335
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

An Overview of Pretreatment and Analysis of Nucleotides in Different Samples (Update since 2010)

, ORCID Icon, &
Pages 1624-1643 | Published online: 12 Apr 2021

References

  • Hayama, T.; Ohyama, K. Recent Development and Trends in Sample Extraction and Preparation for Mass Spectrometric Analysis of Nucleotides, Nucleosides, and Proteins. J. Pharm. Biomed. Anal. 2018, 161, 51–60. DOI: 10.1016/j.jpba.2018.08.030.
  • Dudley, E.; Bond, L. Mass Spectrometry Analysis of Nucleosides and Nucleotides. Mass Spectrom. Rev. 2014, 33, 302–331. DOI: 10.1002/mas.21388.
  • Cohen, S.; Jordheim, L. P.; Megherbi, M.; Dumontet, C.; Guitton, J. Liquid Chromatographic Methods for the Determination of Endogenous Nucleotides and Nucleotide Analogs Used in Cancer Therapy: A Review. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 1912–1928. DOI: 10.1016/j.jchromb.2010.05.016.
  • Chen, X.-J.; Yang, F.-Q.; Wang, Y.-T.; Li, S.-P. CE and CEC of Nucleosides and Nucleotides in Food Materials. Electrophoresis 2010, 31, 2092–2105. DOI: 10.1002/elps.201000048.
  • García-Gómez, D.; Rodríguez-Gonzalo, E.; Carabias-Martínez, R. Stationary Phases for Separation of Nucleosides and Nucleotides by Hydrophilic Interaction Liquid Chromatography. Trac Trends Anal. Chem. 2013, 47, 111–128. DOI: 10.1016/j.trac.2013.02.011.
  • McGinnis, A. C.; Chen, B.; Bartlett, M. G. Chromatographic Methods for the Determination of Therapeutic Oligonucleotides. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 883-884, 76–94. DOI: 10.1016/j.jchromb.2011.09.007.
  • Domínguez-Álvarez, J.; Mateos-Vivas, M.; Rodríguez-Gonzalo, E.; García-Gómez, D.; Bustamante-Rangel, M.; Delgado Zamarreño, M.-M.; Carabias-Martínez, R. Determination of Nucleosides and Nucleotides in Food Samples by Using Liquid Chromatography and Capillary Electrophoresis. Trac Trends Anal. Chem. 2017, 92, 12–31. DOI: 10.1016/j.trac.2017.04.005.
  • Cruz, C.; Cabrita, E. J.; Queiroz, J. A. Analysis of Nucleotides Binding to Chromatography Supports Provided by Nuclear Magnetic Resonance Spectroscopy. J. Chromatogr. A. 2011, 1218, 3559–3564. DOI: 10.1016/j.chroma.2011.03.055.
  • Marrubini, G.; Mendoza, B. E.; Massolini, G. Separation of Purine and Pyrimidine Bases and Nucleosides by Hydrophilic Interaction Chromatography. J. Sep. Sci. 2010, 33, 803–816. DOI: 10.1002/jssc.200900672.
  • Moravcova, D.; et al. Separation of Nucleobases, Nucleosides, and Nucleotides Using Two Zwitterionic Silica-Based Monolithic Capillary Columns Coupled with Tandem Mass Spectrometry. J. Chromatogr. A. 2014, 1373, 90–96.
  • Hua, J.; Huang, K. L. A Reversed Phase Hplc Method for the Analysis of Nucleotides to Determine 5 '-Pde Enzyme Activity. Bull. Chem. Soc. Eth. 2010, 24, 167–174. DOI: 10.4314/bcse.v24i2.54719.
  • Gill, B. D.; Indyk, H. E.; Manley-Harris, M. Analysis of Nucleosides and Nucleotides in Infant Formula by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2013, 405, 5311–5319. DOI: 10.1007/s00216-013-6935-9.
  • Inoue, K.; Obara, R.; Hino, T.; Oka, H. Development and Application of an HILIC-MS/MS Method for the Quantitation of Nucleotides in Infant Formula. J. Agric. Food Chem. 2010, 58, 9918–9924. DOI: 10.1021/jf102023p.
