511
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Advanced Methodologies for Trace Elements in Edible Oil Samples: A Review

&
Pages 1572-1582 | Published online: 15 Mar 2021

References

  • Sobhanardakani, S. Health Risk Assessment of as and Zn in Canola and Soybean Oils Consumed in Kermanshah. Iran. J. Adv. Environ. Heal. Res. 2016, 4, 62–67.
  • Valasques, G. S.; dos Santos, A. M. P.; de Souza, V. S.; Teixeira, L. S. G.; Alves, J. P. S.; de Jesus Santos, M.; dos Santos, W. P. C.; A. Bezerra, M. Multivariate Optimization for the Determination of Cadmium and Lead in Crude Palm Oil by Graphite Furnace Atomic Absorption Spectrometry after Extraction Induced by Emulsion Breaking. Microchem. J. 2020, 153, 104401. DOI: 10.1016/j.microc.2019.104401.
  • Baldo, M. A.; Stortini, A. M.; Oliveri, P.; Leardi, R.; Moretto, L. M.; Ugo, P. Electrochemical Preconcentration Coupled with Spectroscopic Techniques for Trace Lead Analysis in Olive Oils. Talanta 2020, 210, 120667. DOI: 10.1016/j.talanta.2019.120667.
  • Mdluli, N. S.; Nomngongo, P. N.; Mketo, N. A Critical Review on Application of Extraction Methods Prior to Spectrometric Determination of Trace-Metals in Oily Matrices. Crit. Rev. Anal. Chem. 2020. DOI: 10.1080/10408347.2020.1781591.
  • Soylak, M.; Koksal, M. Deep Eutectic Solvent Microextraction of Lead(II), Cobalt(II), Nickel(II) and Manganese(II) Ions for the Separation and Preconcentration in Some Oil Samples from Turkey Prior to Their Microsampling Flame Atomic Absorption Spectrometric Determination. Microchem. J. 2019, 147, 832–837. DOI: 10.1016/j.microc.2019.04.006.
  • Nasrullah, S.; Mahesar, S.; Sherazi, S. T. H.; Soylak, M. Quality Assessment and Safety Measurement of Different Industrial Processing Stages of Soybean Oil. Turkish J. Food Agric. Sci. 2019, 1, 28–33.
  • Hassan, M.; Erbas, Z.; Alshana, U.; Soylak, M. Ligandless Reversed-Phase Switchable-Hydrophilicity Solvent Liquid–Liquid Microextraction Combined with Flame-Atomic Absorption Spectrometry for the Determination of Copper in Oil Samples. Microchem. J. 2020, 156, 104868. DOI: 10.1016/j.microc.2020.104868.
  • Mendil, D.; Uluozlu, O. D.; Tuzen, M.; Soylak, M. Investigation of the Levels of Some Element in Edible Oil Samples Produced in Turkey by Atomic Absorption Spectrometry. J. Hazard. Mater. 2009, 165, 724–728. DOI: 10.1016/j.jhazmat.2008.10.046.
  • Lado, K.; Then, M.; May, Z.; Szentmihalyi, K. Element Determination in Volatile Oil Containing Fennel (Foeniculum Vulgare) by ICP-OES and Polarography. Acta Aliment 2007, 36, 415–418. DOI: 10.1556/AAlim.36.2007.4.3.
  • Soylak, M.; Elci, L.; Dogan, M. Solid Phase Extraction of Trace Metal Ions with Amberlite XAD Resins Prior to Atomic Absorption Spectrometric Analysis. J. Trace Microprobe Tech. 2001, 19, 329–344. DOI: 10.1081/TMA-100105049.
  • Eriyamremu, G. E.; Asagba, S. O.; Akpoborie, I. A.; Ojeaburu, S. I. Evaluation of Lead and Cadmium Levels in Some Commonly Consumed Vegetables in the Niger-Delta Oil Area of Nigeria. Bull. Environ. Contam. Toxicol. 2005, 75, 278–283. DOI: 10.1007/s00128-005-0749-1.
  • Demirel, S.; Tuzen, M.; Saracoglu, S.; Soylak, M. Evaluation of Various Digestion Procedures for Trace Element Contents of Some Food Materials. J. Hazard. Mater. 2008, 152, 1020–1026. DOI: 10.1016/j.jhazmat.2007.07.077.
