918
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Analytical Methods for Determination of Antiviral Drugs in Different Matrices: Recent Advances and Trends

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1662-1693 | Published online: 13 May 2021

References

  • De Clercq, E.; Li, G. Approved Antiviral Drugs over the past 50 Years. Clin. Microbiol. Rev. 2016, 29, 695–747. DOI: 10.1128/CMR.00102-15.
  • Djerada, Z.; Feliu, C.; Tournois, C.; Vautier, D.; Binet, L.; Robinet, A.; Marty, H.; Gozalo, C.; Lamiable, D.; Millart, H. Validation of a Fast Method for Quantitative Analysis of Elvitegravir, Raltegravir, Maraviroc, Etravirine, Tenofovir, Boceprevir and 10 Other Antiretroviral Agents in Human Plasma Samples with a New UPLC-MS/MS Technology. J. Pharm. Biomed. Anal 2013, 86, 100–111. DOI: 10.1016/j.jpba.2013.08.002.
  • Müller, D. M.; Rentsch, K. M. Therapeutic Drug Monitoring by LC-MS-MS with Special Focus on anti-Infective Drugs. Anal. Bioanal. Chem. 2010, 398, 2573–2594. DOI: 10.1007/s00216-010-3986-z.
  • Nannou, C.; Ofrydopoulou, A.; Evgenidou, E.; Heath, D.; Heath, E.; Lambropoulou, D. Analytical Strategies for the Determination of Antiviral Drugs in the Aquatic Environment. Trends Environ. Anal. Chem 2019, 24, e00071. DOI: 10.1016/j.teac.2019.e00071.
  • Jain, S.; Kumar, P.; Vyas, R. K.; Pandit, P.; Dalai, A. K. Occurrence and Removal of Antiviral Drugs in Environment: A Review. Water. Air. Soil Pollut 2013, 224, DOI: 10.1007/s11270-012-1410-3..
  • Järhult, J. D. Oseltamivir (Tamiflu®) in the Environment, Resistance Development in Influenza a Viruses of Dabbling Ducks and the Risk of Transmission of an Oseltamivir-Resistant Virus to Humans – a. Review. Infect. Ecol. Epidemiol 2012, 2, 18385. DOI: 10.3402/iee.v2i0.18385.
  • Megahed, S. M.; Habib, A. A.; Hammad, S. F.; Kamal, A. H. Experimental Design Approach for Development of Spectrofluorimetric Method for Determination of Favipiravir; a Potential Therapeutic Agent against COVID-19 Virus: Application to Spiked Human Plasma. Spectrochim Acta A Mol Biomol Spectrosc ... 2021, 249, 119241. DOI: 10.1016/j.saa.2020.119241.
  • Nováková, L.; Pavlík, J.; Chrenková, L.; Martinec, O.; Červený, L. Current Antiviral Drugs and Their Analysis in Biological materials-Part I: Antivirals against respiratory and herpes viruses. J. Pharm. Biomed. Anal. 2018, 147, 400–416. DOI: 10.1016/j.jpba.2017.06.071.
  • Nováková, L.; Pavlík, J.; Chrenková, L.; Martinec, O.; Červený, L. Current Antiviral Drugs and Their Analysis in Biological Materials - Part II: Antivirals against hepatitis and HIV viruses. J. Pharm. Biomed. Anal. 2018, 147, 378–399. DOI: 10.1016/j.jpba.2017.07.003.
  • Billat, P.-A.; Saint-Marcoux, F. Liquid chromatography-mass spectrometry methods for the intracellular determination of drugs and their metabolites: a focus on antiviral drugs. Anal. Bioanal. Chem. 2017, 409, 5837–5853. DOI: 10.1007/s00216-017-0449-9.
  • Meurens, M. Spectrophotometric Techniques. In Food Authenticity and Traceability; CRC Press: Boca Raton, FL, 2003; pp 184–196. DOI: 10.1533/9781855737181.1.184.
  • Burgess, C. The Basis for Good Spectrophotometric UV–Visible Measurements. In UV-Visible Spectrophotometry of Water and Wastewater; Elsevier: Langford Lane, Kidlington, 2017; pp 1–35. DOI: 10.1016/B978-0-444-63897-7.00001-9.
  • Gouda, A. A.; Kotb El-Sayed, M. I.; Amin, A. S.; El Sheikh, R. Spectrophotometric and Spectrofluorometric Methods for the Determination of Non-Steroidal anti-Inflammatory Drugs: A Review. Arab. J. Chem 2013, 6, 145–163. DOI: 10.1016/j.arabjc.2010.12.006.
  • Yıldırım, S.; Erkmen, C.; Uslu, B. Novel Trends in Analytical Methods for β-Blockers: An Overview of Applications in the Last Decade. Crit. Rev. Anal. Chem 2020, 1–39. DOI: 10.1080/10408347.2020.1791043..
  • Schmidt, F. M.; Metsälä, M.; Apolonski, A.; Cristescu, S. M. Optical Spectroscopy. In Breathborne Biomarkers and the Human Volatilome; Elsevier: Langford Lane, Kidlington, 2020; pp 221–238. DOI: 10.1016/B978-0-12-819967-1.00014-1.
  • Tavares, G. D.; Ishikawa, G. M.; Monteiro, T. F.; Zanolini, C.; Kedor, É. R. M.; Farmacêuticas, F. D. C.; Paulo, U. D. S.; Prof, A.; Prestes, L.; Sp, S. P. Derivate Spectrophotometric Method for Determination of Acyclovir in Polymeric Nanoparticles. Quím. Nova 2012, 35, 203–206. DOI: 10.1590/S0100-40422012000100035.
  • Ajima, U.; Onah, J. Spectrophotometric Determination of Acyclovir after Its Reaction with Ninhydrin and Ascorbic Acid. J App Pharm Sci. 2015, 5, 065–069. DOI: 10.7324/JAPS.2015.50411.
  • Bari, N. A.; Kela, S. P.; Sharma, S. N.; Shirse, S. V.; Choudhari, V. P. Spectrophotometric Simultaneous Determination of Atazanavir and Ritonavir in Combined Tablet Dosage Form by Ratio Derivative and Area under Curve Method. Der Pharma Chem 2012, 4, 208–213.
  • Abdel-Lateef, M. A.; Omar, M. A.; Ali, R.; Derayea, S. M. Xanthene Based Spectroscopic Probe for the Analysis of HCV Antiviral, Daclatasvir Dihydrochloride, through Feasible Complexation Reaction. Microchem. J 2019, 145, 672–675. DOI: 10.1016/j.microc.2018.11.038.
  • Abo-Zeid, M. N.; Atia, N. N.; El-Gizawy, S. M.; El-Shaboury, S. R. Ultrasensitive Spectrofluorimetric Method for Rapid Determination of Daclatasvir and Ledipasvir in Human Plasma and Pharmaceutical Formulations. J. Pharm. Biomed. Anal. 2018, 152, 155–164. DOI: 10.1016/j.jpba.2018.01.038.
  • Abdel-Lateef, M. A.; Omar, M. A.; Ali, R.; Derayea, S. M. Employ Fourier Transform Infrared Spectroscopy for Determination of Second-Generation anti-HCV (Sofosbuvir, Daclatasvir) Drugs: Application to Uniformity of Dosage Units. Vib. Spectrosc 2019, 102, 47–51. DOI: 10.1016/j.vibspec.2019.04.002.
  • El-Alamin, M. M. A.; Sultan, M. A. E.; Hegazy, M.; Wark, A. W.; Azab, M. M. Pure Component Contribution (PCCA) and Synergy Interval Partial Least Squares (SiPLS) Algorithms for Efficient Resolution and Quantification of Overlapped Signals; an Application to Novel Antiviral Tablets of Daclatasvir, Sofosbuvir and Ribavirin. Eur. J. Chem. 2019, 10, 350–357. DOI: 10.5155/eurjchem.10.4.350-357.1899.
  • Salama, F. M.; Attia, K. A.; Abouserie, A. A.; El-Olemy, A.; Abolmagd, E. Spectroflurimetric Estimation of the New Antiviral Agent Ledipasvir in Presence of Sofosbuvir. Spectrochim Acta A Mol Biomol Spectrosc ... 2018, 190, 513–517. DOI: 10.1016/j.saa.2017.08.023.
  • Abdelwahab, N. S.; Farid, N. F. Innovative Spectrophotometric Methods for Determination of Newly Discovered Combination for Hepatitis C Treatment. Anal. Chem. Lett 2016, 6, 783–794. DOI: 10.1080/22297928.2016.1265468.
  • Hamad, A. E.; Mohammed, B. S.; Derayea, S. M.; El-Malla, S. F. Micelle Sensitized Synchronous Spectrofluorimetric Approaches for the Simultaneous Determination of Simeprevir and Ledipasvir: Application to Pharmaceutical Formulations and Human Plasma. Spectrochim Acta A Mol Biomol Spectrosc ... 2020, 239, 118471. DOI: 10.1016/j.saa.2020.118471.
  • Mansour, F. R. A New Innovative Spectrophotometric Method for the Simultaneous Determination of Sofosbuvir and Ledipasvir. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2018, 188, 626–632. DOI: 10.1016/j.saa.2017.07.066.
  • Mohammed, B. S.; Hamad, A. E.; El‐Malla, S. F.; Derayea, S. M. Sensitive Spectrofluorimetric Assay Based on Micelle Enhanced Protocol for the Determination of Hepatitis C Antiviral Agent (Simeprevir): Application to Dosage Form and Human Plasma. Microchem. J 2020, 152, (October 2019), 104372. DOI: 10.1016/j.microc.2019.104372.
  • Zaman, B.; Hassan, W.; Khan, A.; Noreen, H. Development and Validation of Spectrophotometric Method for Assay Determination and in Vitro Dissolution Studies of Sofosbuvir Tablets. J. Chem. Soc. Pakistan 2017, 39, 962–969.
  • Omar, M. A.; Abdel-Lateef, M. A.; Ali, R.; Derayea, S. M. Study on Fluorescence Properties of HCV Antiviral (Velpatasvir) and Its Fluorimetric Determination in Presence of Sofosbuvir; Application to Stability Study and Human Plasma. Luminescence 2018, 33, 1249–1256. DOI: 10.1002/bio.3542.
