472
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

Fraud Detection of Herbal Medicines Based on Modern Analytical Technologies Combine with Chemometrics Approach: A Review

, , , &
Pages 1606-1623 | Published online: 12 Apr 2021

References

  • Chen, P.; Xie, P. P. History and Development of Traditional Chinese Medicine; Science Press: Beijing, 1999.
  • Kong, D. X.; Li, X. J.; Zhang, H. Y. Where is the Hope for Drug discovery? Let history tell the future. Drug Discov. Today 2009, 14, 115–119. DOI: 10.1016/j.drudis.2008.07.002.
  • Mullaicharam, A. R. Counterfeit Herbal Medicine. Int. J. Nutr. Pharmacol. Neurol. Dis. 2011, 1, 97. DOI: 10.4103/2231-0738.84191.
  • World Health Organization. General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine; World Health Organization: Switzerland, Geneva, 2000.
  • Zhang, X. R. Traditional Medicine Strategy; World Health Organization: Switzerland, Geneva, 2002.
  • Park, H. J.; Kim, D. H.; Park, S. J.; Kim, J. M.; Ryu, J. H. Ginseng in Traditional Herbal Prescriptions. J. Ginseng. Res. 2012, 36, 225–241. DOI: 10.5142/jgr.2012.36.3.225.
  • Osman, A. G.; Raman, V.; Haider, S.; Ali, Z.; Chittiboyina, A. G.; Khan, I. A. Overview of Analytical Tools for the Identification of Adulterants in Commonly Traded Herbs and Spices. J. AOAC Int. 2019, 102, 376–385. DOI: 10.5740/jaoacint.18-0389.
  • Barreto, A.; Cruz-Tirado, J. P.; Siche, R.; Quevedo, R. Determination of Starch Content in Adulterated Fresh Cheese Using Hyperspectral Imaging. Food Biosci. 2018, 21, 14–19. DOI: 10.1016/j.fbio.2017.10.009.
  • Schaarschmidt, S. Public and Private Standards for Dried Culinary Herbs and Spices—Part I: Standards Defining the Physical and Chemical Product Quality and Safety. Food Control 2016, 70, 339–349. 004. DOI: 10.1016/j.foodcont.2016.06.
  • Tankeu, S.; Vermaak, I.; Chen, W. Y.; Sandasi, M.; Viljoen, A. Differentiation between Two “Fang Ji” Herbal Medicines, Stephania Tetrandra and the Nephrotoxic Aristolochia Fangchi, Using Hyperspectral imaging. Phytochemistry 2016, 122, 213–222. DOI: 10.1016/j.phytochem.2015.11.008.
  • Perret, C.; Tabin, R.; Marcoz, J. P.; Llor, J.; Cheseaux, J. J. Apparent life-threatening event in infants: think about star anise intoxication!. Arch. Pediatr. 2011, 18, 750–753. DOI: 10.1016/j.arcped.2011.03.024.
  • Xue, X.; Xiao, Y.; Gong, L.; Guan, S.; Liu, Y.; Lu, H.; Qi, X.; Zhang, Y.; Li, Y.; Wu, X.; Ren, J. Comparative 28-Day Repeated Oral Toxicity of Longdan Xieganwan, Akebia Trifoliate (Thunb.) Koidz., Akebia quinata (Thunb.) Decne. and Caulis aristolochiae Manshuriensis in Mice. J. Ethnophqrmacol. 2008, 119, 87–93. DOI: 10.1016/j.jep.2008.05.037.
  • Wu, L.; Wang, B.; Zhao, M. M.; Liu, W.; Zhang, P.; Shi, Y. H.; Xiong, C.; Wang, P.; Sun, W.; Chen, S. L. Rapid Identification of Officinal Akebiae Caulis and Its Toxic Adulterant Aristolochiae manshuriensis Caulis (Aristolochia manshuriensis) by Loop-Mediated Isothermal Amplification. Front. Plant Sci. 2016, 7, 887.
  • Tistaert, C.; Dejaegher, B.; Vander Heyden, Y. Chromatographic Separation Techniques and Data Handling Methods for Herbal Fingerprints: A Review. Anal. Chim. Acta. 2011, 690, 148–161. DOI: 10.1016/j.aca.2011.02.023.
  • Pei, Y. F.; Zhang, Q. Z.; Wang, Y. Z. Application of Authentication Evaluation Techniques of Ethnobotanical Medicinal Plant Genus Paris: A Review. Crit. Rev. Anal. Chem. 2020, 50, 405–423. DOI: 10.1080/10408347.2019.1642734.
  • Renner, G.; Nellessen, A.; Schwiers, A.; Wenzel, M.; Schmidt, T. C.; Schram, J. Data Preprocessing & Evaluation Used in the Microplastics Identification Process: A Critical Review & Practical Guide. TrAC, Trends Anal. Chem. 2019, 111, 229–238. DOI: 10.1016/j.trac.2018.12.004.
  • Yue, J.; Zuo, Z.; Huang, H.; Wang, Y. Application of Identification and Evaluation Techniques for Ethnobotanical Medicinal Plant of Genus Panax: A Review. Crit. Rev. Anal. Chem. 2020. DOI: 10.1080/10408347.2020.1736506.
  • G omez-Caravaca, A. M.; Maggio, R. M.; Cerretani, L. Chemometric Applications to Assess Quality and Critical Parameters of Virgin and Extra-Virgin Olive Oil. A Review. Anal. Chim. Acta. 2016, 913, 1–21. DOI: 10.1016/j.aca.2016.01.025.
  • Wang, L.; Hui, Y.; Jiang, K.; Yin, G.; Wang, J.; Yan, Y.; Wang, Y.; Li, J.; Wang, P.; Bi, K.; Wang, T. Potential of near Infrared Spectroscopy and Pattern Recognition for Rapid Discrimination and Quantification of Gleditsia sinensis Thorn Powder with Adulterants. J. Pharm. Biomed. Anal. 2018, 160, 64–72. DOI: 10.1016/j.jpba.2018.07.036.
  • Zheng, F. J.; Zhao, X. J.; Zeng, Z. D.; Wang, L. C.; Lv, W. J.; Wang, Q. Q.; Xu, G. W. Development of a Plasma Pseudotargeted Metabolomics Method Based on Ultra-High-Performance Liquid chromatography-mass spectrometry. Nat. Protoc. 2020, 15, 2519–2537. DOI: 10.1038/s41596-020-0341-5.
  • McGrath, T. F.; Haughey, S. A.; Patterson, J.; Fauhl-Hassek, C.; Donarski, J.; Alewijn, M.; van Ruth, S.; Elliott, T. What Are the Scientific Challenges in Moving from Targeted to Non-Targeted Methods for Food Fraud Testing and How Can They Be Addressed? – Spectroscopy Case Study. Trends Food Sci. Technol. 2018, 76, 38–55. DOI: 10.1016/j.tifs.2018.04.001.
