263
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

An Upgrade of Apparatus and Measurement Systems for Generation of Gaseous Formaldehyde: A Review

ORCID Icon, , , , , ORCID Icon, & show all
Pages 1702-1716 | Published online: 07 Jun 2021

References

  • ARChem. Performs Automated Reasoning in Chemistry. http://www.archemcalc.com. (accessed Jan 15, 2021.
  • Blair, E. W.; Ledbury, W. The Partial Formaldehyde Vapour Pressures of Aqueous Solutions of Formaldehyde. Part I. J. Chem. Soc., Dalton Trans 1925, 127, 26–40. DOI: 10.1039/CT9252700026.
  • Ott, M.; Fischer, H. H.; Maiwald, M.; Albert, K.; Hasse, H. Kinetics of Oligomerization Reactions in Formaldehyde Solutions: NMR Experiments up to 373 K and Thermodynamically Consistent Model. Chem. Eng. Process 2005, 44, 653–660. DOI: 10.1016/j.cep.2003.07.004.
  • Kua, J.; Avila, J. E.; Lee, C. G.; Smith, W. D. Mapping the Kinetic and Thermodynamic Landscape of Formaldehyde Oligomerization under Neutral Conditions. J. Phys. Chem. A. 2013, 47(117) 12658–12667. DOI: 10.1021/jp4098292.
  • Bezzi, S.; Dallaporta, N.; Giacommetti, G.; Ilicito, A. Cinetica di Formazione e Scissione di Macromolecole Lineari ed Equilibri Tra Monomero e Suoi Polimeri. Gazz. Chim. Ital. 1951, 81, 915–932.
  • Dong, S.; Dasgupta, P. K. Solubility of Gaseous Formaldehyde in Liquid Water and Generation of Trace Standard Gaseous Formaldehyde. Environ. Sci. Technol. 1986, 20, 637–640. DOI: 10.1021/es00148a016.
  • Zhou, M.; Lee, J.; Zhu, H.; Nidetz, R.; Kurabayashi, K.; Fan, X. A Fully Automated Portable Gas Chromatography System for Sensitive and Rapid Quantification of Volatile Organic Compounds in Water. RSC Adv. 2016, 6, 49416–49424. DOI: 10.1039/C6RA09131H.
  • Sander, R. Compilation of Henry’s Law Constants (Version 4.0) for Water as Solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. DOI: 10.5194/acp-15-4399-2015.
  • Seco, R.; Penuelas, J.; Filella, I. Formaldehyde Emission and Uptake by Mediterranean Trees Quercus ilex and Pinus Halepensis. Atmos. Environ 2008, 42, 7907–7914. DOI: 10.1016/j.atmosenv.2008.07.006.
  • Nuccio, J.; Seaton, P. J.; Kieber, R. J. Biological Production of Form Aldehyde in the Marine Environment. Limnol. Oceanogr. 1995, 40, 521–527. DOI: 10.4319/lo.1995.40.3.0521.
  • ECHA - European Chemicals Agency. Worker exposure to formaldehyde and formaldehyde releasers. https://echa.europa.eu/documents/10162/13641/investigationreport_formaldehyde_workers-exposure_final_en.pdf/ac457a0c-378d-4eae-c602-c7cd59abc4c5. (accessed June 13, 2020).
  • Acumen Research and Consulting. Formaldehyde Market – Global Industry Analysis, Market Size, Opportunities And Forecast, 2019 - 2026. https://www.acumenresearchandconsulting.com/formaldehyde-market (accessed June 10, 2020).
  • Grand View Research. Global Formaldehyde Market By Application (UF Resins, PF Resins, MF Resins, Polyacetal Resins, Pentaerythritol, Methylenebis, BDO), By End Use (Construction, Automotive, Furniture) Expected To Reach USD 21.03 Billion By 2020: Grand View Research, Inc. https://www.grandviewresearch.com/press-release/global-formaldehyde-market. (accessed June 10, 2020).
  • Research and Markets. Formaldehyde: 2020 World Market Outlook and Forecast up to 2029 (with COVID-19 Impact Estimation). https://www.researchandmarkets.com/reports/3150606/formaldehyde-2020-world-market-outlook-and. (accessed June 10, 2020).
  • Tang, X.; Bai, Y.; Duong, A.; Smith, M. T.; Li, L.; Zhang, L. Formaldehyde in China: production, Consumption, Exposure Levels, and Health Effects. Environ. Int. 2009, 35, 1210–1224. DOI: 10.1016/j.envint.2009.06.002.
  • Luonping, Z. Issues in Toxycology - Formaldehyde - Exposure, Toxicity and Health Effects. file:///C:/Users/labig/AppData/Local/Temp/Formaldehyde_%20Exposure,%20Toxicity%20And%2. 0Health%20Effects%202018.pdf (accessed Dec 20, 2020).