  • Lenoir, D.; Schramm, K.-W.; Lalah, J. O. Green Chemistry: Some Important Forerunners and Current Issues. Sustain. Chem. Pharm 2020, 18, 100313. DOI: 10.1016/j.scp.2020.100313.
  • Azarmi, S.; Roa, W.; Löbenberg, R. Current Perspectives in Dissolution Testing of Conventional and Novel Dosage Forms. Int. J. Pharm. 2007, 328, 12–21. DOI: 10.1016/j.ijpharm.2006.10.001.
  • Bazzo, G. C.; Pezzini, B. R.; Stulzer, H. K. Eutectic Mixtures as an Approach to Enhance Solubility, Dissolution Rate and Oral Bioavailability of Poorly Water-Soluble Drugs. Int. J. Pharm. 2020, 588, 119741. DOI: 10.1016/j.ijpharm.2020.119741.
  • Bulduk, İ. HPLC-UV Method for Quantification of Favipiravir in Pharmaceutical Formulations. Acta Chromatogr 2020. DOI: 10.1556/1326.2020.00828.
  • Bunaciu, A. A.; Aboul-Enein, H. Y.; Fleschin, S. Application of Fourier Transform Infrared Spectrophotometry in Pharmaceutical Drugs Analysis. Appl. Spectrosc. Rev 2010, 45, 206–219. DOI: 10.1080/00387011003601044.
  • Mallah, M. A.; Sherazi, S. T. H.; Bhanger, M. I.; Mahesar, S. A.; Bajeer, M. A. A Rapid Fourier-Transform Infrared (FTIR) Spectroscopic Method for Direct Quantification of Paracetamol Content in Solid Pharmaceutical Formulations. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2015, 141, 64–70. DOI: 10.1016/j.saa.2015.01.036.
  • Sengel-Turk, C. T.; Gumustas, M.; Uslu, B.; Ozkan, S. A. Nanosized Drug Carriers for Oral Delivery of Anticancer Compounds and the Importance of the Chromatographic Techniques. In Nano- and Microscale Drug Delivery Systems; Elsevier: Langford Lane, Kidlington, 2017; pp 165–195. DOI: 10.1016/B978-0-323-52727-9.00010-8.
  • Zheng, Y. Z.; Wang, S. Advances in Antifungal Drug Measurement by Liquid Chromatography-Mass Spectrometry. Clin. Chim. Acta. 2019, 491, 132–145. DOI: 10.1016/j.cca.2019.01.023.
  • Baranowska, I.; Magiera, S.; Baranowski, J. Clinical Applications of Fast Liquid Chromatography: A Review on the Analysis of Cardiovascular Drugs and Their Metabolites. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 927, 54–79. DOI: 10.1016/j.jchromb.2013.02.002.
  • Sabourian, R.; Mirjalili, S. Z.; Namini, N.; Chavoshy, F.; Hajimahmoodi, M.; Safavi, M. HPLC Methods for Quantifying Anticancer Drugs in Human Samples: A Systematic Review. Anal. Biochem. 2020, 610, 113891. DOI: 10.1016/j.ab.2020.113891.
  • Schimek, D.; Raml, R.; Francesconi, K. A.; Bodenlenz, M.; Sinner, F. Quantification of Acyclovir in Dermal Interstitial Fluid and Human Serum by Ultra-High-Performance Liquid–High-Resolution Tandem Mass Spectrometry for Topical Bioequivalence Evaluation. Biomed. Chromatogr 2018, 32, 1–7. DOI: 10.1002/bmc.4194..
  • Li, Y.; Jiang, Y.; Lin, T.; Wan, Q.; Yang, X.; Xu, G.; Huang, J.; Li, Z. Amantadine Hydrochloride Monitoring by Dried Plasma Spot Technique: High-performance liquid chromatography-tandem mass spectrometry based clinical assay . J. Sep. Sci. 2020, 43, 2264–2269. DOI: 10.1002/jssc.201901298.
  • Yuan, L.; Jiang, H.; Ouyang, Z.; Xia, Y. Q.; Zeng, J.; Peng, Q.; Lange, R. W.; Deng, Y.; Arnold, M. E.; Aubry, A. F. A Rugged and Accurate Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Asunaprevir, an NS3 Protease Inhibitor, in Plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci 2013, 921–922, 81–86. DOI: 10.1016/j.jchromb.2013.01.029.
  • Bhirud, C. H.; Hiremath, S. N. Stability Indicating RP-HPLC Method for the Determination of Atazanavir Sulphate in Bulk and Dosage Form. Drug Invent. Today 2013, 5, 81–86. DOI: 10.1016/j.dit.2013.05.008.
  • Momper, J. D.; Zhang, S.; Randhawa, P. S.; Shapiro, R.; Schonder, K. S.; Venkataramanan, R. Determination of Cidofovir in Human Plasma after Low Dose Drug Administration Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2010, 53, 1015–1021. DOI: 10.1016/j.jpba.2010.06.034.
  • Zaman, B.; Hassan, W. Development of Stability Indicating HPLC–UV Method for Determination of Daclatasvir and Characterization of Forced Degradation Products. Chromatographia 2018, 81, 785–797. DOI: 10.1007/s10337-018-3503-7.
  • Jiang, H.; Zeng, J.; Deng, Y.; Xia, Y. Q.; Ouyang, Z.; Jemal, M.; Salcedo, T. W.; Arnold, M. E. A Rugged and Accurate Liquid Chromatography-Tandem Mass Spectrometry Method for Quantitative Determination of BMS-790052 in Plasma. J Chromatogr B Analyt Technol Biomed Life Sci ... 2011, 879, 2064–2072. DOI: 10.1016/j.jchromb.2011.05.036.
  • Jiang, H.; Zeng, J.; Kandoussi, H.; Liu, Y.; Wang, X.; Bifano, M.; Cojocaru, L.; Ryan, J.; Arnold, M. E. A Sensitive and Accurate Liquid Chromatography-Tandem Mass Spectrometry Method for Quantitative Determination of the Novel Hepatitis C NS5A Inhibitor BMS-790052 (daclastasvir) in Human Plasma And Urine . J. Chromatogr. A. 2012, 1245, 117–121. DOI: 10.1016/j.chroma.2012.05.028.
  • Nagano, D.; Araki, T.; Nakamura, T.; Yamamoto, K. Determination of Intracellular Darunavir by Liquid Chromatography Coupled with Fluorescence Detection. J. Chromatogr. Sci 2014, 52, 1021–1025. DOI: 10.1093/chromsci/bmt147.
  • Wang, X.; Penchala, S.; Di, Amara, A.; Else, L.; McClure, M.; Boffito, M. A Validated Method for Quantification of Dolutegravir Using Ultra Performance Liquid Chromatography Coupled with UV Detection. Ther Drug Monit . 2016, 38, 327–331. DOI: 10.1097/FTD.0000000000000286.
  • Bennetto-Hood, C.; Tabolt, G.; Savina, P.; Acosta, E. P. A Sensitive HPLC-MS/MS Method for the Determination of Dolutegravir in Human Plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci 2014, 945–946, 225–232. DOI: 10.1016/j.jchromb.2013.11.054.
  • Vanita, S.; Sankar, D. G. Current Pharma Research. Jcpr. 2011, 1, 227–231.
  • Goud, V. M.; Rao, A. S. Stability Indicating RP-HPLC Method Development and Validation of Foscarnet in Bulk and Pharmaceutical Dosage Form. Der Pharm. Lett 2015, 7, 1–6.
  • Alebouyeh, M.; Amini, H. Rapid Determination of Lamivudine in Human Plasma by High-Performance Liquid Chromatography. J Chromatogr B Analyt Technol Biomed Life Sci ... 2015, 975, 40–44. DOI: 10.1016/j.jchromb.2014.11.004.
  • Emory, J. F.; Seserko, L. A.; Marzinke, M. A. Development and Bioanalytical Validation of a Liquid Chromatographic-Tandem Mass Spectrometric (LC-MS/MS) Method for the Quantification of the CCR5 Antagonist Maraviroc in Human Plasma. Clin. Chim. Acta. 2014, 431, 198–205. DOI: 10.1016/j.cca.2014.02.008.
  • Ma, J. K.; Huang, X. C.; Wei, S. L. Rapid Determination of Antiviral Medication Ribavirin in Different Feedstuffs Using a Novel Magnetic Molecularly Imprinted Polymer Coupled with High-Performance Liquid Chromatography. J. Sep. Sci. 2019, 42, 3372–3381. DOI: 10.1002/jssc.201900576.
  • Nannetti, G.; Pagni, S.; Parisi, S. G.; Alberti, A.; Loregian, A.; Palù, G. Development of a Simple HPLC-UV Method for the Determination of the Hepatitis C Virus Inhibitor Simeprevir in Human Plasma. J. Pharm. Biomed. Anal. 2016, 121, 197–203. DOI: 10.1016/j.jpba.2016.01.019.
  • Suresh Kumar, R.; Hariram, B.; Divya, G.; Srinivasu, M. K.; Srinivas, K.; Sagyam, R. R. Development of a RP-LC Method for a Diastereomeric Drug Valganciclovir Hydrochloride by Enhanced Approach. J. Pharm. Biomed. Anal. 2012, 70, 101–110. DOI: 10.1016/j.jpba.2012.06.010.
  • Swain, D.; Yadav, A. S.; Sasapu, C.; Akula, V.; Samanthula, G. UPLC Separation of Forced Degradation and Process Related Impurities of Velpatasvir and Structure Elucidation by Online LC-Quadrupole-Time of Flight-Tandem Mass Spectrometry. Microchem. J 2020, 155, (December 2019), 104657. DOI: 10.1016/j.microc.2020.104657.
  • Maeda, Y.; Kishikawa, N.; Ohyama, K.; Wada, M.; Ikeda, R.; Kuroda, N. Fluorescence Derivatization Method for Sensitive Chromatographic Determination of Zidovudine Based on the Huisgen Reaction. J. Chromatogr. A. 2014, 1355, 206–210. DOI: 10.1016/j.chroma.2014.06.017.