  • Inoue, K.; Dowell, D. HILIC-MS/MS Method for the Quantitation of Nucleotides in Infant Formula and Adult Nutritional Formula: First Action 2011.21. J. AOAC Int. 2012, 95, 603–605. DOI: 10.5740/jaoacint.cs2011_21.
  • Mateos-Vivas, M.; Fanali, S.; Rodríguez-Gonzalo, E.; Carabias-Martínez, R.; Aturki, Z. Rapid Determination of nucleotides in infant Formula by Means of Nano-Liquid Chromatography. Electrophoresis 2016, 37, 1873–1880. DOI: 10.1002/elps.201500526.
  • Mateos-Vivas, M.; Rodríguez-Gonzalo, E.; Domínguez-Álvarez, J.; García-Gómez, D.; Carabias-Martínez, R. Determination of Nucleosides and Nucleotides in Baby Foods by Hydrophilic Interaction Chromatography Coupled to Tandem Mass Spectrometry in the Presence of Hydrophilic Ion-Pairing Reagents. Food Chem. 2016, 211, 827–835. DOI: 10.1016/j.foodchem.2016.05.091.
  • del Val, I. J.; Kyriakopoulos, S.; Polizzi, K. M.; Kontoravdi, C. An Optimized Method for Extraction and Quantification of Nucleotides and Nucleotide Sugars from Mammalian Cells. Anal. Biochem. 2013, 443, 172–180. DOI: 10.1016/j.ab.2013.09.005.
  • Pedersen-Bjergaard, S.; Rasmussen, K. E. Electrical Potential Can Drive Liquid-Liquid Extraction for Sample Preparation in Chromatography. Trac Trends Anal. Chem. 2008, 27, 934–941. DOI: 10.1016/j.trac.2008.08.005.
  • Hofmann, U.; Heinkele, G.; Angelberger, S.; Schaeffeler, E.; Lichtenberger, C.; Jaeger, S.; Reinisch, W.; Schwab, M. Simultaneous Quantification of Eleven Thiopurine Nucleotides by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chem. 2012, 84, 1294–1301. DOI: 10.1021/ac2031699.
  • Beres, T.; et al. Tandem Mass Spectrometry Identification and LC-MS Quantification of Intact Cytokinin Nucleotides in K-562 Human Leukemia Cells. Anal. Bioanal. Chem. 2010, 398, 2071–2080.
  • Hewavitharana, A. K.; Narayan, V.; Duley, J. A. Separation of Highly Charged Compounds Using Competing Ions with Hydrophilic Interaction Liquid chromatography - Application to Assay of Cellular Nucleotides. J. Chromatogr. A. 2018, 1567, 233–238. DOI: 10.1016/j.chroma.2018.07.006.
  • Moerdijk-Poortvliet, T. C. W.; Brasser, J.; de Ruiter, G.; Houtekamer, M.; Bolhuis, H.; Stal, L. J.; Boschker, H. T. S. A Versatile Method for Simultaneous Stable Carbon Isotope Analysis of DNA and RNA Nucleotides by Liquid Chromatography/Isotope Ratio Mass Spectrometry. Rapid Commun. Mass Spectrom. 2014, 28, 1401–1411. DOI: 10.1002/rcm.6919.
  • Neubauer, S.; Rugova, A.; Chu, D. B.; Drexler, H.; Ganner, A.; Sauer, M.; Mattanovich, D.; Hann, S.; Koellensperger, G. Mass Spectrometry Based Analysis of Nucleotides, Nucleosides, and Nucleobases–Application to Feed Supplements. Anal. Bioanal. Chem. 2012, 404, 799–808. DOI: 10.1007/s00216-012-6170-9.
  • Chen, Y.; Bicker, W.; Wu, J.; Xie, M.; Lindner, W. Simultaneous Determination of 16 Nucleosides and Nucleobases by Hydrophilic Interaction Chromatography and Its Application to the Quality Evaluation of Ganoderma. J. Agric. Food Chem. 2012, 60, 4243–4252. DOI: 10.1021/jf300076j.