  • Monakhova, Y. B.; Holzgrabe, U.; Diehl, B. W. Current Role and Future Perspectives of Multivariate (Chemometric) Methods in NMR Spectroscopic Analysis of Pharmaceutical Products. J. Pharm. Biomed. Anal. 2018, 147, 580–589. DOI: 10.1016/j.jpba.2017.05.034.
  • Lima, A. B. S. d.; Batista, A. S.; Jesus, J. C. d.; Silva, J. d J.; Araújo, A. C. M. d.; Santos, L. S. Fast Quantitative Detection of Black Pepper and Cumin Adulterations by near-Infrared Spectroscopy and Multivariate Modeling. Food Control 2020, 107, 106802. DOI: 10.1016/j.foodcont.2019.106802.
  • Shawky, E.; El-Khair, R. M. A.; Selim, D. A. NIR Spectroscopy-Multivariate Analysis for Rapid Authentication, Detection and Quantification of Common Plant Adulterants in Saffron (Crocus sativus L.) Stigmas. LWT–Food Sci. Technol. 2020, 122, 109032. DOI: 10.1016/j.lwt.2020.109032.
  • Monago-Maraña, O.; Eskildsen, C. E.; Afseth, N. K.; Galeano-Díaz, T.; de la Peña, A. M.; Wold, J. P. Non-Destructive Raman Spectroscopy as a Tool for Measuring ASTA Color Values and Sudan I Content in Paprika Powder. Food Chem. 2019, 274, 187–193. DOI: 10.1016/j.foodchem.2018.08.129.
  • Knolhoff, A. M.; Croley, T. R. Non-Targeted Screening Approaches for Contaminants and Adulterants in Food Using Liquid Chromatography Hyphenated to High Resolution Mass Spectrometry. J. Chromatogr. A. 2016, 1428, 86–96. DOI: 10.1016/j.chroma.2015.08.059.
  • Baker, M. J.; Hussain, S. R.; Lovergne, L.; Untereiner, V.; Hughes, C.; Lukaszewski, R. A.; Thi efin, G.; Sockalingum, G. D. Developing and Understanding Biofluid Vibrational Spectroscopy: A Critical Review. Chem. Soc. Rev. 2016, 45, 1803–1818. DOI: 10.1039/c5cs00585j.
  • Li, Y.; Zhang, J. Y.; Wang, Y. Z. FT-MIR and NIR Spectral Data Fusion: A Synergetic Strategy for the Geographical Traceability of Panax notoginseng. Anal. Bioanal. Chem. 2018, 410, 91–103. DOI: 10.1007/s00216-017-0692-0.
  • Khaleghi, B.; Khamis, A.; Karray, F. O.; Razavi, S. N. Multisensor Data Fusion: A Review of the State-of-the-Art. Inform. Fusion 2013, 14, 28–44. 001. DOI: 10.1016/j.inffus.2011.08.
  • Borr as, E.; Ferr e, J.; Boqu e, R.; Mestres, M.; Aceña, L.; Busto, O. Data Fusion Methodologies for Food and Beverage Authentication and Quality Assessment - A Review. Anal. Chim. Acta. 2015, 891, 1–14. DOI: 10.1016/j.aca.2015.04.042.
  • Sun, F.; Chen, Y.; Wang, K. Y.; Wang, S. M.; Liang, S. W. Identification of Genuine and Adulterated Pinellia ternata by Mid-Infrared (MIR) and near-Infrared (NIR) Spectroscopy with Partial Least Squares - Discriminant Analysis (PLS-DA). Anal. Lett. 2020, 53, 937–959. DOI: 10.1080/00032719.2019.1687507.
  • Yue, J. P.; Huang, H. Y.; Wang, Y. Z. A Practical Method Superior to Traditional Spectral Identification: Two-Dimensional Correlation Spectroscopy Combined with Deep Learning to Identify Paris Species. Microchem. J. 2021, 160, 105731. DOI: 10.1016/j.microc.2020.105731.
  • Doebling, S. W.; Farrar, C. R.; Prime, M. B. A Summary Review of Vibration-Based Damage Identification Methods. Shock Vib. 1998, 30, 91–105. DOI: 10.1177/058310249803000201.
  • Jackman, P.; Sun, D. W.; Allen, P. Recent Advances in the Use of Computer Vision Technology in the Quality Assessment of Fresh Meats. Trends Food Sci. Technol. 2011, 22, 185–197. DOI: 10.1016/j.tifs.2011.01.008.
  • He, Y.; Bai, X. L.; Xiao, Q. L.; Liu, F.; Zhou, L.; Zhang, C. Detection of Adulteration in Food Based on Nondestructive Analysis Techniques: A Review. Crit. Rev. Food Sci. Nutr. 2020. DOI: 10.1080/10408398.2020.1777526.
  • Kiani, S.; van Ruth, S. M.; van Raamsdonk, L. W.; Minaei, S. Hyperspectral Imaging as a Novel System for theAuthentication of Spices: A Nutmeg Case Study. LWT–Food Sci. Technol. 2019, 104, 61–69. DOI: 10.1016/j.lwt.2019.01.045.
  • Lohumi, S.; Lee, S.; Lee, H.; Cho, B. K. A Review of Vibrational Spectroscopic Techniques for the Detection of Food Authenticity and Adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. DOI: 10.1016/j.tifs.2015.08.003.
  • Fraga-Corral, M.; Carpena, M.; Garcia-Oliveira, P.; Pereira, A. G.; Prieto, M. A.; Simal-Gandara, J. Analytical Metabolomics and Applications in Health, Environmental and Food Science. Crit. Rev. Anal. Chem. 2020. DOI: 10.1080/10408347.2020.1823811.
  • Senizza, B.; Rocchetti, G.; Ghisoni, S.; Busconi, M.; Pascual, L. D.; Fernandez, L. M.; Lucini, L.; Trevisan, M. Identification of Phenolic Markers for Saffron Authenticity and Origin: An Untargeted Metabolomics Approach. Food Res. Int. 2019, 126, 108584. DOI: 10.1016/j.foodres.2019.108584.
  • Gan, Y. S.; Xiao, Y.; Wang, S. H.; Guo, H. Y.; Liu, M.; Wang, Z. H.; Wang, Y. S. Protein-Based Fingerprint Analysis for the Identification of Ranae oviductus Using RP-HPLC. Molecules 2019, 24, 1687. DOI: 10.3390/molecules24091687.
  • Sun, L.; Wang, M.; Liu, Y.; Zhang, H.; Liu, Y.; Ren, X.; Deng, Y. Discrimination of Polygoni Multiflori Radix and Cynanchi Auriculati Radix Using Ultra-High Performance Liquid Chromatography Fingerprints and Chemical Pattern Recognition. Biomed. Chromatogr. 2018, 32, e4050. DOI: 10.1002/bmc.4050.
  • Naz, S.; Vallejo, M.; Garc ıa, A.; Barbas, C. Method Validation Strategies Involved in Non-Targeted Metabolomics. J. Chromatogr. A. 2014, 1353, 99–105. DOI: 10.1016/j.chroma.2014.04.071.