  • Jia, Q.; Li, D.; Wang, X.; Yang, S.; Qian, Y.; Qiu, J. Simultaneous Determination of Amantadine and Rimantadine in Feed by Liquid Chromatography-Qtrap Mass Spectrometry with Information-Dependent Acquisition. Anal. Bioanal. Chem. 2018, 410, 5555–5565. DOI: 10.1007/s00216-018-1022-x.
  • Raees, A.; Patil, S.; Mohammed Usman, L.; Imran, M.; Akhtar, M. R. Analytical Method Development and Validation for the Simultaneous Estimation of Abacavir and Lamivudine by Reversed-Phase High-Performance Liquid Chromatography in Bulk and Tablet Dosage Forms. Pharmacognosy Res 2018, 10, 92–97. DOI: 10.4103/pr.pr_96_17..
  • Belkhir, L.; De Laveleye, M.; Vandercam, B.; Zech, F.; Delongie, K.-A.; Capron, A.; Yombi, J.; Vincent, A.; Elens, L.; Haufroid, V. Quantification of Darunavir and Etravirine in Human Peripheral Blood Mononuclear Cells Using High Performance Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS), clinical application in a cohort of 110 HIV-1 infected patients and evidence of a potential drug-drug interaction. Clin. Biochem. 2016, 49, 580–586. DOI: 10.1016/j.clinbiochem.2015.12.011.
  • Attia, K. A. M.; El-Abasawi, N. M.; El-Olemy, A.; Abdelazim, A. H.; El-Dosoky, M. Simultaneous Determination of Elbasvir and Grazoprevir in Their Pharmaceutical Preparation Using High-Performance Liquid Chromatographic Method. J. Chromatogr. Sci. 2018, 56, 731–737. DOI: 10.1093/chromsci/bmy049.
  • Kromdijk, W.; Rosing, H.; van den Broek, M. P. H.; Beijnen, J. H.; Huitema, A. D. R. Quantitative Determination of Oseltamivir and Oseltamivir Carboxylate in Human Fluoride EDTA Plasma Including the Ex Vivo Stability Using High-Performance Liquid Chromatography Coupled with Electrospray Ionization Tandem Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci 2012, 891–892, 57–63. DOI: 10.1016/j.jchromb.2012.02.026.
  • Zidan, D. W.; Hassan, W. S.; Elmasry, M. S.; Shalaby, A. A. Investigation of anti-Hepatitis C Virus, Sofosbuvir and Daclatasvir, in Pure Form, Human Plasma and Human Urine Using Micellar Monolithic HPLC-UV Method and Application to Pharmacokinetic Study. J Chromatogr B Analyt Technol Biomed Life Sci ... 2018, 1086, 73–81. DOI: 10.1016/j.jchromb.2018.04.011.
  • Zaman, B.; Siddique, F.; Hassan, W. RP-HPLC Method for Simultaneous Determination of Sofosbuvir and Ledipasvir in Tablet Dosage Form and Its Application to in Vitro Dissolution Studies. Chromatographia 2016, 79, 1605–1613. DOI: 10.1007/s10337-016-3179-9.
  • EL-Shorbagy, H. I.; Elsebaei, F.; Hammad, S. F.; El-Brashy, A. M. Optimization and Modeling of a Green Dual Detected RP-HPLC Method by UV and Fluorescence Detectors Using Two Level Full Factorial Design for Simultaneous Determination of Sofosbuvir and Ledipasvir: Application to Average Content and Uniformity of Dosage U. Microchem. J. 2019, 147, 374–392. DOI: 10.1016/j.microc.2019.03.039.
  • Elkady, E. F.; Aboelwafa, A. A. A Rapid and Optimized LC-MS/MS Method for the Simultaneous Extraction and Determination of Sofosbuvir and Ledipasvir in Human Plasma. J AOAC Int. 2016, 99, 1252–1259. DOI: 10.5740/jaoacint.16-0021.
  • Elkady, E. F.; Aboelwafa, A. A. Rapid Bioanalytical LC-MS/MS Method for the Simultaneous Determination of Sofosbuvir and Velpatasvir in Human Plasma-Application to a Pharmacokinetic Study in Egyptian Volunteers. J. Chromatogr. B Anal. Technol. Biomed. Life Sci 2018, 1102–1103, 116–124. DOI: 10.1016/j.jchromb.2018.10.020.
  • Rezk, M. R.; Basalious, E. B.; Karim, I. A. Development of a Sensitive UPLC-ESI-MS/MS Method for Quantification of Sofosbuvir and Its Metabolite, GS-331007, in Human Plasma: Application to a Bioequivalence Study. J. Pharm. Biomed. Anal. 2015, 114, 97–104. DOI: 10.1016/j.jpba.2015.05.006.
  • Penchala, S. D.; Tjia, J.; El Sherif, O.; Back, D. J.; Khoo, S. H.; Else, L. J. Validation of an Electrospray Ionisation LC-MS/MS Method for Quantitative Analysis of Telaprevir and Its R-Diastereomer. J. Chromatogr. B Anal. Technol. Biomed. Life Sci 2013, 932, 100–110. DOI: 10.1016/j.jchromb.2013.06.013.
  • Barreiros, L.; Cunha-Reis, C.; Silva, E. M. P.; Carvalho, J. R. B.; das Neves, J.; Sarmento, B.; Segundo, M. A. Development and Validation of a Liquid Chromatography-MS/MS Method for Simultaneous Quantification of Tenofovir and Efavirenz in Biological Tissues and Fluids. J. Pharm. Biomed. Anal 2017, 136, 120–125. DOI: 10.1016/j.jpba.2016.12.028.
  • Erkmen, C.; Gümüştaş, M.; Özkan, S. A.; Uslu, B. Step-by-Step Optimization of the HILIC Method for Simultaneous Determinationof Abacavir, Lamivudine, and Zidovudine from Dosage Form. Turk. J. Chem. 2019, 43, 1597–1607. DOI: 10.3906/kim-1906-18.
  • Notari, S.; Tempestilli, M.; Fabbri, G.; Libertone, R.; Antinori, A.; Ammassari, A.; Agrati, C. UPLC–MS/MS Method for the Simultaneous Quantification of Sofosbuvir, Sofosbuvir Metabolite (GS-331007) and Daclatasvir in Plasma of HIV/HCV Co-Infected Patients. J. Chromatogr. B 2018, 1073, 183–190. DOI: 10.1016/j.jchromb.2017.12.018.
  • Jiang, H.; Kandoussi, H.; Zeng, J.; Wang, J.; Demers, R.; Eley, T.; He, B.; Burrell, R.; Easter, J.; Kadiyala, P.; et al. Multiplexed LC-MS/MS Method for the Simultaneous Quantitation of Three Novel Hepatitis C Antivirals, Daclatasvir, Asunaprevir, and Beclabuvir in Human Plasma. J. Pharm. Biomed. Anal. 2015, 107, 409–418. DOI: 10.1016/j.jpba.2015.01.027.
  • Almomen, A.; Maher, H. M.; Alzoman, N. Z.; Shehata, S. M.; Al-Taweel, S. M.; Alanazi, A. A. Development and Validation of UPLC-MS/MS Method for Studying the Pharmacokinetic Interaction of Dasabuvir and Tamoxifen, 4-Hydroxytamoxifen in Wistar Rats. Sci. Rep 2020, 3521. 10. DOI: 10.1038/s41598-020-60613-2.
  • Prava, R.; Seru, G.; Pujala, V. K.; Lagu, S. B. RP-HPLC Method Development and Validation for the Simultaneous Determination of Lamivudine, Abacavir and Dolutegravir in Pharmaceutical Dosage Forms. World J. Pharm. Sci 2017, 5, 168–181.
  • Krishna Matta, M.; Rao Pilli, N.; Kumar Inamadugu, J.; Burugula, L.; Rao Jvln, S. Simultaneous Quantitation of Lamivudine, Zidovudine and Nevirapine in Human Plasma by Liquid Chromatography–Tandem Mass Spectrometry and Application to a Pharmacokinetic Study. Acta Pharm. Sin. B 2012, 2, 472–480. DOI: 10.1016/j.apsb.2012.07.003.
  • Pan, C.; Chen, Y.; Chen, W.; Zhou, G.; Jin, L.; Zheng, Y.; Lin, W.; Pan, Z. Simultaneous Determination of Ledipasvir, Sofosbuvir and Its Metabolite in Rat Plasma by UPLC–MS/MS and Its Application to a Pharmacokinetic Study. J. Chromatogr. B 2016, 1008, 255–259. DOI: 10.1093/chromsci/bmw072.
  • Abdallah, O. M.; Abdel-Megied, A. M.; Gouda, A. S. Development a Validated Highly Sensitive LC-MS/MS method for simultaneous quantification of Ledipasvir, sofosbuvir and its major metabolite GS-331007 in human plasma: Application to a human pharmacokinetic study . J. Pharm. Biomed. Anal. 2017, 143, 305–310. DOI: 10.1016/j.jpba.2017.06.005.
  • Duthaler, U.; Berger, B.; Erb, S.; Battegay, M.; Letang, E.; Gaugler, S.; Krähenbühl, S.; Haschke, M. Automated High Throughput Analysis of Antiretroviral Drugs in Dried Blood Spots. J Mass Spectrom . 2017, 52, 534–542. DOI: 10.1002/jms.3952.
  • Ndolo, S. M.; Sichilongo, K.; Massele, A.; Sepako, E.; Vento, S. An Investigation of Liquid Chromatography–Mass Spectral Attributes and Analytical Performance Characteristics of Tenofovir, Emtricitabine and Efavirenz in Human Plasma. J. Anal. Toxicol 2015, 40, bkv119. DOI: 10.1093/jat/bkv119.
  • Wu, Y.; Yang, J.; Duan, C.; Chu, L.; Chen, S.; Qiao, S.; Li, X.; Deng, H. Simultaneous Determination of Antiretroviral Drugs in Human Hair with Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci 2018, 1083, 209–221. DOI: 10.1016/j.jchromb.2018.03.021.