  • Xie, J.-W.; Huang, L.-F.; Hu, W.; He, Y.-B.; Wong, K. P. Analysis of the Main Nucleosides in Cordyceps Sinensis by LC/ESI-MS. Molecules 2010, 15, 305–314. DOI: 10.3390/molecules15010305.
  • Zong, S.-Y.; Han, H.; Wang, B.; Li, N.; Dong, T.; Zhang, T.; Tsim, K. Fast Simultaneous Determination of 13 Nucleosides and Nucleobases in Cordyceps Sinensis by UHPLC-ESI-MS/MS. Molecules 2015, 20, 21816–21825. DOI: 10.3390/molecules201219807.
  • Guo, S.; Duan, J.-A.; Tang, Y.-P.; Zhu, Z.-H.; Qian, Y.-F.; Yang, N.-Y.; Shang, E.-X.; Qian, D.-W. Characterization of Nucleosides and Nucleobases in Fruits of Ziziphus Jujuba by UPLC-DAD-MS. J. Agric. Food Chem.. 2010, 58, 10774–10780. DOI: 10.1021/jf102648q.
  • Zhao, F.; Qiu, X.; Ye, N.; Qian, J.; Wang, D.; Zhou, P.; Chen, M. Hydrophilic Interaction Liquid Chromatography Coupled with Quadrupole-Orbitrap Ultra High Resolution Mass Spectrometry to Quantitate Nucleobases, Nucleosides, and Nucleotides during White Tea Withering Process. Food Chem. 2018, 266, 343–349. DOI: 10.1016/j.foodchem.2018.06.030.
  • Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Miniaturized Preconcentration Methods Based on Liquid–Liquid Extraction and Their Application in Inorganic Ultratrace Analysis and Speciation: A Review. Spectrochim. Acta Part B 2009, 64, 1–15. DOI: 10.1016/j.sab.2008.10.042.
  • Lorkiewicz, P.; Higashi, R. M.; Lane, A. N.; Fan, T. W.-M. High Information Throughput Analysis of Nucleotides and Their Isotopically Enriched Isotopologues by Direct-Infusion FTICR-MS. Metabolomics 2012, 8, 930–939. DOI: 10.1007/s11306-011-0388-y.
  • Pabst, M.; Grass, J.; Fischl, R.; Léonard, R.; Jin, C.; Hinterkörner, G.; Borth, N.; Altmann, F. Nucleotide and Nucleotide Sugar Analysis by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry on Surface-Conditioned Porous Graphitic Carbon. Anal. Chem. 2010, 82, 9782–9788. DOI: 10.1021/ac101975k.
  • Bhowmik, S. K.; Jung, B. H. Analysis of Plasma Nucleotides in Rat by Micellar Electrokinetic Capillary Chromatography/Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass. Spectrom. 2012, 26, 1426–1436. DOI: 10.1002/rcm.6245.
  • Contreras-Sanz, A.; Scott-Ward, T. S.; Gill, H. S.; Jacoby, J. C.; Birch, R. E.; Malone-Lee, J.; Taylor, K. M. G.; Peppiatt-Wildman, C. M.; Wildman, S. S. P. Simultaneous Quantification of 12 Different Nucleotides and Nucleosides Released from Renal Epithelium and in Human Urine Samples Using Ion-Pair Reversed-Phase HPLC. Purinergic Signal. 2012, 8, 741–751. DOI: 10.1007/s11302-012-9321-8.
  • Barnes, J.; Tian, L.; Loftis, J.; Hiznay, J.; Comhair, S.; Lauer, M.; Dweik, R. Isolation and Analysis of Sugar Nucleotides Using Solid Phase Extraction and Fluorophore Assisted Carbohydrate Electrophoresis. MethodsX 2016, 3, 251–260. DOI: 10.1016/j.mex.2016.03.010.
  • Bustamante, S.; Gilchrist, R. B.; Richani, D. A Sensitive Method for the Separation and Quantification of Low-Level Adenine Nucleotides Using Porous Graphitic Carbon-Based Liquid Chromatography and Tandem Mass Spectrometry. J. Chromatogr. B. Anal. Technol. Biomed. Life Sci. 2017, 1061-1062, 445–451. DOI: 10.1016/j.jchromb.2017.07.044.