  • Mncwangi, N. P.; Viljoen, A. M.; Zhao, J.; Vermaak, I.; Chen, W.; Khan, I. What the Devil is in Your Phytomedicine? Exploring Species Substitution in Harpagophytum through Chemometric Modeling of 1H-NMR and UHPLC-MS Datasets. Phytochemistry 2014, 106, 104–115. DOI: 10.1016/j.phytochem.2014.06.012.
  • Di Anibal, C. V.; Ruisánchez, I.; Callao, M. P. High-Resolution 1H Nuclear Magnetic Resonance Spectrometry Combined with Chemometric Treatment to Identify Adulteration of Culinary Spices with Sudan Dyes. Food Chem. 2011, 124, 1139–1145. DOI: 10.1016/j.foodchem.2010.07.025.
  • Di Anibal, C. V.; Callao, M. P.; Ruisánchez, I. 1H NMR and UV-Visible Data Fusion for Determining Sudan Dyes in Culinary Spices. Talanta 2011, 84, 829–833. DOI: 10.1016/j.talanta.2011.02.014.
  • Dowlatabadi, R.; Farshidfar, F.; Zare, Z.; Pirali, M.; Rabiei, M.; Khoshayand, M. R.; Vogel, H. J. Detection of Adulteration in Iranian Saffron Samples by 1H NMR Spectroscopy and Multivariate Data Analysis Techniques. Metabolomics 2017, 13, 19. DOI: 10.1007/s11306-016-1155-x.
  • Petrakis, E. A.; Cagliani, L. R.; Polissiou, M. G.; Consonni, R. Evaluation of Saffron (Crocus sativus L.) Adulteration with Plant Adulterants by 1H NMR Metabolite Fingerprinting. Food Chem. 2015, 173, 890–896. DOI: 10.1016/j.foodchem.2014.10.107.
  • Lundström, S. L.; Levänen, B.; Nording, M.; Klepczynska-Nyström, A.; Sköld, M.; Haeggström, J. Z.; Grunewald, J.; Svartengren, M.; Hammock, B. D.; Larsson, B.-M.; et al. Asthmatics Exhibit Altered Oxylipin Profiles Compared to Healthy Individuals after Subway Air Exposure. PLoS One 2011, 6, e23864. DOI: 10.1371/journal.pone.0023864.
  • Chen, C.; Krausz, K. W.; Idle, J. R.; Gonzalez, F. J. Identification of Novel Toxicity-Associated Metabolites by Metabolomics and Mass Isotopomer Analysis of Acetaminophen Metabolism in Wild-Type and Cyp2e1-Null Mice. J. Biol. Chem. 2008, 283, 4543–4559. DOI: 10.1074/jbc.M706299200.
  • Ballin, N. Z.; Laursen, K. H. To Target or Not to Target? Definitions and Nomenclature for Targeted versus Non-Targeted Analytical Food Authentication. Trends Food Sci. Technol. 2019, 86, 537–543. DOI: 10.1016/j.tifs.2018.09.025.
  • Kharbach, M.; Marmouzi, I.; El Jemli, M.; Bouklouze, A.; Vander Heyden, Y. Recent Advances in Untargeted and Targeted Approaches Applied in Herbal-Extracts and Essential-Oils Fingerprinting - A Review. J. Pharm. Biomed. Anal. 2020, 177, 112849. DOI: 10.1016/j.jpba.2019.112849.
  • Beale, D. J.; Pinu, F. R.; Kouremenos, K. A.; Poojary, M. M.; Narayana, V. K.; Boughton, B. A.; Kanojia, K.; Dayalan, S.; Jones, O. A. H.; Dias, D. A. Review of Recent Developments in GC-MS Approaches to Metabolomics-Based Research. Metabolomics 2018, 14, 152. DOI: 10.1007/s11306-018-1449-2.
  • Singh, M.; Mohan, R.; Mishra, S.; Goyal, N.; Shanker, K.; Gupta, N.; Kumar, B. Ultra Performance Liquid Chromatography Coupled with Principal Component and Cluster Analysis of Swertia chirayita for Adulteration check. J. Pharm. Biomed. Anal. 2019, 164, 302–308. DOI: 10.1016/j.jpba.2018.10.054.
  • Li, C.; Qin, Y. H.; Yang, Q. X.; You, J. H.; Liu, Z. H.; Han, J. M.; Li, E. X.; Zhang, C. M. Multivariate Quantitative Analysis of Quality Trend Based on Non-Volatile Characteristic Components in Different Panax notoginseng Samples Using HPLC. J. Pharm. Biomed. Anal. 2020, 182, 113127. DOI: 10.1016/j.jpba.2020.113127.
  • Qiao, X.; Ye, G.; Liu, C. F.; Zhang, Z. X.; Tu, Q.; Dong, J.; Li, Y. Qi, Guo, D. A.; Ye, M. Chemical Analysis of Eriocaulon Buergerianum and Adulterating Species by High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2012, 57, 133–142. DOI: 10.1016/j.jpba.2011.08.033.
  • Sebaei, A. S.; Youssif, M. I.; Ghazi, A. A. M. Determination of Seven Illegal Dyes in Egyptian Spices by HPLC with Gel Permeation Chromatography Clean up. J. Food Compos. Anal. 2019, 84, 103304. DOI: 10.1016/j.jfca.2019.103304.
  • Luo, D. D.; Liu, Y. Y.; Wang, Y. P.; Zhang, X. C.; Huang, L. F.; Duan, B. Z. Rapid Identification of Fritillariae Cirrhosae Bulbus and Its Adulterants by UPLC-ELSD Fingerprint Combined with Chemometrics Methods. Biochem. Syst. Ecol. 2018, 76, 46–51. DOI: 10.1016/j.bse.2017.12.007.
  • Liu, W. X.; Cheng, X. L.; Guo, X. H.; Hu, X. R.; Wei, F.; Ma, S. C. Identification of Calculus bovis and Its Mixed Varieties by Ultra-High-Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry (UHPLC-Q/TOF-MS) Combined with the Principal Component Analysis (PCA) Method. J. Pharm. Biomed. Anal. 2020, 179, 112979. DOI: 10.1016/j.jpba.2019.112979.
  • Choi, J. Y.; Hong, J. H.; Dang, Y. M.; Jamila, N.; Khan, N.; Jo, C. H.; Chun, H. S.; Kim, K. S. Identification Markers of Adulteration in Korean Red Ginseng (Panax ginseng) Products Using High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography–Mass Spectrometry (LC-MS). Anal. Lett. 2018, 51, 2588–2601. DOI: 10.1080/00032719.2018.1443340.
  • Moras, B.; Loffredo, L.; Rey, S. Quality Assessment of Saffron (Crocus sativus L.) Extracts via UHPLC-DAD-MS Analysis and Detection of Adulteration Using Gardenia Fruit Extract (Gardenia jasminoides Ellis). Food Chem. 2018, 257, 325–332. DOI: 10.1016/j.foodchem.2018.03.025.