  • Karsli, B. Determination of Metal Content in Anchovy (Engraulis Encrasicolus) from Turkey, Georgia and Abkhazia Coasts of the Black Sea: Evaluation of Potential Risks Associated with Human Consumption. Mar. Pollut. Bull 2021, 165, 112108. DOI: 10.1016/j.marpolbul.2021.112108.
  • Narin, I.; Soylak, M.; Elci, L.; Dogan, M. Separation and Enrichment of Chromium, Copper, Nickel and Lead in Surface Seawater Samples on a Column Filled with Amberlite XAD-2000. Anal. Lett. 2001, 34, 1935–1947. DOI: 10.1081/AL-100106123.
  • Ciftci, H.; Caliskan, C. E. R.; Cakar, A. E.; Olcucu, A.; Ramadan, M. S. Determination of Mineral and Trace Element in Some Medicinal Plants by Spectroscopic Method. Sigma J. Eng. Nat. Sci. 2020, 38, 2133–2144.
  • Narin, I.; Tuzen, M.; Soylak, M. Comparison of Sample Preparation Procedures for the Determination of Trace Heavy Metals in House Dust, Tobacco and Tea Samples by Atomic Absorption Spectrometry. Ann. Chim. 2004, 94, 867–873. DOI: 10.1002/adic.200490107.
  • Aygun, O. A Survey on the Major and Trace Element Levels in Honeys Produced and Consumed in Elazig, Turkey. Fresenius Environ. Bull. 2020, 29, 11294–11300.
  • Duran, A.; Tuzen, M.; Soylak, M. Trace Metal Concentrations in Cigarette Brands Commonly Available in Turkey: Relation with Human Health. Toxicol. Environ. Chem. 2012, 94, 1893–1901. DOI: 10.1080/02772248.2012.737795.
  • Ozdemir, S.; Kılınc, E.; Poli, A.; Romano, I.; Nicolaus, B.; Mustafov, S. D.; Şen, F. Extraction of Cu2+ and Co2+ by Using Tricholoma Populinum Loaded onto Amberlite XAD-4. Int. J. Environ. Sci. Technol. 2021, 18, 185–194. DOI: 10.1007/s13762-020-02845-3.
  • Yilmaz, E.; Soylak, M. Assessment of Concentration of Trace Metals in Traditional Bread Samples from Turkey. Fresenius Environ. Bull. 2014, 23, 782–786.
  • Massadeh, A. M.; El-Rjoob, A. O.; Omari, M. N. Investigation of Metal Levels in Artemisia Herba-Alba Medicinal Plant and Soil Samples Collected from Different Areas in Jordan Country. Soil Sediment Contam. 2021, 30, 216–230. DOI: 10.1080/15320383.2020.1832041.
  • Almasoud, N.; Habila, M. A.; Alothman, Z. A.; Alomar, T. S.; Alraqibah, N.; Sheikh, M.; Ghfar, A. A.; Soylak, M. Nano-Clay as a Solid Phase Microextractor of Copper, Cadmium and Lead for Ultra-Trace Quantification by ICP-MS. Anal. Methods 2020, 12, 4949–4955. DOI: 10.1039/d0ay01343a.
  • Çiner, F.; Sunkari, E. D.; Şenbaş, B. A. Geochemical and Multivariate Statistical Evaluation of Trace Elements in Groundwater of Niğde Municipality, South-Central Turkey: Implications for Arsenic Contamination and Human Health Risks Assessment. Arch. Environ. Contam. Toxicol. 2021, 80, 164–182. DOI: 10.1007/s00244-020-00759-2.
  • Sungur, A.; Kavdir, Y.; Ozcan, H.; İlay, R.; Soylak, M. Geochemical Fractions of Trace Metals in Surface and Core Sections of Aggregates in Agricultural Soils. Catena 2021, 197, 104995. DOI: 10.1016/j.catena.2020.104995.
  • Tokay, F.; Bağdat, S. Extraction of Nickel from Edible Oils with a Complexing Agent Prior to Determination by FAAS. Food Chem. 2016, 197, 445–449. DOI: 10.1016/j.foodchem.2015.11.001.