  • Kumar, V. R.; Reddy, B. P. B.; Kumar, B. R.; Sreekanth, K.; Babu, K. N. High Throughput LC–MS/MS Method for Simultaneous Determination of Zidovudine, Lamivudine and Nevirapine in Human Plasma. J. Chromatogr. B 2013, 921–922, 9–14. DOI: 10.1016/j.jchromb.2012.12.042.
  • Baker, M. M.; Hammad, S. F.; Belal, T. S. Development and Validation of a Versatile HPLC-DAD Method for Simultaneous Determination of the Antiviral Drugs Daclatasvir, Ledipasvir, Sofosbuvir and Ribavirin in Presence of Seven Potential Impurities. Application to Assay of Dosage Forms and dissolution studies. Drug Dev Ind Pharm 2019, 45, 1111–1119. DOI: 10.1080/03639045.2019.1593444.
  • De Nicolò, A.; Simiele, M.; Pensi, D.; Boglione, L.; Allegra, S.; Di Perri, G.; D'Avolio, A. UPLC-MS/MS method for the simultaneous quantification of anti-HBV nucleos(t)ides analogs: Entecavir, lamivudine, telbivudine and tenofovir in plasma of HBV infected patients. J. Pharm. Biomed. Anal. 2015, 114, 127–132. DOI: 10.1016/j.jpba.2015.05.016.
  • Parsons, T. L.; Marzinke, M. A. Development and Validation of a Liquid Chromatographic-Tandem Mass Spectrometric Method for the Multiplexed Quantification of Etravirine, Maraviroc, Raltegravir, and Rilpivirine in Human Plasma and Tissue. J. Pharm. Biomed. Anal. 2016, 131, 333–344. DOI: 10.1016/j.jpba.2016.08.016.
  • Yamada, E.; Takagi, R.; Sudo, K.; Kato, S. Determination of Abacavir, Tenofovir, Darunavir, and Raltegravir in Human Plasma and Saliva Using Liquid Chromatography Coupled with Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2015, 114, 390–397. DOI: 10.1016/j.jpba.2015.06.005.
  • Ferrari, D.; Bagaglio, S.; Raso, M.; Galli, L.; Premaschi, S.; Messina, E.; Morsica, G.; Locatelli, M.; Uberti-Foppa, C.; Hasson, H. A Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Determination of Simeprevir, Daclatasvir, Sofosbuvir, and GS-331007 Applied to a Retrospective Clinical Pharmacological Study. J Chromatogr B Analyt Technol Biomed Life Sci ... 2019, 1120, 1–7. DOI: 10.1016/j.jchromb.2019.04.048.
  • Chu, L.; Wu, Y.; Duan, C.; Yang, J.; Yang, H.; Xie, Y.; Zhang, Q.; Qiao, S.; Li, X.; Shen, Z.; Deng, H. Simultaneous Quantitation of Zidovudine, Efavirenz, Lopinavir and Ritonavir in Human Hair by Liquid Chromatography-Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci 2018, 1097-1098, 54–63. DOI: 10.1016/j.jchromb.2018.08.031.
  • Ramírez-Ramírez, A.; Sánchez-Serrano, E.; Loaiza-Flores, G.; Plazola-Camacho, N.; Rodríguez-Delgado, R. G.; Figueroa-Damián, R.; Domínguez-Castro, M.; López-Martínez, M.; Flores-García, Z.; Hernández-Pineda, J. Simultaneous Quantification of Four Antiretroviral Drugs in Breast Milk Samples from HIV-Positive Women by an Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) Method. PLoS One. 2018, 13, e0191236–15. DOI: 10.1371/journal.pone.0191236.
  • Ibrahim, A. E.; Hashem, H.; Elhenawee, M.; Saleh, H. Comparison between Core-Shell and Totally Porous Particle Stationary Phases for Fast and Green LC Determination of Five Hepatitis-C Antiviral Drugs. J. Sep. Sci. 2018, 41, 1734–1742. DOI: 10.1002/jssc.201701263.
  • Ocque, A. J.; Hagler, C. E.; DiFrancesco, R.; Morse, G. D.; Talal, A. H. Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry for Determination of Direct Acting Antiviral Drugs in Human Liver Fine Needle Aspirates. J Chromatogr B Analyt Technol Biomed Life Sci ... 2017, 1052, 103–109. DOI: 10.1016/j.jchromb.2017.03.020.
  • Kromdijk, W.; Pereira, S. A.; Rosing, H.; Mulder, J. W.; Beijnen, J. H.; Huitema, A. D. R. Development and Validation of an Assay for the Simultaneous Determination of Zidovudine, Abacavir, Emtricitabine, Lamivudine, Tenofovir and Ribavirin in Human Plasma Using Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. B 2013, 919–920, 43–51. DOI: 10.1016/j.jchromb.2013.01.005.
  • Liu, Z. C.; Yang, F.; Yao, M.; Lin, Y. H.; Su, Z. J. Simultaneous Determination of Antiviral Drugs in Chicken Tissues by Ultra High Performance Liquid Chromatography with Tandem Mass Spectrometry. J. Sep. Sci. 2015, 38, 1784–1793. DOI: 10.1002/jssc.201401461.
  • Wu, H.; Wang, J.; Yang, H.; Li, G.; Zeng, Y.; Xia, W.; Li, Z.; Qian, M. Development and Application of an in-Cell Cleanup Pressurized Liquid Extraction with Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry to Detect Prohibited Antiviral Agents Sensitively in Livestock and Poultry Feces. J. Chromatogr. A. 2017, 1488, 10–16. DOI: 10.1016/j.chroma.2017.01.070.
  • Mu, P.; Xu, N.; Chai, T.; Jia, Q.; Yin, Z.; Yang, S.; Qian, Y.; Qiu, J. Simultaneous Determination of 14 Antiviral Drugs and Relevant Metabolites in Chicken Muscle by UPLC–MS/MS after QuEChERS Preparation. J. Chromatogr. B 2016, 1023–1024, 17–23. DOI: 10.1016/j.jchromb.2016.04.036.
  • Simiele, M.; Ariaudo, A.; De Nicolò, A.; Favata, F.; Ferrante, M.; Carcieri, C.; Bonora, S.; Di Perri, G.; D’Avolio, A. UPLC-MS/MS method for the simultaneous quantification of three new antiretroviral drugs, dolutegravir, elvitegravir and rilpivirine, and other thirteen antiretroviral agents plus cobicistat and ritonavir boosters in human plasma. J. Pharm. Biomed. Anal. 2017, 138, 223–230. DOI: 10.1016/j.jpba.2017.02.002.
  • Pinho, A. R.; Fortuna, A.; Falcão, A.; Santos, A. C.; Seiça, R.; Estevens, C.; Veiga, F.; Ribeiro, A. J. Comparison of ELISA and HPLC-MS Methods for the Determination of Exenatide in Biological and Biotechnology-Based Formulation Matrices. J. Pharm. Anal. 2019, 9, 143–155. DOI: 10.1016/j.jpha.2019.02.001.
  • Klencsár, B.; Li, S.; Balcaen, L.; Vanhaecke, F. High-Performance Liquid Chromatography Coupled to Inductively Coupled Plasma – Mass Spectrometry (HPLC-ICP-MS) for Quantitative Metabolite Profiling of Non-Metal Drugs. TrAC Trends Anal. Chem 2018, 104, 118–134. DOI: 10.1016/j.trac.2017.09.020.
  • Su, Y.; Wang, W.; Hu, J.; Liu, X. Dissipation Behavior, Residues Distribution and Dietary Risk Assessment of Tembotrione and Its Metabolite in Maize via QuEChERS Using HPLC-MS/MS Technique. Ecotoxicol. Environ. Saf. 2020, 191, (October 2019), 110187. DOI: 10.1016/j.ecoenv.2020.110187.
  • Li, M.; Hou, X.-F.; Zhang, J.; Wang, S.-C.; Fu, Q.; He, L.-C. Applications of HPLC/MS in the Analysis of Traditional Chinese Medicines. J. Pharm. Anal. 2011, 1, 81–91. DOI: 10.1016/S2095-1779(11)70015-6.
  • Muhammad, N.; Zia-Ul-Haq, M.; Ali, A.; Naeem, S.; Intisar, A.; Han, D.; Cui, H.; Zhu, Y.; Zhong, J.-L.; Rahman, A.; Wei, B. Ion Chromatography Coupled with Fluorescence/UV Detector: A Comprehensive Review of Its Applications in Pesticides and Pharmaceutical Drug Analysis. Arab. J. Chem 2021, 14, 102972. DOI: 10.1016/j.arabjc.2020.102972.
  • LaCourse, M. E.; LaCourse, W. R. General Instrumentation in HPLC *. In Liquid Chromatography; Elsevier, 2017; Vol. 1, pp 417–429. DOI: 10.1016/B978-0-12-805393-5.00017-8.
  • Moldoveanu, S. C.; V, D. Start of the Implementation of a New HPLC Method. In Selection of the HPLC Method in Chemical Analysis; Elsevier, 2017; pp 1–29. DOI: 10.1016/B978-0-12-803684-6.00001-9.
  • Maggio, R. M.; Vignaduzzo, S. E.; Kaufman, T. S. Practical and Regulatory Considerations for Stability-Indicating Methods for the Assay of Bulk Drugs and Drug Formulations. TrAC Trends Anal. Chem 2013, 49, 57–70. DOI: 10.1016/j.trac.2013.05.008.
  • Tabani, H.; Alexovič, M.; Sabo, J.; Ramos Payán, M. An Overview on the Recent Applications of Agarose as a Green Biopolymer in Micro-Extraction-Based Sample Preparation Techniques. Talanta 2021, 224, 121892. DOI: 10.1016/j.talanta.2020.121892.
  • Raessler, M. Sample Preparation and Current Applications of Liquid Chromatography for the Determination of Non-Structural Carbohydrates in Plants. TrAC Trends Anal. Chem 2011, 30, 1833–1843. DOI: 10.1016/j.trac.2011.06.013.