  • Cheng, Q. Y.; Shou, L. J.; Chen, C.; Shi, S.; Zhou, M. H. Application of Ultra-High-Performance Liquid Chromatography Coupled with LTQ-Orbitrap Mass Spectrometry for Identification, Confirmation and Quantitation of Illegal Adulterated Weight-Loss Drugs in Plant Dietary Supplements. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1064, 92–99. DOI: 10.1016/j.jchromb.2017.09.009.
  • Hu, Y. X.; Wang, S.; Wang, S. L.; Lu, X. N. Application of Nuclear Magnetic Resonance Spectroscopy in Food Adulteration Determination: The Example of Sudan Dye I in Paprika Powder. Sci. Rep. 2017, 7, 1–9.
  • Petrakis, E. A.; Cagliani, L. R.; Tarantilis, P. A.; Polissiou, M. G.; Consonni, R. Sudan Dyes in Adulterated Saffron (Crocus sativus L.): Identification and Quantification by (1)H NMR. Food Chem. 2017, 217, 418–424. DOI: 10.1016/j.food-chem.2016.08.078.
  • Burton, I. W.; Quilliam, M. A.; Walter, J. A. Quantitative 1H NMR with External Standards: Use in Preparation of Calibration Solutions for Algal Toxins and Other Natural Products. Anal. Chem. 2005, 77, 3123–3131. DOI: 10.1021/ac048385h.
  • Avenoza, A.; Busto, J. H.; Canal, N.; Peregrina, J. M. Time Course of the Evolution of Malic and Lactic Acids in the Alcoholic and Malolactic Fermentation of Grape Must by Quantitative 1H NMR (qHNMR) Spectroscopy. J. Agric. Food Chem. 2006, 54, 4715–4720. DOI: 10.1021/jf060778p.
  • Dixon, R. A.; Gang, D. R.; Charlton, A. J.; Fiehn, O.; Kuiper, H. A.; Reynolds, T. L.; Tjeerdema, R. S.; Jeffery, E. H.; German, J. B.; Ridley, W. P.; Seiber, J. N. Applications of Metabolomics in Agriculture. J. Agric. Food Chem. 2006, 54, 8984–8994. DOI: 10.1021/jf061218t.
  • Owen, J. D.; Kirton, S. B.; Evans, S. J.; Stair, J. L. Elemental Fingerprinting of Hypericum perforatum (St John’s Wort) Herb and Preparations Using ICP-OES and Chemometrics. J. Pharm. Biomed. Anal. 2016, 125, 15–21. DOI: 10.1016/j.jpba.2016.02.054.
  • Ma, S.; Chen, L.; Li, J.; Wang, Z. Y.; Xin, Z. Q.; Zhang, Y.; Ren, D. B.; Yi, L. Z. Characterization and Authentication of Acori Tatarinowii Rhizoma and Its Adulterants by UPLCOrbitrap-MS/MS Chromatographic Fingerprints, Elements Profiles and Chemometric. Microchem. J. 2019, 144, 285–295. DOI: 10.1016/j.microc.2018.09.017.
  • Markiewicz-Keszycka, M.; Cama-Moncunill, X.; Casado-Gavalda, M. P.; Dixit, Y.; Cama-Moncunill, R.; Cullen, P. J.; Sullivan, C. Laser-Induced Breakdown Spectroscopy (LIBS) for Food Analysis: A Review. Trends Food Sci. Technol. 2017, 65, 80–93. DOI: 10.1016/j.tifs.2017.05.005.
  • Cavanna, D.; Righetti, L.; Elliott, C.; Suman, M. The Scientific Challenges in Moving from Targeted to Non-Targeted Mass Spectrometric Methods for Food Fraud Analysis: A Proposed Validation Workflow to Bring about a Harmonized Approach. Trends Food Sci. Technol. 2018, 80, 223–241. DOI: 10.1016/j.tifs.2018.08.007.
  • Gao, B. Y.; Holroyd, S. E.; Moore, J. C.; Laurvick, K.; Gendel, S. M.; Xie, Z. H. Opportunities and Challenges Using Non-Targeted Methods for Food Fraud Detection. J. Agric. Food Chem. 2019, 67, 8425–8430. DOI: 10.1021/acs.jafc.9b03085.
  • Sobolev, A. P.; Thomas, F.; Donarski, J.; Ingallina, C.; Circi, S.; Cesare Marincola, F.; Capitani, D.; Mannina, L. Use of NMR Applications to Tackle Future Food Fraud Issues. Trends Food Sci. Technol. 2019, 91, 347–353. DOI: 10.1016/j.tifs.2019.07.035.
  • Mitrevski, B.; Marriott, P. J. Novel Hybrid Comprehensive 2D-Multidimensional Gas Chromatography for Precise, High-Resolution Characterization of Multicomponent Samples. Anal. Chem. 2012, 84, 4837–4843. DOI: 10.1021/ac300429y.
  • Lei, X. Q.; Li, G.; Cheng, L.; Wang, X. L.; Meng, F. Y. Identification of Ligustici rhizoma et Radix and Its Adulterants Based on Their Chemical Constituents by UHPLC-Q/TOF-MS Combined with Data Mining. J. Pharm. Biomed. Anal. 2018, 154, 123–137. DOI: 10.1016/j.jpba.2018.02.053.
  • Zhang, F.; Shi, P.; Liu, H.; Zhang, Y.; Yu, X.; Li, J.; Pu, G. A Simple, Rapid, and Practical Method for Distinguishing Lonicerae japonicae Flos from Lonicerae Flos. Molecules 2019, 24, 3455. DOI: 10.3390/molecules24193455.
  • Chen, D.; Shao, X. G.; Hu, B.; Su, Q. D. A Background and Noise Elimination Method for Quantitative Calibration of near Infrared Spectra. Anal. Chem. Acta 2004, 511, 37–45. DOI: 10.1016/j.aca.2004.01.042.
  • van den Berg, R. A.; Hoefsloot, H. C.; Westerhuis, J. A.; Smilde, A. K.; van der Werf, M. J. Centering, Scaling, and Transformations: Improving the Biological Information Content of Metabolomics Data. BMC Genomics. 2006, 7, 142. DOI: 10.1186/1471-2164-7-142.
  • Kohl, S. M.; Klein, M. S.; Hochrein, J.; Oefner, P. J.; Spang, R.; Gronwald, W. State-of-the Art Data Normalization Methods Improve NMR-Based Metabolomic Analysis. Metabolomics 2012, 8, 146–S160. DOI: 10.1007/s11306-011-0350-z.
  • Eilers, P. H. C. Parametric Time Warping. Anal. Chem. 2004, 76, 404–411. DOI: 10.1021/ac034800e.
  • Skov, T.; van den Berg, F.; Tomasi, G.; Bro, R. Automated Alignment of Chromatographic Data. J. Chemomet. 2006, 20, 484–497. DOI: 10.1002/cem.1031.