  • Jurowski, K.; Krośniak, M.; Fołta, M.; Cole, M.; Piekoszewski, W. The Toxicological Analysis of Lead and Cadmium in Prescription Food for Special Medical Purposes and Modified Milk Products for Newborns and Infants Available in Polish pharmacies. J. Trace Elem. Med. Biol. 2019, 51, 73–78. https://doi.org/10.1016/j.jtemb.2019.03.001. DOI: 10.1016/j.jtemb.2018.10.007.
  • Nunes, L. S.; Barbosa, J. T. P.; Fernandes, A. P.; Lemos, V. A.; Santos, W. N. L. D.; Korn, M. G. A.; Teixeira, L. S. G. Multi-Element Determination of Cu, Fe, Ni and Zn Content in Vegetable Oils Samples by High-Resolution Continuum Source Atomic Absorption Spectrometry and Microemulsion Sample Preparation. Food Chem. 2011, 127, 780–783. DOI: 10.1016/j.foodchem.2010.12.147.
  • Cordella, C.; Moussa, I.; Martel, A.-C.; Sbirrazzuoli, N.; Lizzani-Cuvelier, L. Recent Developments in Food Characterization and Adulteration Detection: Technique-Oriented Perspectives. J. Agric. Food Chem. 2002, 50, 1751–1764. DOI: 10.1021/jf011096z.
  • Benincasa, C.; Lewis, J.; Perri, E.; Sindona, G.; Tagarelli, A. Determination of Trace Element in Italian Virgin Olive Oils and Their Characterization according to Geographical Origin by Statistical Analysis. Anal. Chim. Acta. 2007, 585, 366–370. DOI: 10.1016/j.aca.2006.12.040.
  • Hsu, W. H.; Jiang, S. J.; Sahayam, A. C. Determination of Cu, as, Hg and Pb in Vegetable Oils by Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry with Palladium Nanoparticles as Modifier. Talanta 2013, 117, 268–272. DOI: 10.1016/j.talanta.2013.09.013.
  • Menghwar, P.; Yilmaz, E.; Sherazi, S. T. H.; Soylak, M. A Sensitive and Selective Deep Eutectic Solvent-Based Ultrasound-Assisted Liquid Phase Microextraction Procedure for Separation-Preconcentration and Determination of Copper in Olive Oil and Water Samples. Sep. Sci. Technol. 2019, 54, 2431–2439. DOI: 10.1080/01496395.2018.1547317.
  • Kowalewska, Z.; Izgi, B.; Saracoglu, S.; Gucer, S. Application of Liquid-Liquid Extraction and Adsorption on Activated Carbon to the Determination of Different Forms of Metals Present in Edible Oils. Chem. Anal. 2005, 50, 1007–1019.
  • Heilmann, J.; Boulyga, S. F.; Heumann, K. G. Development of an Isotope Dilution Laser Ablation ICP-MS Method for Multi-Element Determination in Crude and Fuel Oil Samples. J. Anal. At. Spectrom. 2009, 24, 385–390. DOI: 10.1039/b819879a.
  • Sneddon, J.; Hardaway, C.; Bobbadi, K. K.; Reddy, A. K. Sample Preparation of Solid Samples for Metal Determination by Atomic Spectroscopy - An Overview and Selected Recent Applications. Appl. Spectrosc. Rev. 2006, 41, 1–14. DOI: 10.1080/05704920500385445.
  • Korn, M.; das, G. A.; Morte, E. S.; da, B.; dos Santos, D. C. M. B.; Castro, J. T.; Barbosa, J. T. P.; Teixeira, A. P.; Fernandes, A. P.; Welz, B.; dos Santos, W. P. C.; dos Santos, E. B. G. N. Sample Preparation for the Determination of Metals in Food Samples Using Spectroanalytical Methods - A Review. Appl. Spectrosc. Rev. 2008, 43, 67–92. DOI: 10.1080/05704920701723980.
  • Bizzi, C. A.; Marlon De Moraes Flores, É.; Sogari Picoloto, R.; Smanioto Barin, J.; Araújo Nóbrega, J. Microwave-Assisted Digestion in Closed Vessels: Effect of Pressurization with Oxygen on Digestion Process with Diluted Nitric Acid. Anal. Methods 2010, 2, 734–738. DOI: 10.1039/c0ay00059k.