  • International Agency for Research on Cancer. Chemical agents and related occupations - volume 100 F - A review of human carcinogens. https://monographs.iarc.fr/wp-content/uploads/2018/06/mono100F.pdf. (accessed June 2020, 14).
  • Official Journal of the European Union. Commission Regulation (EU) No 605/2014. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:JOL_2014_167_R_0004&from=EN. (accessed Sept June, 2020).
  • Nielsen, G. D.; Larsen, S. T.; Wolkoff, P. Re-Evaluation of the WHO (2010) Formaldehyde Indoor Air Quality Guideline for Cancer Risk Assessment. Arch. Toxicol. 2017, 91, 35–61. DOI: 10.1007/s00204-016-1733-8.
  • Scarselli, A.; Corfiati, M.; Di Marzio, D.; Iavicoli, S. National Estimates of Exposure to Formaldehyde in Italian Workplaces. Ann. Work Expo. Health 2017, 61, 33–43. DOI: 10.1093/annweh/wxw004.
  • Bolt, H. M.; Degen, G. H.; Hengstler, J. G. The Carcinogenicity Debate on Formaldehyde: How to Derive Safe Exposure Limits? Arch. Toxicol. 2010, 84, 421–422. DOI: 10.1007/s00204-010-0561-5.
  • IFA - Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung. GESTIS International Limit Values. https://limitvalue.ifa.dguv.de/WebForm_ueliste2.aspx. (accessed June 12, 2020).
  • Marini, F.; Bellugi, I.; Gambi, D.; Pacenti, M.; Dugheri, S.; Focardi, L.; Tulli, G. Compound A, Formaldehyde and Methanol Concentrations during Low‐Flow Sevoflurane Anaesthesia: comparison of Three Carbon Dioxide Absorbers. Acta Anaesthesiol. Scand. 2007, 51, 625–632. DOI: 10.1111/j.1399-6576.2007.01278.x.
  • Keith, L. H.; Crummett, W.; Deegan, J.; Libby, R. A.; Taylor, J. K.; Wentler, G. Principles of Environmental Analysis. Anal. Chem. 1983, 55, 2210–2218. DOI: 10.1021/ac00264a003.
  • Wang, J. Real-Time Electrochemical Monitoring: Toward Green Analytical Chemistry. Acc. Chem. Res. 2002, 35, 811–816. DOI: 10.1021/ar010066e.
  • Dugheri, S.; Bonari, A.; Pompilio, I.; Colpo, M.; Mucci, N.; Montalti, M.; Arcangeli, G. Development of an Innovative Gas Chromatography-Mass Spectrometry Method for Assessment of Formaldehyde in the Workplace Atmosphere. Acta Chromatogr. 2017, 29, 511–514. DOI: 10.1556/1326.2016.00102.
  • Mucci, N.; Dugheri, S.; Rapisarda, V.; Campagna, M.; Garzaro, G.; Farioli, A.; Cappelli, G.; Arcangeli, G. Occupational Exposure to Airborne Formaldehyde in Hospital: setting an Automatic Sampling System, Comparing Different Monitoring Methods and Applying Them to Assess Exposure. Med. Lav. 2019, 110, 446–458. DOI: 10.23749/mdl.v110i6.8038.
  • Chiappini, L.; Dagnelie, R.; Sassine, M.; Fuvel, F.; Fable, S.; Tran-Thi, T. H.; George, C. Multi-Tool Formaldehyde Measurement in Simulated and Real Atmospheres for Indoor Air Survey and Concentration Change Monitoring. Air Qual. Atmos. Health 2011, 4, 211–220. DOI: 10.1007/s11869-010-0102-7.
  • Dugheri, S.; Massi, D.; Mucci, N.; Marrubini, G.; Cappelli, G.; Speltini, A.; Bonferoni, M. C.; Arcangeli, G. Exposure to Airborne Formaldehyde: sampling and Analytical Methods - A Review. Trends Environ. Anal. Chem. Unpublished.
  • Nash, T. The Colorimetric Estimation of formaldehyde by Means of the Hantzsch Reaction. Biochem. J. 1953, 55, 416–421. DOI: https://dx.doi.org/10.1042/bj0550416. DOI: 10.1042/bj0550416.
  • Salthammer, T.; Mentese, S. Comparison of Analytical Techniques for the Determination of Aldehydes in Test Chambers. Chemosphere 2008, 73, 1351–1356. DOI: 10.1016/j.chemosphere.2008.06.054.
  • EPA - United States Environmental Protection Agency. METHOD 8520 CONTINUOUS MEASUREMENT OF FORMALDEHYDE IN AMBIENT AIR. https://www.epa.gov/sites/production/files/2015-12/documents/8520.pdf. (accessed June 14, 2020).
