.1016/j.jpba.2018.11.013.
  • Long Yuan1, M. Z. Quantitative Bioanalysis of Proteins by Mass Spectrometry. Mater. Methods 2015, 5, 1332. DOI: https://dx.doi.org/10.13070/mm.en.5.1332.
  • Kamiie, J.; Ohtsuki, S.; Iwase, R.; Ohmine, K.; Katsukura, Y.; Yanai, K.; Sekine, Y.; Uchida, Y.; Ito, S.; Terasaki, T. Quantitative Atlas of Membrane Transporter Proteins: Development and Application of a Highly Sensitive Simultaneous LC/MS/MS Method Combined with Novel In-Silico Peptide Selection Criteria. Pharm. Res. 2008, 25, 1469–1483. DOI: 10.1007/s11095-008-9532-4.
  • Smith, S. M. Strategies for the Purification of Membrane Proteins. In Protein Chromatography; Walls, D., Loughran, S. T., Eds.; Springer: Berlin, Germany, 2011; pp 485–496.
  • Lin, S.-H.; Guidotti, G. Purification of Membrane Proteins. In Methods in Enzymology; Abelson, J., Simon, M., Verdine, G., Pyle, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp 619–629.
  • Cell Surface Protein Isolation Kit. https://www.mybiosource.com/assay-kits/cell-surface-protein-isolation-kit/841761 (accessed Dec 2, 2020).
  • ProteoExtract® Native Membrane Protein Extraction Kit. https://www.merckmillipore.com/IN/en/product/ProteoExtract-Native-Membrane-Protein-Extraction-Kit,EMD_BIO-444810 (accessed Dec 2, 2020).
  • Key Protein Concentration & Enrichment Techniques. https://info.gbiosciences.com/blog/key-protein-concentration-enrichment-techniques-g-biosciences (accessed Nov 26, 2020).
  • Schindler, J.; Jung, S.; Niedner-Schatteburg, G.; Friauf, E.; Nothwang, H. G. Enrichment of Integral Membrane Proteins from Small Amounts of Brain Tissue. J. Neural Transm. 2006, 113, 995–1013. DOI: 10.1007/s00702-006-0508-4.
  • Switzar, L.; Giera, M.; Niessen, W. M. A. Protein Digestion: An Overview of the Available Techniques and Recent Developments. J. Proteome Res. 2013, 12, 1067–1077. DOI: 10.1021/pr301201x.
  • Bioanalytical Method Validation Guidance for Industry. https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed Dec 2, 2020).
  • Chen, J.; Turko, I. V. Trends in QconCATs for Targeted Proteomics. Trends Analyt. Chem. 2014, 57, 1–5. DOI: 10.1016/j.trac.2013.12.013.
  • Brownridge, P. J.; Harman, V. M.; Ashford, D.; Simpson, D. M.; Beynon, R. J. Absolute Multiplexed Protein Quantification Using QconCAT Technology. In Quantitative Methods in Proteomics, Vol. 893; Katrin, M., Ed.; Springer: Berlin, Germany, 2012; pp 267–293.
  • Harwood, M. D.; Achour, B.; Russell, M. R.; Carlson, G. L.; Warhurst, G.; Rostami-Hodjegan, A. Application of an LC–MS/MS Method for the Simultaneous Quantification of Human Intestinal Transporter Proteins Absolute Abundance Using a QconCAT Technique. J. Pharmaceut. Biomed. 2015, 110, 27–33. DOI: 10.1016/j.jpba.2015.02.043.
  • Hogg, K.; Thomas, J.; Ashford, D.; Cartwright, J.; Coldwell, R.; Weston, D. J.; Pillmoor, J.; Surry, D.; O’Toole, P. Quantification of Proteins by Flow Cytometry: Quantification of Human Hepatic Transporter P-gp and OATP1B1 Using Flow Cytometry and Mass Spectrometry. Methods 2015, 82, 38–46. DOI: 10.1016/j.ymeth.2015.03.030.
  • Sapkota, A. Flow Cytometry - Definition, Principle, Parts, Steps, Types, Uses. https://microbenotes.com/flow-cytometry/ (accessed Nov 26, 2020).
  • Flow Cytometry Protocol. https://enquirebio.com/flow-cytometry (accessed Nov 26, 2020).
  • Joshi, S.; Yu, D. Immunofluorescence. In Basic Science Methods for Clinical Researchers; Jalali, M., Saldanha, F., Jalali, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp 135–150.
  • St. Croix, C. M.; Shand, S. H.; Watkins, S. C. Confocal Microscopy: Comparisons, Applications, and Problems. BioTechniques 2005, 39, S2–S5. DOI: 10.2144/000112089.
  • McDonald, K. L.; Morphew, M.; Verkade, P.; Müller-Reichert, T. Recent Advances in High-Pressure Freezing. In Electron Microscopy; Kuo, J., Ed.; Springer: Berlin, Germany, 2007; pp 143–173.
  • Hamrang, Z.; Arthanari, Y.; Clarke, D.; Pluen, A. Quantitative Assessment of P-Glycoprotein Expression and Function Using Confocal Image Analysis. Microsc. Microanal. 2014, 20, 1329–1339. DOI: 10.1017/S1431927614013014.
  • Jamur, M. C.; Oliver, C. Permeabilization of Cell Membranes. In Immunocytochemical Methods and Protocols; Jamur, M. C., Oliver, C., Eds.; Springer: Berlin, Germany, 2010; pp 63–66.
  • Albrecht, R. M.; Oliver, J. A. Labeling Considerations for Confocal Microscopy. In Basic Confocal Microscopy; Jerome, W. G., Price, R. L., Eds.; Springer: Berlin, Germany, 2018; pp 99–134.
  • Jonkman, J.; Brown, C. M.; Wright, G. D.; Anderson, K. I.; North, A. J. Tutorial: Guidance for Quantitative Confocal Microscopy. Nat. Protoc. 2020, 15, 1585–1611. DOI: 10.1038/s41596-020-0313-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.