  • Engel, J.; Gerretzen, J.; Szymańska, E.; Jansen, J. J.; Downey, G.; Blanchet, L.; Buydens, L. M. C. Breaking with Trends in Pre-Processing? TrAC, Trends Anal. Chem. 2013, 50, 96–106. DOI: 10.1016/j.trac.2013.04.015.
  • Khakimov, B.; Gürdeniz, G.; Engelsen, S. B. Trends in the Application of Chemometrics to Foodomics Studies. Acta Aliment. 2015, 44, 4–31. DOI: 10.1556/AAlim.44.2015.1.1.
  • Zhou, L.; Zhang, C.; Qiu, Z. J.; He, Y. Information Fusion of Emerging Non-Destructive Analytical Techniques for Food Quality Authentication: A Survey. TrAC, Trends Anal. Chem. 2020, 127, 115901. DOI: 10.1016/j.trac.2020.115901.
  • Righetti, L.; Rubert, J.; Galaverna, G.; Hurkova, K.; Dall’Asta, C.; Hajslova, J.; Stranska-Zachariasova, M. A Novel Approach Based on Untargeted Lipidomics Reveals Differences in the Lipid Pattern among Durum and Common Wheat. Food Chem. 2018, 240, 775–783. DOI: 10.1016/j.foodchem.2017.08.020.
  • Olivieri, A. C. Practical Guidelines for Reporting Results in Single- and Multi-Component Analytical Calibration: A Tutorial. Anal. Chim. Acta. 2015, 868, 10–22. DOI: 10.1016/j.aca.2015.01.017.
  • Ellis, D. I.; Brewster, V. L.; Dunn, W. B.; Allwood, J. W.; Golovanov, A. P.; Goodacre, R. Fingerprinting Food: Current Technologies for the Detection of Food Adulteration and Contamination. Chem. Soc. Rev. 2012, 41, 5706–5727. DOI: 10.1039/c2cs35138b.
  • Daszykowski, M.; Kaczmarek, K.; Vander Heyden, Y.; Walczak, B. Robust Statistics in Data Analysis — A Review. Chemom. Intell. Lab. Syst. 2007, 85, 203–219. DOI: 10.1016/j.chemolab.2006.06.016.
  • Smiti, A. A Critical Overview of Outlier Detection Methods. Comput. Sci. Rev. 2020, 38, 100306. DOI: 10.1016/j.cosrev.2020.100306.
  • Bro, R.; Smilde, A. K. Principal Component Aanalysis. Anal. Methods 2014, 6, 2812–2831. DOI: 10.1039/C3AY41907J.
  • Wold, S. Pattern Recognition by means of Disjoint Principal Components Models. Pattern Recogn. 1976, 8, 127–139. DOI: 10.1016/0031-3203(76)90014-5.
  • Ruisánchez, I.; Jiménez-Carvelo, A. M.; Callao, M. P. ROC Curves for the Optimization of One-Class Model Parameters. A Case Study: Authenticating Extra Virgin Olive Oil from a Catalan Protected Designation of Origin. Talanta 2021, 222, 121564. DOI: 10.1016/j.talanta.2020.121564.
  • Rius, A.; Callao, M. P.; Rius, F. X. Multivariate Statistical Process Control Applied to Sulfate Determination by Sequential Injection Analysis. Analyst 1997, 122, 737–741. DOI: 10.1039/a607954g.
  • Bakeev, K. A. Process Analytical Technology: spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries; Blackwell Publishing Professional: Oxfordshire, 2010.
  • Morais, C. L. M.; Paraskevaidi, M.; Cui, L.; Fullwood, N. J.; Isabelle, M.; Lima, K. M. G.; Martin-Hirsch, P. L.; Sreedhar, H.; Trevisan, J.; Walsh, M. J.; et al. Standardization of Complex Biologically Derived Spectrochemical Datasets. Nat. Protoc. 2019, 14, 1546–1577. DOI: 10.1038/s41596-019-0150-x.
  • Rodionova, O. Y.; Titova, A. V.; Pomerantsev, A. L. Discriminant Analysis is an Inappropriate Method of Authentication. TrAC Trends Anal. Chem. 2016, 78, 17–22. DOI: 10.1016/j.trac.2016.01.010.
  • Nunes, K. M.; Andrade, M. V. O.; Almeida, M. R.; Sena, M. M. A. Soft Discriminant Model Based on Mid-Infrared Spectra of Bovine Meat Purges to Detect Economic Motivated Adulteration by the Addition of Non-Meat Ingredients. Food Anal. Methods 2020, 13, 1699–1709. DOI: 10.1007/s12161-020-01795-3.
  • Martins, A. R.; Talhavini, M.; Vieira, M. L.; Zacca, J. J.; Braga, J. W. B. Discrimination of Whisky Brands and Counterfeit Identification by UV-Vis Spectroscopy and Multivariate Data Analysis. Food Chem. 2017, 229, 142–151. DOI: 10.1016/j.foodchem.2017.02.024.
  • Goodarzi, M.; Russell, P. J.; Heyden, Y. V. Similarity Analyses of Chromatographic Herbal Fingerprints: A Review. Anal. Chim. Acta. 2013, 804, 16–28. DOI: 10.1016/j.aca.2013.09.017.
  • Tauler, R.; Casassas, E. Principal Component Analysis Applied to the Study of Successive Complex Formation Data in Cu (II)–Ethanolamine Systems. J. Chemomet. 2005, 3, 151–S161. DOI: 10.1002/cem.1180030507.
  • Camacho, J.; Picó, J.; Ferrer, A. Data Understanding with PCA: Structural and Variance Information Plots. Chemom. Intell. Lab. Syst. 2010, 100, 48–56. DOI: 10.1016/j.chemolab.2009.10.005.
  • Kumar, N.; Bansal, A.; Sarma, G. S.; Rawal, R. K. Chemometrics Tools Used in Analytical Chemistry: An Overview. Talanta 2014, 123, 186–199. 2014.02.003. DOI: 10.1016/j.talanta.
  • Massart, D. L.; Vandeginste, B. G. M.; Buydens, L. M. C.; De Jong, S.; Lewi, P. J.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics: Part A; Elservier: Amsterdam, 1997.
  • Massart, D. L.; Vandeginste, B. G.; Buydens, L. M.; Lewi, P. J.; Smeyers-Verbeke, J.; Jong, S. D. Handbook of chemometrics and qualimetrics; Elsevier: Amsterdam, 1998.
  • Beebe, K. R.; Pell, R. J.; Seasholtz, M. B. Chemometrics: A Practical Guide; Wiley: New York,1998.
  • Lavine, B. K.; Workman, J. Jr. Chemometrics. Anal. Chem. 2013, 85, 705–714. DOI: 10.1021/ac303193j.
  • Guo, J. R.; Chen, Q. Q.; Wang, C. Y.; Qiu, H. C.; Liu, B.; Jiang, Z. H.; Zhang, W. Comparison of Two Exploratory Data Analysis Methods for Classification of Phyllanthus Chemical Fingerprint: Unsupervised vs. Supervised Pattern Recognition Technologies. Anal. Bioanal. Chem. 2015, 407, 1389–1401. DOI: 10.1007/s00216-014-8371-x.