  • Onishi, M.; Sekine, Y.; Sugihara, K.; Kitasaka, K.; Shimajiri, H. A Passive Sampler for the Determination of Carbonyl Compounds in Indoor Air Employing o-(4-Cyano-2-Ethoxybenzyl) Hydroxylamine as Reactive Adsorbent. J. Health Sci. 2007, 53, 413–422. DOI: 10.1248/jhs.53.413.
  • Pinheiro, H. L.; de Andrade, M. V.; de Paula Pereira, P. A.; de Andrade, J. B. Spectrofluorimetric Determination of Formaldehyde in Air after Collection onto Silica Cartridges Coated with Fluoral P. Microchem. J. 2004, 78, 15–20. DOI: 10.1016/j.microc.2004.02.017.
  • Dugheri, S.; Bonari, A.; Pompilio, I.; Colpo, M.; Mucci, N.; Arcangeli, G. An Integrated Air Monitoring Approach for Assessment of Formaldehyde in the Workplace. Saf Health Work . 2018, 9, 479–485. DOI: 10.1016/j.shaw.2018.05.002.
  • Pérez Ballesta, P.; Baldan, a.; Cancelinha, J. Atmosphere Generation System for the Preparation of Ambient Air Volatile Organic Compound Standard Mixtures. Anal. Chem. 1999, 71, 2241–2245. DOI: 10.1021/ac981291l.
  • Nelson, G. O. Controlled Test Atmospheres; Principles and Techniques; Ann Arbor Science Publishers: Ann Arbor, US, 1971.
  • Ho, M. H. Generation of Standard Gaseous Formaldehyde in Test Atmospheres. In Formaldehyde Analytical Chemistry and Toxicology, Turoski T; American Chemical Society: Washington, D.C, 1985; pp 193–214
  • Lebrun, N.; Dhamelincourt, P.; Focsa, C.; Chazallon, B.; Destombes, J. L.; Prevost, D. Raman Analysis of Formaldehyde Aqueous Solutions as a Function of Concentration. J. Raman Spectrosc. 2003, 34, 459–464. DOI: 10.1002/jrs.1025.
  • Oancea, A.; Hanoune, B.; Focsa, C.; Chazallon, B. Cross Determination of the Vapor Liquid Equilibrium of Formaldehyde Aqueous Solutions by Quadrupole Mass Spectrometry and Infrared Diode Laser Spectroscopy. Environ. Sci. Technol. 2009, 43, 435–440. DOI: 10.1021/es8020588.
  • Boyer, I. J.; Heldreth, B.; Bergfeld, W. F.; Belsito, D. V.; Hill, R. A.; Klaassen, C. D.; Liebler, D. C.; Marks, J. G.; Shank, R. C.; Slaga, T. J.; et al. Amended Safety Assessment of Formaldehyde and Methylene Glycol as Used in Cosmetics. Int. J. Toxicol. 2013, 32, 5S–32S. DOI: https://doi.org/10.1177/1091581813511831. DOI: 10.1177/1091581813511831.
  • Johnson, R. A.; Stanley, A. E. GC/MS and FT-IR Spectra of Methoxymethanol. Appl. Spectrosc. 1991, 45, 218–222. DOI: 10.1366/0003702914337551.
  • Dixneuf, P. H.; Soulé, J. F. Organometallics for Green Catalysis; Springer: Gewerbestrasse, Switzerland, 2019.
  • Pengelly, I.; Groves, J. A.; Levin, J. O.; Lindahl, R. An Investigation into the Differences in Composition of Formaldehyde Atmospheres Generated from Different Source Materials and the Consequences for Diffusive Sampling. Ann. Occup. Hyg 1996, 40, 555–567. DOI: https://doi.org/10.1093/annhyg/40.5.555. DOI: 10.1016/0003-4878(95)00096-8.
  • OSHA - Occupational Safety and Healt Administration. Formaldehyde (Diffusive Samplers) - Method no: 1007. https://www.osha.gov/dts/sltc/methods/mdt/mdt1007/1007.pdf. (accessed Aug 25, 2020).
  • Chu, P. M.; Thorn, W. J.; Sams, R. L.; Guenther, F. R. On-Demand Generation of a Formaldehyde-in-Air Standard. J. Res. Natl. Inst. Stand Technol. 1997, 102, 559–568. DOI: https://dx.doi.org/10.6028/jres.102.037. DOI: 10.6028/jres.102.037.
  • Walker, J. F. Formaldehyde.; 2nd ed.; Reinhold Publishing Corporation: New York, 1953.
  • Jaeger, A. O. Catalytic oxidation of organic compounds United States Patent US1709853A, April 23, 1929.
  • Craver, A. E. Process of producing formaldehyde United States Patent US1851754A, March 29, 1932.