  • Studzińska, S.; Rola, R.; Buszewski, B. Determination of Nucleotides in Infant Milk Formulas Using Novel Dendrimer Ion-Exchangers. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2014, 949-950, 87–93. DOI: 10.1016/j.jchromb.2014.01.012.
  • Kamceva, T. Liquid Chromatography/Tandem Mass Spectrometry Method for Simultaneous Quantification of Eight Endogenous Nucleotides and the Intracellular Gemcitabine Metabolite dFdCTP in Human Peripheral Blood Mononuclear Cells. J. Chromatogr. B. Anal. Technol. Biomed. Life Sci. 2015, 1001, 212–220.
  • Bushman, L. R.; Kiser, J. J.; Rower, J. E.; Klein, B.; Zheng, J.-H.; Ray, M. L.; Anderson, P. L. Determination of Nucleoside Analog Mono-, di-, and Tri-Phosphates in Cellular Matrix by Solid Phase Extraction and Ultra-Sensitive LC-MS/MS Detection. J. Pharm. Biomed. Anal. 2011, 56, 390–401. DOI: 10.1016/j.jpba.2011.05.039.
  • Giakisikli, G.; Anthemidis, A. N. Magnetic Materials as Sorbents for Metal/Metalloid Preconcentration and/or Separation. A Review. Anal. Chim. Acta. 2013, 789, 1–16. DOI: 10.1016/j.aca.2013.04.021.
  • Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R. M.; Otárola-Jiménez, J. Magnetic Solid-Phase Extraction Using Carbon Nanotubes as Sorbents: A Review. Anal. Chim. Acta 2015, 892, 10–26. DOI: 10.1016/j.aca.2015.07.046.
  • Zhang, Q.; Zhou, D.-D.; Li, F.; Wang, Y.-Z.; Yang, F.-Q. Extraction of Nucleobases, Nucleosides and Nucleotides by Employing a Magnetized Graphene Oxide Functionalized with Hydrophilic Phytic Acid and Titanium(IV) Ions. Mikrochim. Acta 2019, 186, 187 DOI: 10.1007/s00604-019-3308-x.
  • Zhang, Z.; Liu, J. Molecularly Imprinted Polymers with DNA Aptamer Fragments as Macromonomers. ACS Appl. Mater. Interfaces 2016, 8, 6371–6378. DOI: 10.1021/acsami.6b00461.
  • Silva, C.; Cavaco, C.; Perestrelo, R.; Pereira, J.; Câmara, J. S. Microextraction by Packed Sorbent (MEPS) and Solid-Phase Microextraction (SPME) as Sample Preparation Procedures for the Metabolomic Profiling of Urine. Metabolites 2014, 4, 71–97. DOI: 10.3390/metabo4010071.
  • Wang, R.; Ding, S.; Zhao, D.; Wang, Z.; Wu, J.; Hu, X. Effect of Dehydration Methods on Antioxidant Activities, Phenolic Contents, Cyclic Nucleotides, and Volatiles of Jujube Fruits. Food Sci. Biotechnol. 2016, 25, 137–143. DOI: 10.1007/s10068-016-0021-y.
  • Zhang, Z.; Li, G.; Luo, L.; Chen, G. Study on Seafood Volatile Profile Characteristics during Storage and Its Potential Use for Freshness Evaluation by Headspace Solid Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry. Anal. Chim. Acta. 2010, 659, 151–158. DOI: 10.1016/j.aca.2009.11.024.
  • Chen, X.; Wu, Y.; Huang, L.; Yang, L.; Hong, R.; Yao, H.; Li, S. Magnetic Dispersive Solid-Phase Micro-Extraction Combined with High-Performance Liquid Chromatography for Determining Nucleotides in Anoectochilus Roxburghii (Wall.) Lindl. J. Pharm. Biomed. Anal. 2019, 174, 432–440. DOI: 10.1016/j.jpba.2019.06.010.