  • Wang, S.; Xu, Z. X.; Fang, G. Z.; Duan, Z. J.; Zhang, Y.; Chen, S. Synthesis and Characterization of a Molecularly Imprinted Silica Gel Sorbent for the on-Line Determination of Trace Sudan I in Chilli Powder through High-Performance Liquid Chromatography. J. Agric. Food Chem. 2007, 55, 3869–3876. DOI: 10.1021/jf070261t.
  • Sun, W. J.; Zhang, X.; Zhang, Z. Y.; Zhu, R. H. Data Fusion of Near-Infrared and Mid-Infrared Spectra for Identification of Rhubarb. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 171, 72–79. DOI: 10.1016/j.saa.2016.07.039.
  • Li, Y.; Shen, Y.; Yao, C. L.; Guo, D. A. Quality Assessment of Herbal Medicines Based on Chemical Fingerprints Combined with Chemometrics Approach: A Review. J. Pharm. Biomed. Anal. 2020, 185, 113215. DOI: 10.1016/j.jpba.2020.113215.
  • Gobrecht, A.; Roger, J. M.; Bellon-Maurel, V. Major Issues of Diffuse Reflectance NIR Spectroscopy in the Specific Context of Soil Carbon Content Estimation: A Review. Adv. Agron. 2014, 123, 145–175.
  • Medina, S.; Perestrelo, R.; Silva, P.; Pereira, J. A. M.; Câmara, J. S. Current Trends and Recent Advances on Food Authenticity Technologies and Chemometric Approaches. Trends Food Sci. Technol. 2019, 85, 163–176. DOI: 10.1016/j.tifs.2019.01.017.
  • Wentzell, P. D.; Montoto, L. V. Comparison of Principal Components Regression and Partial Least Aquares Regression through Generic Simulations of Complex Mixtures. Chemom. Intell. Lab. Syst. 2003, 65, 257–279. DOI: 10.1016/S0169-7439(02)00138-7.
  • Benford, D.; Bolger, P. M.; Carthew, P.; Coulet, M.; DiNovi, M.; Leblanc, J.-C.; Renwick, A. G.; Setzer, W.; Schlatter, J.; Smith, B.; et al. Application of the Margin of Exposure (MOE) Approach to Substances in Food That Are Genotoxic and Carcinogenic. Food Chem. Toxicol. 2010, 48, S2–S24. DOI: 10.1016/j.fct.2009.11.003.
  • Hu, Y. X.; Zou, L.; Huang, X. L.; Lu, X. N. Detection and Quantification of Offal Content in Ground Beef Meat Using Vibrational Spectroscopic-Based Chemometric Analysis. Sci. Rep. 2017, 7, 1–9.
  • Ma, H. L.; Wang, J. W.; Chen, Y. J.; Cheng, J. L.; Lai, Z. T. Rapid Authentication of Starch Adulterations in Ultrafine Granular Powder of Shanyao by Near-Infrared Spectroscopy Coupled with Chemometric Methods. Food Chem. 2017, 215, 108–115. DOI: 10.1016/j.foodchem.2016.07.156.
  • Oliveira, M. M.; Cruz Tirado, J. P.; Barbin, D. F. Nontargeted Analytical Methods as a Powerful Tool for the Authentication of Spices and Herbs: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 670–689. DOI: 10.1111/1541-4337.12436.
  • Vermaak, I.; Viljoen, A.; Lindström, S. W. Hyperspectral Imaging in the Quality Control of Herbal Medicines - The Case of Neurotoxic Japanese Star Anise. J. Pharm. Biomed. Anal. 2013, 75, 207–213. DOI: 10.1016/j.jpba.2012.11.039.
  • Orrillo, I.; Cruz-Tirado, J. P.; Cardenas, A.; Oruna, M.; Carnero, A.; Barbin, D. F.; Siche, R. Hyperspectral Imaging as a Powerful Tool for Identification of Papaya Seeds in Black Pepper. Food Control 2019, 101, 45–52. DOI: 10.1016/j.food-cont.2019.02.036.
  • Lakshmi, V. Food Adulteration. Int. J. Sci. Invent. Today 2012, 1, 106–113.
  • Shen, Y.; van Beek, T. A.; Claassen, F. W.; Zuilhof, H.; Chen, B.; Nielen, M. W. F. Rapid Control of Chinese Star Anise Fruits and Teas for Neurotoxic Anisatin by Direct Analysis in Real Time High Resolution Mass Spectrometry. J. Chromatogr. A. 2012, 1259, 179–186. DOI: 10.1016/j.chroma.2012.03.058.
  • Fu, H. Y.; Yin, Q. B.; Xu, L.; Wang, W. Z.; Chen, F.; Yang, T. M. A Comprehensive Quality Evaluation Method by FTNIR Spectroscopy and Chemometric: Fine Classification and Untargeted Authentication against Multiple Frauds for Chinese Ganoderma lucidum. Spectrochim. Acta Part A 2017, 182, 17–25. DOI: 10.1016/j.saa.2017.03.074.
  • Zheng, X. J.; Zheng, W. L.; Zhou, J. J.; Gao, X.; Liu, Z. H.; Han, N.; Yin, J. Study on the Discrimination between Corydalis Rhizoma and Its Adulterants Based on HPLC-DADQ-TOF-MS Associated with Chemometric Analysis. J. Chromatogr. B 2018, 1090, 110–121. DOI: 10.1016/j.jchromb.2017.10.028.
  • Lin, H. X.; Chen, Y.; Feng, S. Y.; Chen, W. W.; Lin, D.; Huang, H.; Lin, J.; Chen, R.; Chen, G. N.; Yu, Y. Surface-Enhanced Raman on Gold Nanoparticles for the Identification of the Most Common Adulterant of Astragali Radix. Spectrosc. Lett. 2018, 51, 389–394. DOI: 10.1080/00387010.2018.1496459.
  • Fu, H. Y.; Shi, Q.; Wei, L. N.; Xu, L.; Guo, X. M.; Hu, O.; Lan, W.; Xie, S. P.; Yang, T. Rapid Recognition of Geoherbalism and Authenticity of a Chinese Herb by Data Fusion of near-Infrared Spectroscopy (NIR) and Mid-Infrared (MIR) Spectroscopy Combined with Chemometrics. J. Spectrosc. 2019, 2019, 1–9. DOI: 10.1155/2019/2467185.
  • Liu, P.; Wang, J.; Li, Q.; Gao, J.; Tan, X. Y.; Bian, X. H. Rapid Identification and Quantification of Panax notoginseng with Its Adulterants by near Infrared Spectroscopy Combined with Chemometrics. Spectrochim. Acta Part A 2019, 206, 23–30. DOI: 10.1016/j.saa.2018.07.094.