  • Galea, C.; Mangelings, D.; Vander Heyden, Y. Characterization and Classification of Stationary Phases in HPLC and SFC – a Review. Anal. Chim. Acta. 2015, 886, 1–15. DOI: 10.1016/j.aca.2015.04.009.
  • Zhang, L.; Dai, Q.; Qiao, X.; Yu, C.; Qin, X.; Yan, H. Mixed-Mode Chromatographic Stationary Phases: Recent Advancements and Its Applications for High-Performance Liquid Chromatography. TrAC Trends Anal. Chem 2016, 82, 143–163. DOI: 10.1016/j.trac.2016.05.011.
  • Savaşer, A.; Goraler, S.; Taşöz, A.; Uslu, B.; Lingeman, H.; Özkan, S. A. Determination of Abacavir, Lamivudine and Zidovudine in Pharmaceutical Tablets, Human Serum and in Drug Dissolution Studies by HPLC. Chroma. 2007, 65, 259–265. DOI: 10.1365/s10337-006-0166-6.
  • Hanai, T. Fundamental Properties of Packing Materials for Liquid Chromatography. Separations 2019, 6, 2. DOI: 10.3390/separations6010002.
  • Sengel-Turk, C. T.; Gumustas, M.; Uslu, B.; Ozkan, S. A. A Novel Approach for Drug Targeting. In Design of Nanostructures for Theranostics Applications; Elsevier, 2018; pp 69–107. DOI: 10.1016/B978-0-12-813669-0.00003-8.
  • Rashed, N. S.; Zayed, S.; Abdelazeem, A.; Fouad, F. Development and Validation of a Green HPLC Method for the Analysis of Clorsulon, Albendazole, Triclabendazole and Ivermectin Using Monolithic Column: Assessment of the Greenness of the Proposed Method. Microchem. J 2020, 157, 105069. DOI: 10.1016/j.microc.2020.105069.
  • Santana-Mayor, Á.; Rodríguez-Ramos, R.; Herrera-Herrera, A. V.; Socas-Rodríguez, B.; Rodríguez-Delgado, M. Á. Deep Eutectic Solvents. The New Generation of Green Solvents in Analytical Chemistry. TrAC Trends Anal. Chem 2021, 134, 116108. DOI: 10.1016/j.trac.2020.116108.
  • Kurowska-Susdorf, A.; Zwierżdżyński, M.; Bevanda, A. M.; Talić, S.; Ivanković, A.; Płotka-Wasylka, J. Green Analytical Chemistry: Social Dimension and Teaching. TrAC Trends Anal. Chem 2019, 111, 185–196. DOI: 10.1016/j.trac.2018.10.022.
  • Tobiszewski, M.; Mechlińska, A.; Namieśnik, J. Green Analytical chemistry-theory and practice. Chem. Soc. Rev. 2010, 39, 2869–2878. DOI: 10.1039/b926439f.
  • Li, Y.; Shen, Y.; Yao, C.; Guo, D. Quality Assessment of Herbal Medicines Based on Chemical Fingerprints Combined with Chemometrics Approach: A Review. J. Pharm. Biomed. Anal. 2020, 185, 113215. DOI: 10.1016/j.jpba.2020.113215.
  • Anzardi, M. B.; Arancibia, J. A.; Olivieri, A. C. Processing Multi-Way Chromatographic Data for Analytical Calibration, Classification and Discrimination: A Successful Marriage between Separation Science and Chemometrics. TrAC Trends Anal. Chem. 2021, 134, 116128. DOI: 10.1016/j.trac.2020.116128.
  • Suzuki, A.; Miyazaki, M.; Matsuda, J.; Yoneshige, A. High-Performance Thin-Layer Chromatography/Mass Spectrometry for the Analysis of Neutral Glycosphingolipids. Biochim. Biophys. Acta. 2011, 1811, 861–874. DOI: 10.1016/j.bbalip.2011.06.018.
  • Shewiyo, D. H.; Kaale, E.; Risha, P. G.; Dejaegher, B.; Smeyers-Verbeke, J.; Heyden, Y. Vander, HPTLC Methods to Assay Active Ingredients in Pharmaceutical Formulations: A Review of the Method Development and Validation Steps. J. Pharm. Biomed. Anal. 2012, 66, 11–23. DOI: 10.1016/j.jpba.2012.03.034.
  • El-Gizawy, S. M.; El-Shaboury, S. R.; Atia, N. N.; Abo-Zeid, M. N. New, Simple and Sensitive HPTLC Method for Simultaneous Determination of anti-Hepatitis C Sofosbuvir and Ledipasvir in Rabbit Plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1092, 432–439. DOI: 10.1016/j.jchromb.2018.06.033.
  • P. K.; S. C. D.; A. K. Validated HPTLC Method for the Determination of Abacavir as Bulk Drug and in Pharmaceutical Dosage Form. Jcpr. 2011, 1, 311–314. DOI: 10.33786/JCPR.2011.v01i04.004.
  • Abo-Zeid, M. N.; El-Gizawy, S. M.; Atia, N. N.; El-Shaboury, S. R. Efficient HPTLC-Dual Wavelength Spectrodensitometric Method for Simultaneous Determination of Sofosbuvir and Daclatasvir: Biological and Pharmaceutical Analysis. J. Pharm. Biomed. Anal. 2018, 156, 358–365. DOI: 10.1016/j.jpba.2018.04.049.
  • Venkatesh, P.; Daggumati, M. Development and Validation of a Normal-Phase HPTLC Method for the Simultaneous Analysis of Lamivudine and Zidovudine in Fixed-Dose Combination Tablets. J. Pharm. Anal. 2012, 2, 152–155. DOI: 10.1016/j.jpha.2011.11.002.
  • Salama, F. M.; Attia, K. A.; Abouserie, A. A.; El-Olemy, A.; Abolmagd, E. Application of TLC Densitometric Method for Simultaneous Estimation of the Newly Co-Formulated Antiviral Agents Ledipasvir and Sofosbuvir in Their Tablet Dosage Form. Anal. Chem. Lett 2017, 7, 241–247. DOI: 10.1080/22297928.2017.1325331.
  • Elkhoudary, M. M.; Selim, B. M.; AbdelSalam, R. A.; Hadad, G. M.; El-Gindy, A. Development and Validation of a Simple HPTLC Method for the Determination of New Hepatitis C Subtype 4 Antiviral Agents in Their Tablet Dosage Form. Jpc-J. Planar Chromat. 2020, 33, 71–77. DOI: 10.1007/s00764-019-00006-y.
  • El-Yazbi, A. F.; Elashkar, N. E.; Abdel-Hay, K. M.; Talaat, W.; Ahmed, H. M. Eco-Friendly HPTLC Method for Simultaneous Analysis of Sofosbuvir and Ledipasvir in Biological and Pharmaceutical Samples: Stability Indicating Study. Microchem. J 2020, 154, (July 2019), 104584. DOI: 10.1016/j.microc.2019.104584.
  • Saraya, R. E.; Elhenawee, M.; Saleh, H. Development of a Highly Sensitive High-Performance Thin-Layer Chromatography Method for the Screening and Simultaneous Determination of Sofosbuvir, Daclatasvir, and Ledipasvir in Their Pure Forms and Their Different Pharmaceutical Formulations. J. Sep. Sci. 2018, 41, 3553–3560. DOI: 10.1002/jssc.201800567.
  • Ibrahim, A. E.; Saraya, R. E.; Saleh, H.; Elhenawee, M. Development and Validation of Eco-Friendly Micellar-HPLC and HPTLC-Densitometry Methods for the Simultaneous Determination of Paritaprevir, Ritonavir and Ombitasvir in Pharmaceutical Dosage Forms. Heliyon 2019, 5, e01518. DOI: 10.1016/j.heliyon.2019.e01518.
  • Rezk, M. R.; Monir, H. H.; Marzouk, H. M. Novel Determination of a New Antiviral Combination; Sofosbuvir and Velpatasvir by High Performance Thin Layer Chromatographic Method; Application to Real Human Samples. Microchem. J 2019, 146, 828–834. DOI: 10.1016/j.microc.2019.02.012.
  • Gao, H.; Yan, C.; Wu, W.; Li, J. Application of Microfluidic Chip Technology in Food Safety Sensing. Sensors 2020, 20, 1792. DOI: 10.3390/s20061792.
  • Ates, H. C.; Roberts, J. A.; Lipman, J.; Cass, A. E. G.; Urban, G. A.; Dincer, C. On-Site Therapeutic Drug Monitoring. Trends Biotechnol. 2020, 38, 1262–1277. DOI: 10.1016/j.tibtech.2020.03.001.
  • Rusheen, A. E.; Gee, T. A.; Jang, D. P.; Blaha, C. D.; Bennet, K. E.; Lee, K. H.; Heien, M. L.; Oh, Y. Evaluation of Electrochemical Methods for Tonic Dopamine Detection in Vivo. TrAC Trends Anal. Chem 2020, 132, 116049. DOI: 10.1016/j.trac.2020.116049.
  • Chen, X.; Dong, T.; Wei, X.; Yang, Z.; Matos Pires, N. M.; Ren, J.; Jiang, Z. Electrochemical Methods for Detection of Biomarkers of Chronic Obstructive Pulmonary Disease in Serum and Saliva. Biosens. Bioelectron. 2019, 142, 111453. DOI: 10.1016/j.bios.2019.111453.
  • De Rycke, E.; Stove, C.; Dubruel, P.; De Saeger, S.; Beloglazova, N. Recent Developments in Electrochemical Detection of Illicit Drugs in Diverse Matrices. Biosens. Bioelectron. 2020, 169, 112579. DOI: 10.1016/j.bios.2020.112579.
  • Florea, A.; de Jong, M.; De Wael, K. Electrochemical Strategies for the Detection of Forensic Drugs. Curr. Opin. Electrochem 2018, 11, 34–40. DOI: 10.1016/j.coelec.2018.06.014.
  • Zabihollahpoor, A.; Rahimnejad, M.; Najafpour-Darzi, G.; Moghadamnia, A. A. Recent Advances in Electroanalytical Methods for the Therapeutic Monitoring of Antiepileptic Drugs: A Comprehensive Review. J. Pharm. Biomed. Anal. 2020, 188, 113394. DOI: 10.1016/j.jpba.2020.113394.