  • Rejczak, T.; Tuzimski, T. A Review of Recent Developments and Trends in the QuEChERS Sample Preparation Approach. Open Chem. 2015, 13, 980–1010. DOI: 10.1515/chem-2015-0109.
  • Lehotay, S. J.; Son, K. A.; Kwon, H.; Koesukwiwat, U.; Fu, W.; Mastovska, K.; Hoh, E.; Leepipatpiboon, N. Comparison of QuEChERS Sample Preparation Methods for the Analysis of Pesticide Residues in Fruits and Vegetables. J. Chromatogr. A. 2010, 1217, 2548–2560. DOI: 10.1016/j.chroma.2010.01.044.
  • Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J. A. M.; Silva, C.; Medina, S.; Câmara, J. S. QuEChERS - Fundamentals, Relevant Improvements, Applications and Future Trends. Anal. Chim. Acta. 2019, 1070, 1–28. DOI: 10.1016/j.aca.2019.02.036.
  • Magdenoska, O.; Martinussen, J.; Thykaer, J.; Nielsen, K. F. Dispersive Solid Phase Extraction Combined with Ion-Pair Ultra High-Performance Liquid Chromatography Tandem Mass Spectrometry for Quantification of Nucleotides in Lactococcus lactis. Anal. Biochem. 2013, 440, 166–177. DOI: 10.1016/j.ab.2013.05.023.
  • Ranogajec, A.; Beluhan, S.; Smit, Z. Analysis of Nucleosides and Monophosphate Nucleotides from Mushrooms with Reversed-Phase HPLC. J. Sep. Sci. 2010, 33, 1024–1033. DOI: 10.1002/jssc.200900516.
  • Jandera, P. Stationary and Mobile Phases in Hydrophilic Interaction Chromatography: A Review. Anal. Chim. Acta. 2011, 692, 1–25. DOI: 10.1016/j.aca.2011.02.047.
  • Du, Y.; et al. Development and Evaluation of a Hydrophilic Interaction Liquid chromatography-MS/MS Method to Quantify 19 Nucleobases and Nucleosides in Rat Plasma. Biomed. Chromatogr. 2017, 31(4), e3860.
  • Hayama, T.; Kiyokawa, E.; Yoshida, H.; Imakyure, O.; Yamaguchi, M.; Nohta, H. Selective Extraction of Nucleotides with Fluorous Biphasic System Utilizing Perfluoroalkylamine as an Ion-Pair Reagent. Chromatography 2015, 36, 13–18. DOI: 10.15583/jpchrom.2015.001.
  • Fabino Carr, A.; Patel, D. C.; Lopez, D.; Armstrong, D. W.; Ryzhov, V. Comparison of Reversed-Phase, Anion-Exchange, and Hydrophilic Interaction HPLC for the Analysis of Nucleotides Involved in Biological Enzymatic Pathways. J. Liquid Chromatogr. Relat. Technol. 2019, 42, 184–193. DOI: 10.1080/10826076.2019.1587622.
  • Plakantara, S.; Michaelidou, A.-M.; Polychroniadou, A.; Menexes, G.; Alichanidis, E. Nucleotides and Nucleosides in Ovine and Caprine Milk during Lactation. J Dairy Sci . 2010, 93, 2330–2337. DOI: 10.3168/jds.2009-2836.
  • Qiu, W.-Q.; Chen, S.-S.; Xie, J.; Qu, Y.-H.; Song, X. Analysis of 10 Nucleotides and Related Compounds in Litopenaeus Vannamei during Chilled Storage by HPLC-DAD. LWT Food Sci. Technol. 2016, 67, 187–193. DOI: 10.1016/j.lwt.2015.11.047.
  • Jia, J.; Zhang, H.; Zhao, L.; Zhu, Z-y.; Zhang, G-q.; Chai, Y-f. An Optimized Ion-Pair HPLC Method for Simultaneous Analysis of Nucleoside Triphosphate Levels in Hepatoma Cell Line. Chromatographia 2011, 73, 755–759. DOI: 10.1007/s10337-010-1881-6.