  • Duyck, C.; Miekeley, N.; Porto da Silveira, C. L.; Aucélio, R. Q.; Campos, R. C.; Grinberg, P.; Brandão, G. P. The Determination of Trace Elements in Crude Oil and Its Heavy Fractions by Atomic Spectrometry. Spectrochim. Acta - Part B Spectrosc. 2007, 62, 939–951. DOI: 10.1016/j.sab.2007.04.013.
  • Llorent-Martinez, E. J.; Ortega-Barrales, P.; Fernandez-De Cordova, M. L.; Dominguez-Vidal, A.; Ruiz-Medina, A. Investigation by ICP-MS of Trace Element Levels in Vegetable Edible Oils Produced in Spain. Food Chem. 2011, 127, 1257–1262. DOI: 10.1016/j.foodchem.2011.01.064.
  • Ni, Z.; Chen, Z.; Cheng, J.; Tang, F. Simultaneous Determination of Arsenic and Lead in Vegetable Oil by Atomic Fluorescence Spectrometry after Vortex-Assisted Extraction. Anal. Lett. 2017, 50, 2129–2138. DOI: 10.1080/00032719.2016.1263643.
  • Pehlivan, E.; Arslan, G.; Gode, F.; Altun, T.; Ozcan, M. M. Determination of Some Inorganic Metals in Edible Vegetable Oils by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). Grasas Aceites 2008, 59, 239–244. DOI: 10.3989/gya.2008.v59.i3.514.
  • Cindric, I. J.; Zeiner, M.; Steffan, I. Trace Elemental Characterization of Edible Oils by ICP-AES and GFAAS. Microchem. J. 2007, 85, 136–139. DOI: 10.1016/j.microc.2006.04.011.
  • Zeiner, M.; Steffan, I.; Cindric, I. J. Determination of Trace Elements in Olive Oil by ICP-AES and ETA-AAS: A Pilot Study on the Geographical Characterization. Microchem. J. 2005, 81, 171–176. DOI: 10.1016/j.microc.2004.12.002.
  • Ansari, R.; Kazi, T. G.; Jamali, M. K.; Arain, M. B.; Wagan, M. D.; Jalbani, N.; Afridi, H. I.; Shah, A. Q. Variation in Accumulation of Heavy Metals in Different Verities of Sunflower Seed Oil with the Aid of Multivariate Technique. Food Chem. 2009, 115, 318–323. DOI: 10.1016/j.foodchem.2008.11.051.
  • Llorent-Martinez, E. J.; Ortega-Barrales, P.; Fernandez-de Cordova, M. L.; Ruiz-Medina, A. Analysis of the Legislated Metals in Different Categories of Olive and Olive-Pomace Oils. Food Control. 2011, 22, 221–225. DOI: 10.1016/j.foodcont.2010.07.002.
  • Matos Reyes, M. N.; Campos, R. C. Determination of Copper and Nickel in Vegetable Oils by Direct Sampling Graphite Furnace Atomic Absorption Spectrometry. Talanta 2006, 70, 929–932. DOI: 10.1016/j.talanta.2006.05.055.
  • Acar, O. Evaluation of Cadmium, Lead, Copper, Iron and Zinc in Turkish Dietary Vegetable Oils and Olives Using Electrothermal and Flame Atomic Absorption Spectrometry. Grasas Aceites 2012, 63, 383–393. DOI: 10.3989/gya.047512.
  • Kucukkolbasi, S.; Temur, O.; Kara, H.; Khaskheli, A. R. Monitoring of Zn(II), Cd(II), Pb(II) and Cu(II) during Refining of Some Vegetable Oils Using Differential Pulse Anodic Stripping Voltammetry. Food Anal. Methods 2014, 7, 872–878. DOI: 10.1007/s12161-013-9694-5.
  • Cheng, L. J.; Zheng, L. Y.; Zhao, D. S.; Sun, H. W. Determination of Trace Copper and Zinc in Vegetable Oils by Derivative Flame Atomic Absorption Spectrometry Combined with Flow-Injection Technique. Spectrosc. Spectr. Anal. 2004, 24, 1013–1015.
  • Sun, J. M.; Lin, L. X.; Sun, H. W. Determination of Lead and Zinc in Oil Plant Seeds by FAAS with Micro Injection and Derivative Signal Processing. Spectrosc. Spectr. Anal. 2003, 23, 1197–1198.