  • Ashrafi, A. M.; Kurbanoglu, S.; Vytřas, K.; Uslu, B.; Ozkan, S. A. Electrochemical Mechanism and Sensitive Assay of Antiretroviral Drug Abacavir in Biological Sample Using Multiwalled Carbon Nanotube Modified Pyrolytic Graphite Electrode. J. Electroanal. Chem. 2014, 712, 178–184. DOI: 10.1016/j.jelechem.2013.11.012.
  • Shahrokhian, S.; Azimzadeh, M.; Amini, M. K. Modification of Glassy Carbon Electrode with a Bilayer of Multiwalled Carbon Nanotube/Tiron-Doped Polypyrrole: Application to Sensitive Voltammetric Determination of Acyclovir. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 53, 134–141. DOI: 10.1016/j.msec.2015.04.030.
  • Shetti, N. P.; Malode, S. J.; Nandibewoor, S. T. Electrochemical Behavior of an Antiviral Drug Acyclovir at fullerene-C(60)-modified glassy carbon electrode. Bioelectrochemistry 2012, 88, 76–83. DOI: 10.1016/j.bioelechem.2012.06.004.
  • Sadikoglu, M.; Saglikoglu, G.; Yagmur, S.; Orta, E.; Yilmaz, S. Voltammetric Determination of Acyclovir in Human Urine Using Ultra Trace Graphite and Glassy Carbon Electrodes. Curr. Anal. Chem 2011, 7, 130–135. DOI: 10.2174/157341111794815011..
  • Joseph, R.; Kumar, K. G. Electrochemical Sensing of Acyclovir at a Gold Electrode Modified with 2-mercaptobenzothiazole-[5,10,15,20-tetrakis-(3-methoxy-4-hydroxyphenyl)porphyrinato]copper(II). Anal. Sci. 2011, 27, 67–72. DOI: 10.2116/analsci.27.67.
  • Tarlekar, P.; Khan, A.; Chatterjee, S. Nanoscale Determination of Antiviral Drug Acyclovir Engaging Bifunctionality of Single Walled Carbon Nanotubes - nafion film. J. Pharm. Biomed. Anal. 2018, 151, 1–9. DOI: 10.1016/j.jpba.2017.12.006.
  • Carolina Ordoñez, H.; José Espitia, H.; Harold Díaz, S.; Rojas, G.; Alonso Jaramillo, A. Voltammetric Analysis of Acyclovir at Glassy Carbon/Oppy/Templated Electrode. J. Phys: Conf. Ser. 2018, 1119, 012008. DOI: 10.1088/1742-6596/1119/1/012008.
  • Wang, P.; Gan, T.; Zhang, J.; Luo, J.; Zhang, S. Polyvinylpyrrolidone-Enhanced Electrochemical Oxidation and Detection of Acyclovir. J. Mol. Liq 2013, 177, 129–132. DOI: 10.1016/j.molliq.2012.11.009.
  • Can, S.; Yilmaz, S.; Saglikoglu, G.; Sadikoglu, M.; Menek, N. Electrocatalytic Oxidation of Acyclovir on Poly (p -Aminobenzene Sulfonic Acid) Film Modified Glassy Carbon Electrode. Electroanalysis 2015, 27, 2431–2438. DOI: 10.1002/elan.201500102.
  • Shetti, N. P.; Nayak, D. S.; Malode, S. J.; Kulkarni, R. M. Nano Molar Detection of Acyclovir, an Antiviral Drug at Nanoclay Modified Carbon Paste Electrode. Sens. Bio-Sensing Res 2017, 14, 39–46. DOI: 10.1016/j.sbsr.2017.04.004.
  • Hamtak, M.; Fotouhi, L.; Hosseini, M.; Dorraji, P. S. Sensitive Determination of Acyclovir in Biological and Pharmaceutical Samples Based on Polymeric Film Decorated with Nanomaterials on Nanoporous Glassy Carbon Electrode. J. Electrochem. Soc. 2018, 165, B632–B637. DOI: 10.1149/2.1051813jes.
  • Pavamana, M.; Shetti, N. P.; Malode, S. J.; Bukkitgar, S. D. Nano Level Detection and Analysis of an Antiviral Drug at ZnO Nanoparticles Modified Sensor. Mater. Today Proc 2019, 18, 1568–1573. DOI: 10.1016/j.matpr.2019.07.086.
  • Dorraji, P. S.; Jalali, F. Differential Pulse Voltammetric Determination of Nanomolar Concentrations of Antiviral Drug Acyclovir at Polymer Film Modified Glassy Carbon Electrode. Mater Sci Eng C Mater Biol Appl ... 2016, 61, 858–864. DOI: 10.1016/j.msec.2016.01.030.
  • Karim-Nezhad, G.; Sarkary, A.; Khorablou, Z.; Seyed Dorraji, P. Synergistic Effect of ZnO Nanoparticles and Carbon Nanotube and Polymeric Film on Electrochemical Oxidation of Acyclovir. Iran. J. Pharm. Res., 2018, 17 (1), 52–62. DOI: 10.22037/ijpr.2018.2171.
  • Dilgin, D. G.; Karakaya, S. Differential Pulse Voltammetric Determination of Acyclovir in Pharmaceutical Preparations Using a Pencil Graphite Electrode. Mater Sci Eng C Mater Biol Appl ... 2016, 63, 570–576. DOI: 10.1016/j.msec.2016.02.079.
  • Atta, N. F.; Galal, A.; Ahmed, Y. M. New Strategy for Determination of anti-Viral Drugs Based on Highly Conductive Layered Composite of MnO2/Graphene/Ionic Liquid Crystal/Carbon Nanotubes. J. Electroanal. Chem 2019, 838, 107–118. DOI: 10.1016/j.jelechem.2019.02.056.
  • Dorraji, P. S.; Noori, M.; Fotouhi, L. Voltammetric Determination of Adefovir Dipivoxil by Using a Nanocomposite Prepared from Molecularly Imprinted Poly(o-Phenylenediamine), Multi-Walled Carbon Nanotubes and Carbon Nitride. Microchim. Acta 2019, 186, 427. DOI: 10.1007/s00604-019-3538-y..
  • Jain, R.; Sharma, R. Voltammetric Quantification of anti-Hepatitis Drug Adefovir in Biological Matrix and Pharmaceutical Formulation. J. Pharm. Anal. 2012, 2, 98–104. DOI: 10.1016/j.jpha.2011.10.002.
  • El-Badawy, F. M.; Mohamed, M. A.; El-Desoky, H. S. Fabrication of an Electrochemical Sensor Based on Manganese Oxide Nanoparticles Supported on Reduced Graphene Oxide for Determination of Subnanomolar Level of anti-Hepatitis C Daclatasvir in the Formulation and Biological Models. Microchem. J 2020, 157, 104914. DOI: 10.1016/j.microc.2020.104914.
  • Azab, S. M.; Fekry, A. M. Electrochemical Design of a New Nanosensor Based on Cobalt Nanoparticles. RSC Adv. 2017, 7, 1118–1126. DOI: 10.1039/C6RA25826C.
  • Abdel Ghani, N. T.; Abdulla, H.; Rizk, M. S.; Dena, A. S. A.; El Nashar, R. M. Molecularly Imprinted Polymer/Reduced Graphene Oxide‒Based Carbon‒Paste Sensor for Highly Sensitive Determination of the anti‒HCV Drug Daclatasvir Dihydrochloride. Sensors Actuators, B Chem 2019, 283, 6–17. DOI: 10.1016/j.snb.2018.11.158.
  • Atta, N. F.; Ahmed, Y. M.; Galal, A. Nano-Magnetite/Ionic Liquid Crystal Modifiers of Carbon Nanotubes Composite Electrode for Ultrasensitive Determination of a New anti-Hepatitis C Drug in Human Serum. J. Electroanal. Chem 2018, 823, 296–306. DOI: 10.1016/j.jelechem.2018.06.016.
  • Atta, N. F.; Galal, A.; Ahmed, Y. M. Electrochemical Method for the Determination of Three New anti-Hepatitis C Drugs: Application in Human Blood Serum. J. Electrochem. Soc. 2018, 165, B442–B451. DOI: 10.1149/2.0571810jes.
  • Narang, J.; Malhotra, N.; Singh, G.; Pundir, C. S. Voltammetric Detection of anti-HIV Replication Drug Based on Novel Nanocomposite gold-nanoparticle-CaCO3 hybrid material. Bioprocess Biosyst Eng 2015, 38, 815–822. DOI: 10.1007/s00449-014-1323-1.
  • Singhal, C.; Malhotra, N.; Chauhan, N.; Narang, S.; Pundir, C. S.; Narang, J. Hierarchical Electrodeposition of Methylene Blue on ZnO Nanocrystals Thin Films Layered on SnO2/F Electrode for in Vitro Sensing of anti-Thalassemic Drug. Mater Sci Eng C Mater Biol Appl ... 2016, 62, 596–604. DOI: 10.1016/j.msec.2016.02.006.
  • Łuczak, T. Development of a New Voltammetric Sensor by Using a Hybrid Material Consisting of Gold Nanoparticles and S-Organic Compounds for Detection of Deferiprone-Anti-Thalassemia and anti HIV-1 Drug. Measurement 2018, 126, 242–251. DOI: 10.1016/j.measurement.2018.05.028.
  • Narang, J.; Malhotra, N.; Singh, G.; Pundir, C. S. Electrochemical Impediometric Detection of anti-HIV Drug Taking Gold Nanorods as a Sensing Interface. Biosens. Bioelectron. 2015, 66, 332–337. DOI: 10.1016/j.bios.2014.11.038.
  • Ntshongontshi, N.; Baleg, A. A. A.; Ajayi, R. F.; Rassie, C.; Nxusani, E.; Wilson, L.; Feleni, U.; Sidwaba, U.; Qakala, S.; Douman, S. F.; et al. Cytochrome P450-3A4/Copper-Poly(Propylene Imine)-Polypyrrole Star Co-Polymer Nanobiosensor System for Delavirdine - A Non-Nucleoside Reverse Transcriptase Inhibitor HIV Drug. Jnanor. 2016, 44, 265–280. DOI: 10.4028/www.scientific.net/JNanoR.44.265.