  • Sommer, I.; Schwartz, H.; Solar, S.; Sontag, G. Effect of Gamma-Irradiation on Flavour 5′-Nucleotides, Tyrosine, and Phenylalanine in Mushrooms (Agaricus Bisporus). Food Chem. 2010, 123, 171–174. DOI: 10.1016/j.foodchem.2010.03.124.
  • Jin, F.; et al. A Novel [(15)N] Glutamine Flux Using LC-MS/MS-SRM for Determination of Nucleosides and Nucleobases. J. Anal. Bioanal. Tech. 2015, 6(5), 267.
  • Cortese, M.; Delporte, C.; Dufour, D.; Noyon, C.; Chaumont, M.; De Becker, B.; Reye, F.; Rousseau, A.; Eker, O. F.; Nève, J.; et al. Validation of a LC/MSMS Method for Simultaneous Quantification of 9 Nucleotides in Biological Matrices. Talanta 2019, 193, 206–214. DOI: 10.1016/j.talanta.2018.10.003.
  • Wang, J-m.; Chu, Y.; Li, W.; Wang, X-y.; Guo, J-h.; Yan, L-l.; Ma, X-h.; Ma, Y-l.; Yin, Q-h.; Liu, C-x. Simultaneous Determination of Creatine Phosphate, Creatine and 12 Nucleotides in Rat Heart by LC-MS/MS. J. Chromatogr. B. Anal. Technol. Biomed. Life Sci. 2014, 958, 96–101. DOI: 10.1016/j.jchromb.2014.03.008.
  • Kiyokawa, E.; Hayama, T.; Yoshida, H.; Yamaguchi, M.; Nohta, H. Fluorous-Assisted Metal Chelate Affinity Extraction for Nucleotides Followed by HILIC-MS/MS Analysis. J. Chromatogr. B. Anal. Technol. Biomed. Life Sci. 2018, 1074-1075, 86–90. DOI: 10.1016/j.jchromb.2017.12.036.
  • Zhu, B.; Wei, H.; Wang, Q.; Li, F.; Dai, J.; Yan, C.; Cheng, Y. A Simultaneously Quantitative Method to Profiling Twenty Endogenous Nucleosides and Nucleotides in Cancer Cells Using UHPLC-MS/MS. Talanta 2018, 179, 615–623. DOI: 10.1016/j.talanta.2017.11.054.
  • Dong, M.; Qin, L.; Xue, J.; Du, M.; Lin, S.-Y.; Xu, X.-B.; Zhu, B.-W. Simultaneous Quantification of Free Amino Acids and 5'-Nucleotides in Shiitake Mushrooms by Stable Isotope labeling-LC-MS/MS Analysis. Food Chem. 2018, 268, 57–65. DOI: 10.1016/j.foodchem.2018.06.054.
  • Yamaoka, N.; Kudo, Y.; Inazawa, K.; Inagawa, S.; Yasuda, M.; Mawatari, K-i.; Nakagomi, K.; Kaneko, K. Simultaneous Determination of Nucleosides and Nucleotides in Dietary Foods and Beverages Using Ion-Pairing Liquid Chromatography-Electrospray Ionization-Mass Spectrometry. J. Chromatogr. B. Anal. Technol. Biomed. Life Sci. 2010, 878, 2054–2060. DOI: 10.1016/j.jchromb.2010.05.044.
  • Yang, F. Q.; Li, D. Q.; Feng, K.; Hu, D. J.; Li, S. P. Determination of Nucleotides, Nucleosides and Their Transformation Products in Cordyceps by Ion-Pairing Reversed-Phase Liquid Chromatography-Mass Spectrometry. J. Chromatogr. A. 2010, 1217, 5501–5510. DOI: 10.1016/j.chroma.2010.06.062.
  • Ren, Y.; Zhang, J.; Song, X.; Chen, X.; Li, D. Simultaneous Determination of 5'-Monophosphate Nucleotides in Infant Formulas by HPLC-MS. J. Chromatogr. Sci. 2011, 49, 332–337. DOI: 10.1093/chrsci/49.4.332.