  • Fischer, J. L.; Rademeyer, C. J. Direct Determination of Metals in Oils by Inductively Coupled Plasma Atomic Emission Spectrometry Using High Temperature Nebulization. J. Anal. At. Spectrom. 1994, 9, 623–628. DOI: 10.1039/ja9940900623.
  • Martín-Polvillo, M.; Albi, T.; Guinda, A. Determination of Trace Elements in Edible Vegetable Oils by Atomic Absorption Spectrophotometry. J. Am. Oil Chem. Soc. 1994, 71, 347–353. DOI: 10.1007/BF02540512.
  • Zakharov, Y. A.; Motygullin, E. K.; Gil’mutdinov, A. K. Direct Determination of Phosphorus in Vegetable Oils by Electrothermal Atomic Absorption Spectrometry. J. Anal. Chem. 2000, 55, 649–652. DOI: 10.1007/BF02827999.
  • Karadjova, I.; Zachariadis, G.; Boskou, G.; Stratis, J. Electrothermal Atomic Absorption Spectrometric Determination of Aluminium, Cadmium, Chromium, Copper, Iron, Manganese, Nickel and Lead in Olive Oil. J. Anal. At. Spectrom. 1998, 13, 201–204. DOI: 10.1039/a707256b.
  • Chen, S. S.; Cheng, C. C.; Chou, S. S. Determination of Arsenic in Edible Oils by Direct Graphite Furnace Atomic Absorption Spectrometry. J. Food Drug Anal. 1999, 11, 214–219.
  • Cabrera-Vique, C.; Bouzas, P. R.; Oliveras-Lopez, M. J. Determination of Trace Elements in Extra Virgin Olive Oils: A Pilot Study on the Geographical Characterisation. Food Chem. 2012, 134, 434–439. DOI: 10.1016/j.foodchem.2012.02.088.
  • Jimenez, M. S.; Lopez, A.; Castillo, J. R. Automatic Emulsion Formation as a Sample Introduction System for the GFAAS Determination of Iron in Edible and Mineral Oils. At. Spectrosc. 2002, 23, 183–189.
  • Murillo, M.; Benzo, Z.; Marcano, E.; Gomez, C.; Garaboto, A.; Marin, C. Determination of Copper, Iron and Nickel in Edible Oils Using Emulsified Solutions by ICP-AES. J. Anal. At. Spectrom. 1999, 14, 815–820. DOI: 10.1039/a808159j.
  • Benzo, Z.; Murillo, M.; Marcano, E.; Gomez, C.; Garaboto, A.; Espinoza, A. Determination of Phosphorus in Edible Oils by Inductively Coupled Plasma-Atomic Emission Spectrometry and Oil-in-Water Emulsion of Sample Introduction. J. Amer. Oil Chem. Soc. 2000, 77, 997–1000. DOI: 10.1007/s11746-000-0157-7.
  • Anthemidis, A. N.; Arvanitidis, V.; Stratis, J. A. On-Line Emulsion Formation and Multi-Element Analysis of Edible Oils by Inductively Coupled Plasma Atomic Emission Spectrometry. Anal. Chim. Acta 2005, 537, 271–278. DOI: 10.1016/j.aca.2005.01.035.
  • Chang, Y. T.; Jiang, S. J. Determination of as, Cd and Hg in Emulsified Vegetable Oil by Flow Injection Chemical Vapor Generation Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 2008, 23, 140–144. DOI: 10.1039/B712390F.
  • Jimenez, M. S.; Velarte, R.; Castillo, J. R. On-Line Emulsions of Olive Oil Samples and ICP-MS Multi-Elemental Determination. J. Anal. At. Spectrom. 2003, 18, 1154–1162. DOI: 10.1039/B303131D.
  • Castillo, J. R.; Jimenez, M. S.; Ebdon, L. Semiquantitative Simultaneous Determination of Metals in Olive Oil Using Direct Emulsion Nebulization. J. Anal. At. Spectrom. 1999, 14, 1515–1518. DOI: 10.1039/A900754G.
  • Huang, S. J.; Jiang, S. J. Determination of Zn, Cd and Pb in Vegetable Oil by Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 2001, 16, 664–668. DOI: 10.1039/b101387o.
  • Gunduz, S.; Akman, S. Investigation of Trace Element Contents in Edible Oils Sold in Turkey Using Microemulsion and Emulsion Procedures by Graphite Furnace Atomic Absorption Spectrophotometry. LWT - Food Sci. Technol. 2015, 64, 1329–1333. DOI: 10.1016/j.lwt.2015.07.032.