  • Raj, M.; Gupta, P.; Thapliyal, N.; Goyal, R. N. A Novel Hybrid Nano-Composite Grafted Electrochemically Reduced Graphene Oxide Based Sensor for Sensitive Determination of Efavirenz. Electroanalysis 2017, 29, 456–465. DOI: 10.1002/elan.201600397.
  • Castro, A. A.; Cordoves, A. I. P.; Farias, P. A. M. Determination of the Antiretroviral Drug Acyclovir in Diluted Alkaline Electrolyte by Adsorptive Stripping Voltammetry at the Mercury Film Electrode. Anal. Chem. Insights. 2013, 8, 21–28. DOI: 10.4137/ACI.S11608.
  • Thapliyal, N.; Osman, N. S. E.; Patel, H.; Karpoormath, R.; Goyal, R. N.; Moyo, T.; Patel, R. NiO–ZrO 2 Nanocomposite Modified Electrode for the Sensitive and Selective Determination of Efavirenz, an anti-HIV Drug. RSC Adv. 2015, 5, 40057–40064. DOI: 10.1039/C5RA05286F.
  • Said, M. I.; Abdel-Aal, F. A. M.; Rageh, A. H. Novel Sponge-like Mn5O8 Nanoparticles Deposited on Graphite Electrode for Electrochemical Study of Hepatitis C Antiviral Drug. Elbasvir. Microchem. J 2020, 157, 105056. DOI: 10.1016/j.microc.2020.105056.
  • Tandel, R. D.; Naik, R. S.; Seetharamappa, J. Electrochemical Characteristics and Electrosensing of an Antiviral Drug, Entecavir via Synergic Effect of Graphene Oxide Nanoribbons and Ceria Nanorods. Electroanalysis 2017, 29, 1301–1309. DOI: 10.1002/elan.201600492.
  • Jhankal, K. K.; Sharma, A.; Ramswaroop.; Sharma, D. K. Quantification of Antiviral Drug Entecavir in Pharmaceutical Formulation by Voltammetric Techniques. J. Pharm. Sci. Res 2015, 7, 10–13.
  • Paimard, G.; Gholivand, M. B.; Shamsipur, M. Determination of Ganciclovir as an Antiviral Drug and Its Interaction with DNA at Fe3O4/Carboxylated Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode. Meas. J. Int. Meas. Confed 2016, 77, 269–277. DOI: 10.1016/j.measurement.2015.09.019.
  • Gholivand, M. B.; Karimian, N. Fabrication of a Highly Selective and Sensitive Voltammetric Ganciclovir Sensor Based on Electropolymerized Molecularly Imprinted Polymer and Gold Nanoparticles on Multiwall Carbon Nanotubes/Glassy Carbon Electrode. Sensors Actuators B Chem 2015, 215, 471–479. DOI: 10.1016/j.snb.2015.04.007.
  • Zhou, Y.; Zhi, J.; Zhang, X.; Xu, M. Electrochemical Studies of Ganciclovir at Boron-Doped Nanocrystalline Diamond Electrodes. Diam. Relat. Mater 2011, 20, 18–22. DOI: 10.1016/j.diamond.2010.10.008.
  • Ashrafi, A. M.; Gumustas, M.; Vytřas, K.; Nematollahi, D.; Uslu, B.; Mikysek, T.; Jirásko, R.; Ozkan, S. A. Determination and Detailed Mechanism Study of Antiviral Drug Fosamprenavir Using Carbon Paste Electrode in the Presence of Triton X-100. Electrochim. Acta 2013, 109, 381–388. DOI: 10.1016/j.electacta.2013.07.100.
  • El Gohary, N. A.; Madbouly, A.; El Nashar, R. M.; Mizaikoff, B. Synthesis and Application of a Molecularly Imprinted Polymer for the Voltammetric Determination of Famciclovir. Biosens. Bioelectron. 2015, 65, 108–114. DOI: 10.1016/j.bios.2014.10.024.
  • Singh, K.; Jaiswal, S.; Singh, R.; Fatma, S.; Prasad, B. B. One-by-One Imprinting in Two Eccentric Layers of Hollow Core-Shells: Sequential Electroanalysis of anti-HIV Drugs. Biosens. Bioelectron. 2018, 111, 82–89. DOI: 10.1016/j.bios.2018.03.068.
  • El-Wekil, M. M.; Mahmoud, A. M.; Alkahtani, S. A.; Marzouk, A. A.; Ali, R. A Facile Synthesis of 3D NiFe2O4 Nanospheres Anchored on a Novel Ionic Liquid Modified Reduced Graphene Oxide for Electrochemical Sensing of Ledipasvir: Application to Human Pharmacokinetic Study. Biosens. Bioelectron. 2018, 109, 164–170. DOI: 10.1016/j.bios.2018.03.015.
  • Abdel-Aal, F. A. M.; Rageh, A. H.; Said, M. I.; Saleh, G. A. ε-MnO2-Modified Graphite Electrode as a Novel Electrochemical Sensor for the Ultrasensitive Detection of the Newly FDA Approved Hepatitis C Antiviral Drug Ledipasvir. Anal. Chim. Acta. 2018, 1038, 29–40. DOI: 10.1016/j.aca.2018.07.018.
  • Allahverdiyeva, S.; Keskin, E.; Pınar, P. T.; Yunusoğlu, O.; Yardım, Y.; Şentürk, Z. Electroanalytical Investigation and Determination of Hepatitis C Antiviral Drug Ledipasvir at a Non-Modified Boron-Doped Diamond Electrode. Diam. Relat. Mater 2020, 108, 107962. DOI: 10.1016/j.diamond.2020.107962.
  • Skrzypek, S. Electrochemical Study of Moroxydine and Its Voltammetric Determination with a Silver Amalgam Film Electrode. Electroanalysis. 2011, 23, 2781–2788. DOI: 10.1002/elan.201100343.
  • Teradal, N. L.; Prashanth, S. N.; Seetharamappa, J. Electrochemical Studies of Nevirapine, an anti-HIV Drug, and Its Assay in Tablets and Biological Samples. J. Electrochem. Sci. Eng 2012, 67–75. 2 . DOI: 10.5599/jese.2012.0008.
  • Zhang, F.; Li, L.; Luo, L.; Ding, Y.; Liu, X. Electrochemical Oxidation and Determination of Antiretroviral Drug Nevirapine Based on Uracil-Modified Carbon Paste Electrode. J. Appl. Electrochem. 2013, 43, 263–269. DOI: 10.1007/s10800-012-0516-z.
  • Apath, D.; Moyo, M.; Shumba, M. TiO 2 Nanoparticles Decorated Graphene Nanoribbons for Voltammetric Determination of an anti-HIV Drug Nevirapine. J. Chem 2020, 2020, 1–13. DOI: 10.1155/2020/3932715.
  • Shahrokhian, S.; Kohansal, R.; Ghalkhani, M.; Amini, M. K. Electrodeposition of Copper Oxide Nanoparticles on Precasted Carbon Nanoparticles Film for Electrochemical Investigation of anti-HIV Drug Nevirapine. Electroanalysis 2015, 27, 1989–1997. DOI: 10.1002/elan.201500027.
  • Gholivand, M. B.; Ahmadi, E.; Haseli, M. A Novel Voltammetric Sensor for Nevirapine, Based on Modified Graphite Electrode by MWCNs/Poly(Methylene Blue)/Gold Nanoparticle. Anal. Biochem. 2017, 527, 4–12. DOI: 10.1016/j.ab.2017.03.018.
  • Tiwari, P.; Nirala, N. R.; Prakash, R. Determination of the anti‐HIV Drug Nevirapine Using Electroactive 2D Material Pd@rGO Decorated with MoS 2 Quantum Dots. ChemistrySelect 2018, 3, 5341–5347. DOI: 10.1002/slct.201702250.
  • Ahmadi, E.; Eyvani, M. R.; Riahifar, V.; Momeneh, H.; Karami, C. Amperometric Determination of Nevirapine by GCE Modified with C-MWCNTs and Synthesized 11-Mercaptoundecanoyl Hydrazinecarbothioamide Coated Silver Nanoparticles. Microchem. J 2019, 146, 1218–1226. DOI: 10.1016/j.microc.2019.02.054.
  • Demirtas, C.; Yilmaz, S.; Saglikoglu, G.; Sadikoglu, M. Electrochemical Determination of Phenazopyridine Hydrocloride Using Poly(p-Aminobenzene Sulfonic Acid) Film Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci 2015, 10, 1883–1892.
  • Abdel Gaber, A. A.; Ahmed, S. A.; Abdel Rahim, A. M. Cathodic Adsorptive Stripping Voltammetric Determination of Ribavirin in Pharmaceutical Dosage Form. Urine and Serum. Arab. J. Chem 2017, 10, S2175–S2181. DOI: 10.1016/j.arabjc.2013.07.051.
  • Aftab, S.; Kurbanoglu, S.; Ozcelikay, G.; Bakirhan, N. K.; Shah, A.; Ozkan, S. A. Carbon Quantum Dots Co-Catalyzed with Multiwalled Carbon Nanotubes and Silver Nanoparticles Modified Nanosensor for the Electrochemical Assay of anti-HIV Drug Rilpivirine. Sensors Actuators B Chem 2019, 285, 571–583. DOI: 10.1016/j.snb.2019.01.094.
  • Tawab, M. A. H. A.; El-Moghny, M. G. A.; El Nashar, R. M. Computational Design of Molecularly Imprinted Polymer for Electrochemical Sensing and Stability Indicating Study of Sofosbuvir. Microchem. J 2020, 158, 105180. DOI: 10.1016/j.microc.2020.105180.
  • Aliakbarinodehi, N.; Jolly, P.; Bhalla, N.; Miodek, A.; De Micheli, G.; Estrela, P.; Carrara, S. Aptamer-Based Field-Effect Biosensor for Tenofovir Detection. Sci. Rep. 2017, 7, 44409. DOI: 10.1038/srep44409.