  • Wang, P.; Fisher, D.; Rao, A.; Giese, R. W. Nontargeted Nucleotide Analysis Based on Benzoylhistamine labeling-MALDI-TOF/TOF-MS: discovery of Putative 6-Oxo-Thymine in DNA. Anal. Chem. 2012, 84, 3811–3819. DOI: 10.1021/ac300532z.
  • Chen, J.; Tabatabaei, A.; Zook, D.; Wang, Y.; Danks, A.; Stauber, K. A Surrogate Analyte-Based Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Endogenous Cyclic Nucleotides in Rat Brain. J. Pharm. Biomed. Anal. 2017, 146, 361–368. DOI: 10.1016/j.jpba.2017.08.040.
  • Derissen, E. J. B.; Hillebrand, M. J. X.; Rosing, H.; Schellens, J. H. M.; Beijnen, J. H. Development of an LC-MS/MS Assay for the Quantitative Determination of the Intracellular 5-Fluorouracil Nucleotides Responsible for the Anticancer Effect of 5-Fluorouracil. J. Pharm. Biomed. Anal. 2015, 110, 58–66. DOI: 10.1016/j.jpba.2015.02.051.
  • Zhou, G.; Wang, M.; Xu, R.; Li, X.-B. Chemometrics for Comprehensive Analysis of Nucleobases, Nucleosides, and Nucleotides in Siraitiae Fructus by Hydrophilic Interaction Ultra High Performance Liquid Chromatography Coupled with Triple-Quadrupole Linear Ion-Trap Tandem Mass Spectrometry. J. Sep. Sci. 2015, 38, 3508–3515. DOI: 10.1002/jssc.201500680.
  • Curtis, M.; Minier, M. A.; Chitranshi, P.; Sparkman, O. D.; Jones, P. R.; Xue, L. Direct Analysis in Real Time (DART) Mass Spectrometry of Nucleotides and Nucleosides: elucidation of a Novel Fragment [C5H5O]+ and Its in-Source Adducts. J. Am. Soc. Mass Spectrom. 2010, 21, 1371–1381. DOI: 10.1016/j.jasms.2010.03.046.
  • Villiger, T. K.; Steinhoff, R. F.; Ivarsson, M.; Solacroup, T.; Stettler, M.; Broly, H.; Krismer, J.; Pabst, M.; Zenobi, R.; Morbidelli, M.; et al. High-Throughput Profiling of Nucleotides and Nucleotide Sugars to Evaluate Their Impact on Antibody N-Glycosylation. J. Biotechnol. 2016, 229, 3–12. DOI: 10.1016/j.jbiotec.2016.04.039.
  • El-Aneed, A.; Cohen, A.; Banoub, J. Mass Spectrometry, Review of the Basics: Electrospray, MALDI, and Commonly Used Mass Analyzers. Appl. Spectrosc. Rev. 2009, 44, 210–230. DOI: 10.1080/05704920902717872.
  • Xian, F.; Hendrickson, C. L.; Marshall, A. G. High Resolution Mass Spectrometry. Anal. Chem. 2012, 84, 708–719. DOI: 10.1021/ac203191t.
  • Ferrer, I.; Thurman, E. M. Liquid Chromatography/Time-of-Flight/Mass Spectrometry (LC/TOF/MS) for the Analysis of Emerging Contaminants. Trac Trends Anal. Chem. 2003, 22, 750–756. DOI: 10.1016/S0165-9936(03)01013-6.
  • Chen, F.; Zhang, F.; Yang, N.; Liu, X. Simultaneous Determination of 10 Nucleosides and Nucleobases in Antrodia Camphorata Using QTRAP LC-MS/MS. J. Chromatogr. Sci. 2014, 52, 852–861. DOI: 10.1093/chromsci/bmt128.
  • Michael, S. M.; Chien, M.; Lubman, D. M. An Ion Trap Storage/Time‐of‐Flight Mass Spectrometer. Rev. Sci. Instrum. 1992, 63, 4277–4284. DOI: 10.1063/1.1143725.