  • Morozzi, P.; Zappi, A.; Gottardi, F.; Locatelli, M.; Melucci, D. A Quick and Efficient Non-Targeted Screening Test for Saffron Authentication: Application of Chemometrics to Gas-Chromatographic Data. Molecules 2019, 24, 2602. DOI: 10.3390/molecules24142602.
  • Koh, H. L.; Wang, H.; Zhou, S.; Chan, E.; Woo, S. O. Detection of Aristolochic Acid I, Tetrandrine and Fangchinoline in Medicinal Plants by High Performance Liquid Chromatography and Liquid Chromatography/Mass Spectrometry. J. Pharm. Biomed. Anal. 2006, 40, 653–661. DOI: 10.1016/j.jpba.2005.08.001.
  • Cruz-Tirado, J. P.; Siche, R.; Cabanillas, A.; Díaz-Sánchez, L.; Vejarano, R.; Tapia-Blácido, D. R. Properties of Baked Foams from Oca (Oxalis tuberosa) Starch Reinforced with Sugarcane Bagasse and Asparagus Peel Fiber. Procedia Eng. 2017, 200, 178–185. DOI: 10.1016/j.proeng.2017.07.026.
  • Soni, P. L.; Agarwal, A. The Starch of Pueraria Tuberosa Comparison with Maize Starch. Starch/Stärke. 1983, 35, 4–7. DOI: 10.1002/star.19830350103.
  • Bhat, U. R.; Tharanathan, R. N. Physico-Chemical Properties of Black Pepper Starch. Starch/Stärke. 1983, 35, 189–192. DOI: 10.1002/star.19830350603.
  • Balasubrahmanyam, N.; Kumar, K. R.; Anandaswamy, B. Packaging and Storage Studies on Ground Turmeric (Curcuma longa, L) in Flexible Consumer Packages [India]. Indian Spices 1979, 16, 10–18.
  • Dhanya, K.; Sasikumar, B. Molecular Marker Based Adulteration Detection in Traded Food and Agricultural Commodities of Plant Origin with Special Reference to Spices. Curr. Trends Biotechnol. Pharm. 2010, 4, 454–489.
  • Peter, K. V. Handbook of Herbs and Spices; Elsevier: Amsterdam, 2008.
  • Kar, S.; Tudu, B.; Bag, A. K.; Bandyopadhyay, R. Application of near-Infrared Spectroscopy for the Detection of Metanil Yellow in Turmeric Powder. Food Anal. Methods 2018, 11, 1291–1302. DOI: 10.1007/s12161-017-1106-9.
  • Xu, L.; Shi, W.; Cai, C. B.; Zhong, W.; Tu, K. Rapid and Nondestructive Detection of Multiple Adulterants in Kudzu Starch by near Infrared (NIR) Spectroscopy and Chemometrics. LWT - Food Sci. Technol. 2015, 61, 590–595. DOI: 10.1016/j.lwt.2014.12.002.
  • Hu, L. Q.; Yin, C. L. Fourier Transform Infrared Spectroscopy Coupled with Chemometrics for Determining the Geographical Origin of Kudzu Root and the Detection and Quantification of Adulterants in Kudzu Root. Anal. Methods 2017, 9, 3643–3652. DOI: 10.1039/C7AY00876G.
  • Wu, X. Y.; Zhu, S. P.; Huang, H.; Xu, D. Quantitative Identification of Adulterated Sichuan Pepper Powder by near-Infrared Spectroscopy Coupled with Chemometrics. J. Food Quality 2017, 2017, 1–7. DOI: 10.1155/2017/5019816.
  • Li, G. F.; Yin, Q. B.; Zhang, L.; Kang, M.; Fu, H. Y.; Cai, C. B.; Xu, L. Fine Classification and Untargeted Detection of Multiple Adulterants of Gastrodia elata BI. (GE) by Near-Infrared Spectroscopy Coupled with Chemometrics. Anal. Methods 2017, 9, 1897–1904. DOI: 10.1039/C7AY00153C.
  • Chan, T. Y.; Critchley, J. A. Usage and Adverse Effects of Chinese Herbal Medicines. Hum. Exp. Toxicol. 1996, 15, 5–12. DOI: 10.1177/096032719601500102.
  • Hu, L.; Yin, C.; Ma, S.; Liu, Z. Assessing the Authenticity of Black Pepper Using Diffuse Reflectance Mid-Infrared Fourier Transform Spectroscopy Coupled with Chemometrics. Comput. Electron. AGR 2018, 154, 491–500. DOI: 10.1016/j.compag.2018.09.029
  • Chen, H.; Tan, C.; Lin, Z.; Li, H. J. Quantifying Several Adulterants of Notoginseng Powder by Near-Infrared Spectroscopy and Multivariate Calibration. Spectrochim. Acta Part A 2019, 211, 280–286. DOI: 10.1016/j.saa.2018.12.003.
  • Kar, S.; Kar, S.; Tudu, B.; Jana, A.; Bandyopadhyay, R. FT-NIR Spectroscopy Coupled with Multivariate Analysis for Detection of Starch Adulteration in Turmeric Powder. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 863–875. DOI: 10.1080/19440049.2019.1600746.
  • Zaukuu, J. L.; Bodor, Z.; Vitalis, F.; Zsom-Muha, V.; Kovacs, Z. Near Infrared Spectroscopy as a Rapid Method for Detecting Paprika Powder Adulteration with Corn Flour. Acta Period. Technol. 2019, 50, 346–352.
  • Kong, W. J.; An, H. J.; Zhang, J.; Sun, L.; Nan, Y.; Song, A.; Zhou, L. D. Development of a High-Performance Liquid Chromatography with Tandem Mass Spectrometry Method for Identifying Common Adulterant Content in Saffron (Crocus sativus L.). J. Pharm. Pharmacol. 2019, 71, 1864–1870. DOI: 10.1111/jphp.13152.
  • Oliveira, M. M.; Cruz-Tirado, J. P.; Roque, J. V.; Teófilo, R. F.; Barbin, D. F. Portable near-Infrared Spectroscopy for Rapid Authentication of Adulterated Paprika Powder. J. Food Compos. Anal. 2020, 87, 103403. DOI: 10.1016/j.jfca.2019.103403.
  • Li, S. L.; Xing, B. C.; Lin, D.; Yi, H. J.; Shao, Q. S. Rapid Detection of Saffron (Crocus sativus L.) Adulterated with Lotus Stamens and Corn Stigmas by Near-Infrared Spectroscopy and Chemometrics. Ind. Crops Prod. 2020, 152, 112539. DOI: 10.1016/j.indcrop.2020.112539.
  • Chen, H.; Tan, C.; Li, H. J. Untargeted Identification of Adulterated Sanqi Powder by Near-Infrared Spectroscopy and One-Class Model. J. Food Compos. Anal. 2020, 88, 103450. DOI: 10.1016/j.jfca.2020.103450.