  • Ozcelikay, G.; Dogan-Topal, B.; Ozkan, S. A. An Electrochemical Sensor Based on Silver Nanoparticles-Benzalkonium Chloride for the Voltammetric Determination of Antiviral Drug Tenofovir. Electroanalysis 2018, 30, 943–954. DOI: 10.1002/elan.201700753.
  • Chimie, R. R.; De; Ozcelikay, G.; Dogan-Topal, B.; Ozkan, S. A. Electrochemical Characteristics of Tenofovir and Its Determination in Dosage Form. By Electroanalytical Methods. Acad. ROMÂNĂ Rev. Roum. Chim 2017, 62, 569–578.
  • Jain, R.; Sharma, R. Cathodic Adsorptive Stripping Voltammetric Detection and Quantification of the Antiretroviral Drug Tenofovir in Human Plasma and a Tablet Formulation. J. Electrochem. Soc. 2013, 160, H489–H493. DOI: 10.1149/2.105308jes.
  • Malakhova, N.; Tsmokalyuk, A.; Ivoilova, A.; Tumashov, А.; V.; Rusinov; Ivanova, A.; Alisa, K. Development and Validation of Voltammetric Method for Quantitation of New Antiviral Drug Triazavirin Using Bare Carbon Screen-Printed Electrodes. Anal. Bioanal. Electrochem 2019, 11, 292–303.
  • Pınar, P.; Senturk, Z. Voltammetric Investigation of Antiviral Drug Valacyclovir at a Boron-Doped Diamond Electrode in Different Electrolyte Media: Its Determination Enhanced by Anionic Surfactant in Pharmaceuticals and Biological Fluids. Cpa. 2017, 13, 175–187. pp . DOI: 10.2174/1573412912666160901102844.
  • Khalafallah, D.; Akhtar, N.; Alothman, O. Y.; Fouad, H.; K, A. k. Self-Assembled Dopamine Nanolayers Wrapped Carbon Nanotubes as Carbon-Carbon Bi-Functional Nanocatalyst for Highly Efficient Oxygen Reduction Reaction and Antiviral Drug Monitoring. Solid State Sci 2017, 71, 51–60. DOI: 10.1016/j.solidstatesciences.2017.07.002.
  • Todakar, A.; Shetti, N. P.; Devarushi, U. S.; Tuwar, S. M. Electro Oxidation and Analytical Applications of Valacyclovir at Reduced Graphene Oxide Modified Carbon Paste Electrode. Mater. Today Proc 2019, 18, 550–557. DOI: 10.1016/j.matpr.2019.06.445.
  • Shah, B.; Lafleur, T.; Chen, A. Carbon Nanotube Based Electrochemical Sensor for the Sensitive Detection of Valacyclovir. Faraday Discuss. 2013, 164, 135–146. DOI: 10.1039/c3fd00023k.
  • Saleh, G. A.; Askal, H. F.; Refaat, I. H.; Naggar, A. H.; Abdel-Aal, F. A. M. Adsorptive Square Wave Voltammetric Determination of the Antiviral Drug Valacyclovir on a Novel Sensor of Copper Microparticles–Modified Pencil Graphite Electrode. Arab. J. Chem 2016, 9, 143–151. DOI: 10.1016/j.arabjc.2015.08.015.
  • Adhikari, B.-R.; Govindhan, M.; Schraft, H.; Chen, A. Simultaneous and Sensitive Detection of Acetaminophen and Valacyclovir Based on Two Dimensional Graphene Nanosheets. J. Electroanal. Chem 2016, 780, 241–248. DOI: 10.1016/j.jelechem.2016.09.023.
  • Dogan-Topal, B.; Bozal-Palabıyık, B.; Uslu, B.; Ozkan, S. A. Multi-Walled Carbon Nanotube Modified Glassy Carbon Electrode as a Voltammetric Nanosensor for the Sensitive Determination of anti-Viral Drug Valganciclovir in Pharmaceuticals. Sensors Actuators B Chem 2013, 177, 841–847. DOI: 10.1016/j.snb.2012.11.111.
  • Gholivand, M. B.; Torkashvand, M. The Fabrication of a New Electrochemical Sensor Based on Electropolymerization of Nanocomposite Gold Nanoparticle-Molecularly Imprinted Polymer for Determination of Valganciclovir. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 594–603. DOI: 10.1016/j.msec.2015.09.016.
  • El-Wekil, M. M.; Mahmoud, A. M.; Marzouk, A. A.; Alkahtani, S. A.; Ali, R. A Novel Molecularly Imprinted Sensing Platform Based on MWCNTs/AuNPs Decorated 3D Starfish like Hollow Nickel Skeleton as a Highly Conductive Nanocomposite for Selective and Ultrasensitive Analysis of a Novel Pan-Genotypic Inhibitor Velpatasvir in Body Fl. J. Mol. Liq 2018, 271, 105–111. DOI: 10.1016/j.molliq.2018.08.105.
  • Saxena, S.; Shrivastava, R.; Satsangee, S. P. Voltammetric Determination of Wedelolactone, an anti-HIV Herbal Drug, at Boron-Doped Diamond Electrode. J. Chem. Sci. 2015, 127, 959–966. DOI: 10.1007/s12039-015-0853-7.
  • Skrzypek, S. Electrochemical Studies of the Neuraminidase Inhibitor Zanamivir and Its Voltammetric Determination in Spiked Urine. Electroanalysis 2010, 22, 2339–2346. DOI: 10.1002/elan.201000163.
  • Rafati, A. A.; Afraz, A. Amperometric Sensing of anti-HIV Drug Zidovudine on Ag Nanofilm-Multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 39, 105–112. DOI: 10.1016/j.msec.2014.02.037.
  • Kurbanoglu, S.; Ozkan, S. A. Electrochemical Carbon Based Nanosensors: A Promising Tool in Pharmaceutical and Biomedical Analysis. J. Pharm. Biomed. Anal. 2018, 147, 439–457. DOI: 10.1016/j.jpba.2017.06.062.
  • Cash, K. J.; Clark, H. A. Nanosensors and Nanomaterials for Monitoring Glucose in Diabetes. Trends Mol Med 2010, 16, 584–593. DOI: 10.1016/j.molmed.2010.08.002.
  • Bansal, P.; Bhanjana, G.; Prabhakar, N.; Dhau, J. S.; Chaudhary, G. R. Electrochemical Sensor Based on ZrO2 NPs/Au Electrode Sensing Layer for Monitoring Hydrazine and Catechol in Real Water Samples. J. Mol. Liq 2017, 248, 651–657. DOI: 10.1016/j.molliq.2017.10.098.
  • Ilager, D.; Shetti, N. P.; Malladi, R. S.; Shetty, N. S.; Reddy, K. R.; Aminabhavi, T. M. Synthesis of Ca-Doped ZnO Nanoparticles and Its Application as Highly Efficient Electrochemical Sensor for the Determination of anti-Viral Drug. Acyclovir. J. Mol. Liq 2021, 322, 114552. DOI: 10.1016/j.molliq.2020.114552.
  • Rebelo, P.; Costa-Rama, E.; Seguro, I.; Pacheco, J. G.; Nouws, H. P. A.; Cordeiro, M. N. D. S.; Delerue-Matos, C. Molecularly Imprinted Polymer-Based Electrochemical Sensors for Environmental Analysis. Biosens. Bioelectron. 2021, 172, 112719. DOI: 10.1016/j.bios.2020.112719.
  • Bozal-Palabiyik, B.; Erkmen, C.; Uslu, B. Molecularly Imprinted Electrochemical Sensors: Analytical and Pharmaceutical Applications Based on Ortho-Phenylenediamine Polymerization. Cpa. 2020, 16, 350–366. DOI: 10.2174/1573412915666190304150159.
  • Mahmoud, A. M.; El-Wekil, M. M.; Mahnashi, M. H.; Ali, M. F. B.; Alkahtani, S. A. Modification of N, S Co-Doped Graphene Quantum Dots with p-Aminothiophenol-Functionalized Gold Nanoparticles for Molecular Imprint-Based Voltammetric Determination of the Antiviral Drug Sofosbuvir. Microchim. Acta 2019, 186, 617. DOI: 10.1007/s00604-019-3647-7..
  • Kurbanoglu, S.; Erkmen, C.; Uslu, B. Frontiers in Electrochemical Enzyme Based Biosensors for Food and Drug Analysis. TrAC Trends Anal. Chem 2020, 124, 115809. DOI: 10.1016/j.trac.2020.115809.
  • Matthews, C. J.; Andrews, E. S. V.; Patrick, W. M. Enzyme-Based Amperometric Biosensors for Malic Acid – a Review. Anal. Chim. Acta 2021, 338218. DOI: 10.1016/j.aca.2021.338218.
  • Pecková, K.; Musilová, J.; Barek, J. Boron-Doped Diamond Film Electrodes—New Tool for Voltammetric Determination of Organic Substances. Crit. Rev. Anal. Chem 2009, 39, 148–172. DOI: 10.1080/10408340903011812.
  • Cobb, S. J.; Ayres, Z. J.; Macpherson, J. V. Boron Doped Diamond: A Designer Electrode Material for the Twenty-First Century. Annu Rev Anal Chem (Palo Alto Calif) 2018, 11, 463–484. DOI: 10.1146/annurev-anchem-061417-010107.
  • Brocenschi, R. F.; Hammer, P.; Deslouis, C.; Rocha-Filho, R. C. Assessments of the Effect of Increasingly Severe Cathodic Pretreatments on the Electrochemical Activity of Polycrystalline Boron-Doped Diamond Electrodes. Anal. Chem. 2016, 88, 5363–5368. DOI: 10.1021/acs.analchem.6b00676.
  • Hanko, M.; Švorc, Ľ.; Planková, A.; Mikuš, P. Novel Electrochemical Strategy for Determination of 6-Mercaptopurine Using Anodically Pretreated Boron-Doped Diamond Electrode. J. Electroanal. Chem 2019, 840, 295–304. DOI: 10.1016/j.jelechem.2019.03.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.