  • Hu, Q.; Noll, R. J.; Li, H.; Makarov, A.; Hardman, M.; Graham Cooks, R. The Orbitrap: A New Mass Spectrometer. J. Mass Spectrom. 2005, 40, 430–443. DOI: 10.1002/jms.856.
  • Beilke, M. C.; Beres, M. J.; Olesik, S. V. Gradient Enhanced-Fluidity Liquid Hydrophilic Interaction Chromatography of Ribonucleic Acid Nucleosides and Nucleotides: A "Green" Technique. J. Chromatogr. A. 2016, 1436, 84–90. DOI: 10.1016/j.chroma.2016.01.060.
  • Mora, L.; Hernández-Cázares, A. S.; Aristoy, M.-C.; Toldrá, F. Hydrophilic Interaction Chromatographic Determination of Adenosine Triphosphate and Its Metabolites. Food Chem. 2010, 123, 1282–1288. DOI: 10.1016/j.foodchem.2010.05.072.
  • Padivitage, N. L.; Dissanayake, M. K.; Armstrong, D. W. Separation of Nucleotides by Hydrophilic Interaction Chromatography Using the FRULIC-N Column. Anal. Bioanal. Chem. 2013, 405, 8837–8848. DOI: 10.1007/s00216-013-7315-1.
  • Brohi, R. O. Z. Z.; Khuhawar, M. Y.; Khuhawar, T. M. J. GC-FID Determination of Nucleobases Guanine, Adenine, Cytosine, and Thymine from DNA by Precolumn Derivatization with Isobutyl Chloroformate. J. Anal. Sci. Technol. 2016, 7(1), 1–6. DOI: 10.1186/s40543-016-0090-9.
  • Miranda-Santos, I.; Gramacho, S.; Pineiro, M.; Martinez-Gomez, K.; Fritz, M.; Hollemeyer, K.; Salvador, A.; Heinzle, E. Mass Isotopomer Analysis of Nucleosides Isolated from RNA and DNA Using GC/MS. Anal. Chem. 2015, 87, 617–623. DOI: 10.1021/ac503305w.
  • Huang, Y.; Zhang, T.; Zhao, Y.; Zhou, H.; Tang, G.; Fillet, M.; Crommen, J.; Jiang, Z. Simultaneous Analysis of Nucleobases, Nucleosides and Ginsenosides in Ginseng Extracts Using Supercritical Fluid Chromatography Coupled with Single Quadrupole Mass Spectrometry. J. Pharm. Biomed. Anal. 2017, 144, 213–219. DOI: 10.1016/j.jpba.2017.03.059.
  • Kozlov, O.; Kadlecová, Z.; Tesařová, E.; Kalíková, K. Evaluation of Separation Properties of Stationary Phases in Supercritical Fluid Chromatography; Deazapurine Nucleosides Case Study. Microchem. J. 2019, 150, 104137. DOI: 10.1016/j.microc.2019.104137.
  • Zhu, C.; Yang, G.; Ghulam, M.; Li, L.; Qu, F. Evolution of Multi-Functional Capillary Electrophoresis for High-Efficiency Selection of Aptamers. Biotechnol. Adv. 2019, 37, 107432 DOI: 10.1016/j.biotechadv.2019.107432.
  • Yang, F-q.; Lv, R.; Zhang, Y-l.; Xia, Z-n. Comparison Study on Nucleosides and Nucleotides in Edible Mushroom Species by Capillary Zone Electrophoresis. Anal. Methods 2012, 4, 546. DOI: 10.1039/c2ay05793j.
  • Zhu, P.; Wang, S.; Wang, J.; Zhou, L.; Shi, P. A Capillary Zone Electrophoresis Method for Adenine Nucleotides Analysis in Saccharomyces cerevisiae. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1008, 156–163. DOI: 10.1016/j.jchromb.2015.11.040.
  • Buzatto, A. Z.; de Oliveira Silva, M.; Poppi, R. J.; Simionato, A. V. C. Assessment of Nucleosides as Putative Tumor Biomarkers in Prostate Cancer Screening by CE-UV. Anal. Bioanal. Chem. 2017, 409, 3289–3297. DOI: 10.1007/s00216-017-0297-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.