  • Jalbani, N.; Soylak, M. Ligandless Ultrasonic-Assisted and Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction of Copper, Nickel and Lead in Different Food Samples. Food Chem. 2015, 167, 433–437. DOI: 10.1016/j.foodchem.2014.07.015.
  • Abe, Y.; Fujiura, K.; Togawa, N.; Morita, H.; Shimomura, S. Simultaneous Multielement Analysis of So-Called Health Foods by Inductively Coupled Plasma Atomic Emission Spectroscopy. Jpn. J. Toxicol. Environ. Health 1993, 39, 356–367. DOI: 10.1248/jhs1956.39.4_356.
  • Ansari, R.; Kazi, T. G.; Jamali, M. K.; Arain, M. B.; Sherazi, S. T.; Jalbani, N.; Afridi, H. I. Improved Extraction Method for the Determination of Iron, Copper, and Nickel in New Varieties of Sunflower Oil by Atomic Absorption Spectroscopy. J. Am. Oil Chem. Soc. 2008, 91, 400–407. DOI: 10.1093/jaoac/91.2.400.
  • Anwar, F.; Kazi, T. G.; Saleem, R.; Bhanger, M. I. Rapid Determination of Some Trace Metals in Several Oils and Fats. Grasas Aceites 2004, 55, 160–168. DOI: 10.3989/gya.2004.v55.i2.162.
  • De Leonardis, A.; Macciola, V.; De Felice, M. Copper and Iron Determination in Edible Vegetable Oils by Graphite Furnace Atomic Absorption Spectrometry after Extraction with Diluted Nitric Acid. Int. J. Food Sci. Technol. 2000, 35, 371–375. DOI: 10.1046/j.1365-2621.2000.00389.x.
  • Bati, B.; Cesur, H. Determination of Copper in Edible Oils by Atomic Absorption Spectrometry after Lead Piperazinedithiocarbamate Solid-Phase Extraction and Potassium Cyanide Back-Extraction. Anal. Sci. 2002, 18, 1273–1274. DOI: 10.2116/analsci.18.1273.
  • Asci, M. Y.; Efendioglu, A.; Bati, B. Solid Phase Extraction of Cadmium in Edible Oils Using Zinc Piperazinedithiocarbamate and Its Determination by Flame Atomic Absorption Spectrometry. Turk. J. Chem. 2008, 32, 431–440.
  • Robaina, N. F.; Brum, D. M.; Cassella, R. J. Application of the Extraction Induced by Emulsion Breaking for the Determination of Chromium and Manganese in Edible Oils by Electrothermal Atomic Absorption Spectrometry. Talanta 2012, 99, 104–112. DOI: 10.1016/j.talanta.2012.05.025.
  • Tokay, F.; Bağdat, S. Spectrometric Determination of Iron and Copper in Vegetable Oils after Separation with Schiff Base Impregnated Silica Gel Column: A Simple Approach for Eliminating the High Organic Matrix. Int. J. Food Sci. Technol. 2015, 50, 2694–2699. DOI: 10.1111/ijfs.12948.
  • Barreto, I. S.; Andrade, S. I. E.; Cunha, F. A. S.; Lima, M. B.; Araujo, M. C. U.; Almeida, L. F. A Robotic Magnetic Nanoparticle Solid Phase Extraction System Coupled to Flow-Batch Analyzer and GFAAS for Determination of Trace Cadmium in Edible Oils without External Pretreatment. Talanta 2018, 178, 384–391. DOI: 10.1016/j.talanta.2017.09.063.
  • Lemos, M. A. T.; Pinheiro, A. M.; Cassella, R. J.; Jesus, D. P. Simultaneous Determination of Potassium, Sodium, Calcium, and Magnesium in Virgin Olive Oils by Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. Anal. Methods 2014, 6, 3629–3633. DOI: 10.1039/C4AY00363B.
  • Lopez-Garcia, I.; Vicente-Martinez, Y.; Hernandez-Cordoba, M. Determination of Cadmium and Lead in Edible Oils by Electrothermal Atomic Absorption Spectrometry after Reverse Dispersive Liquid–Liquid Microextraction. Talanta 2014, 124, 106–110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.