  • Lafeuille, J. L.; Frégière-Salomon, A.; Michelet, A.; Henry, K. L. A Rapid Non-Targeted Method for Detecting the Adulteration of Black Pepper with a Broad Range of Endogenous and Exogenous Material at Economically Motivating Levels Using Micro-ATR-FT-MIR Imaging. J Agric Food Chem. 2020, 68, 390–401. DOI: 10.1021/acs.jafc.9b03865.
  • Nie, P. C.; Wu, D.; Sun, D. W.; Cao, F.; Bao, Y. D.; He, Y. Potential of Visible and near Infrared Spectroscopy and Pattern Recognition for Rapid Quantification of Notoginseng Powder with Adulterants. Sensors (Basel) 2013, 13, 13820–13834. DOI: 10.3390/s131013820.
  • Wilde, A. S.; Haughey, S. A.; Galvin-King, P.; Elliott, C. T. The Feasibility of Applying NIR and FT-IR Fingerprinting to Detect Adulteration in Black Pepper. Food Control 2019, 100, 1–7. DOI: 10.1016/j.foodcont.2018.12.039.
  • Petrakis, E. A.; Polissiou, M. G. Assessing Saffron (Crocus sativus L.) Adulteration with Plant-Derived Adulterants by Diffuse Reflectance Infrared Fourier Transform Spectroscopy Coupled with Chemometrics. Talanta 2017, 162, 558–566. DOI: 10.1016/j.talanta.2016.10.072.
  • Galvin-King, P.; Haughey, S. A.; Elliott, C. T. The Detection of Substitution Adulteration of Paprika with Spent Paprika by the Application of Molecular Spectroscopy Tools. Foods 2020, 9, 944. DOI: 10.3390/foods9070944.
  • Qiu, S.; Yang, W. Z.; Yao, C. L.; Qiu, Z. D.; Shi, X. J.; Zhang, J. X.; Hou, J. J.; Wang, Q. R.; Wu, W. Y.; Guo, D. A. Nontargeted Metabolomic Analysis and “Commercial-Homophyletic” Comparison-Induced Biomarkers Verification for the Systematic Chemical Differentiation of Five Different Parts of Panax ginseng. J. Chromatogr. A. 2016, 1453, 78–87. DOI: 10.1016/j.chroma.2016.05.051.
  • Hu, L.; Ma, S.; Yin, C. L. Discrimination of Geographical Origin and Detection of Adulteration of Kudzu Root by Fluorescence Spectroscopy Coupled with Multi-Way Pattern Recognition. Spectrochim. Acta Part A 2018, 193, 87–94. DOI: 10.1016/j.saa.2017.12.011.
  • Everstine, K. Economically Motivated Adulteration: Implications for Food Protection and Alternate Approaches to Detection. Ph.D. dissertation, University of Minnesota.
  • Qi, P.; Zeng, T.; Wen, Z. J.; Liang, X. Y.; Zhang, X. W. Interference-Free Simultaneous Determination of Sudan Dyes in Chili Foods Using Solid Phase Extraction Coupled with HPLC–DAD. Food Chem. 2011, 125, 1462–1467. DOI: 10.1016/j.foodchem.2010.10.059.
  • Di Anibal, C. V.; Marsal, L. F.; Callao, M. P.; Ruis anchez, I. Surface Enhanced Raman Spectroscopy (SERS) and Multivariate Analysis as a Screening Tool for Detecting Sudan I Dye in Culinary Spices. Spectrochim. Acta Part A 2012, 87, 135–141. DOI: 10.1016/j.saa.2011.11.027.
  • Mathon, C.; Ankli, A.; Reich, E.; Bieri, S.; Christen, P. Screening and Determination of Sibutramine in Adulterated Herbal Slimming Supplements by HPTLC-UV Densitometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014, 31, 15–20. DOI: 10.1080/19440049.2013.861934.
  • Di Anibal, C.; Di Anibal, C.; Rodriguez, M. S.; Rodriguez, M. S.; Albertengo, L.; Albertengo, L. UV-Visible Spectroscopy and Multivariate Classification as a Screening Tool to Identify Adulteration of Culinary Spices with Sudan I and Blends of Sudan I + IV Dyes. Food Anal. Methods 2014, 7, 1090–1096. DOI: 10.1007/s12161-013-9717-2.
  • Haughey, S. A.; Galvin-King, P.; Ho, Y. C.; Bell, S. E. J.; Elliott, C. T. The Feasibility of Using Near Infrared and Raman Spectroscopic Techniques to Detect Fraudulent Adulteration of Chili Powders with Sudan Dye. Food Control 2015, 48, 75–83. DOI: 10.1016/j.foodcont.2014.03.047.
  • Dhakal, S.; Chao, K. L.; Schmidt, W.; Qin, J. W.; Kim, M.; Chan, D. Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy. Foods 2016, 5, 36. DOI: 10.3390/foods5020036.
  • Lohumi, S.; Joshi, R.; Kandpal, L. M.; Lee, H.; Kim, M. S.; Cho, H.; Mo, C.; Seo, Y. W.; Rahman, A.; Cho, B. K. Quantitative Analysis of Sudan Dye Adulteration in Paprika Powder Using FTIR Spectroscopy. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 678–686. DOI: 10.1080/19440049.2017.1290828.
  • Dhakal, S.; Chao, K. L.; Schmidt, W.; Qin, J. W.; Kim, M.; Huang, Q. Detection of Azo Dyes in Curry Powder Using a 1064-nm Dispersive Point-Scan Raman System. Appl. Sci. 2018, 8, 564. DOI: 10.3390/app8040564.
  • Horn, B.; Esslinger, S.; Pfister, M.; Fauhl-Hassek, C.; Riedl, J. Non-Targeted Detection of Paprika Adulteration Using Mid-Infrared Spectroscopy and One-Class Classification - Is it Data Preprocessing that Makes the Performance? Food Chem. 2018, 257, 112–119. DOI: 10.1016/j.foodchem.2018.03.007.
  • Chaminda Bandara, W. G.; Kasun Prabhath, G. W.; Sahan Chinthana Bandara Dissanayake, D. W.; Herath, V. R.; Roshan Indika Godaliyadda, G. M.; Bandara Ekanayake, M. P.; Demini, D.; Madhujith, T.. Validation of Multispectral Imaging for the Detection of Selected Adulterants in Turmeric Samples. J. Food Eng. 2020, 266, 109700. DOI: 10.1016/j.jfoodeng.2019.109700.
  • Fu, D. S.; Wu, P. P.; Zhong, X. D.; Liu, Q.; Luo, H. D.; Li, Y. Q. A Simple Synchronous Fluorescence Approach for Rapid and Sensitive Determination of Rhodamine B in Chilli Products. Food Anal. Methods 2015, 8, 189–194. DOI: 10.1007/s12161-014-9891-x.
  • Lohumi, S.; Lee, H.; Kim, M. S.; Qin, J.; Kandpal, L. M.; Bae, H.; Rahman, A.; Cho, B.-K. Calibration and Testing of a Raman Hyperspectral Imaging System to Reveal Powdered Food Adulteration. PLoS One 2018, 13, e195253. DOI: 10.1371/journal.pone.0195253.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.