  • Meharg, V. E.; Adkins, H. Formaldehyde synthesis and catalyst United States Patent US1913405A, June 13, 1933.
  • Thomas, C. L. M. Catalytic Processes and Proven Catalysts; Academic Press: New York–London, 1970.
  • Herman, R. G. Catalytic Conversions of Synthetic Gas and Alcohols to Chemicals; Plenum Press: New York, 1984.
  • World Health Organization International Agency for Research on Cancer. IARC Monographs on the Evaluation ofCarcinogenic Risks to Humans - VOLUME 87 Inorganic and OrganicLead Compounds https://monographs.iarc.fr/wp-content/uploads/2018/06/mono87.pdf. (accessed Aug 28, 2020).
  • Kennedy, E. R.; Delon Hull, R. Evaluation of the Du Pont Pro-Tek® Formaldehyde Badge and the 3M Formaldehyde Monitor. Am. Ind. Hyg. Assoc. J. 1986, 47, 94–105. DOI: 10.1080/15298668691389414.
  • Andrawes, F. F. Detection of Traces of Formaldehyde in Pure Air by Gas Chromatography and Helium Ionization Detection. J. Chromatogr. Sci. 1984, 22, 506–508. DOI: 10.1093/chromsci/22.11.506.
  • Sharp, B. L. Pneumatic Nebulisers and Spray Chambers for Inductively Coupled Plasma Spectrometry. A Review. Part 1. Nebulisers. J. Anal. At. Spectrom. 1988, 3, 613–652. DOI: 10.1039/ja9880300613.
  • Lindahl, R.; Levin, J. O.; Mårtensson, M. Validation of a Diffusive Sampler for the Determination of Acetaldehyde in Air. Analyst 1996, 121, 1177–1181. DOI: 10.1039/AN9962101177.
  • Lindahl, R.; Claesson, A. S.; Khan, M. A.; Levin, J. O. Development of a Method for the Determination of Naphthalene and Phenanthrene in Workplace Air Using Diffusive Sampling and Thermal Desorption GC-MS Analysis. Ann. Occup. Hyg. 2011, 55, 681–687. DOI: 10.1093/annhyg/mer039.
  • Bearman, K. R.; Carter, T. J.; Colin, F.; Henon, A.; Lade, R. J.; Wright, J. D. A New Environmental Monitor for Nitrogen Dioxide, Ozone and Aldehydes. Meas. Control 2001, 34, 40–43. DOI: 10.1177/002029400103400203.
  • Cardin, D.; Robinson, T. Formaldehyde and VOC’s in Indoor Air Quality Determinations by GCMS Application Note: 101. Entech Instruments, Inc. http://www.expotechusa.com/catalogs/entech/products/formal1.pdf. (accessed Sept 2, 2020).
  • Sari, S.; Timo, R.; Jussi, H.; Panu, H. Dynamic Calibration Method for Reactive Gases. Meas. Sci. Technol. 2020, 31, 034001. DOI: 10.1088/1361-6501/ab4d68.
  • Bunkoed, O.; Davis, F.; Kanatharana, P.; Thavarungkul, P.; Higson, S. P. Sol-gel based sensor for selective formaldehyde determination. Anal. Chim. Acta. 2010, 659, 251–257. DOI: 10.1016/j.aca.2009.11.034.
  • Luong, J.; Yang, X.; Hua, Y.; Yang, P.; Gras, R. Gas Chromatography with in Situ Catalytic Hydrogenolysis and Flame Ionization Detection for the Direct Measurement of Formaldehyde and Acetaldehyde in Challenging Matrices. Anal. Chem. 2018, 90, 13855–13859. DOI: 10.1021/acs.analchem.8b04563.
  • Marsella, A. M.; Purdham, J. T.; Mabury, S. A. A New Method for the Measurement of Airborne Formaldehyde Using Derivatization with 3, 5-Bis (Trifluoromethyl) Phenylhydrazine and Analysis by GC-ECD and GC-MS/SIM. Int. J. Environ. Anal. Chem. 2000, 76, 241–256. DOI: 10.1080/03067310008034133.
  • Zhu, H.; She, J.; Zhou, M.; Fan, X. Rapid and Sensitive Detection of Formaldehyde Using Portable 2-Dimensional Gas Chromatography Equipped with Photoionization Detectors. Sensor. Actuat. B-Chem. 2019, 283, 182–187. DOI: 10.1016/j.snb.2018.11.156.
  • O'Keeffe, A. E.; Ortman, G. C. Primary Standards for Trace Gas Analysis. Anal. Chem. 1966, 38, 760–763. DOI: 10.1021/ac60238a022.
  • Tumbiolo, S.; Vincent, L.; Gal, J. F.; Maria, P. C. Thermogravimetric Calibration of Permeation Tubes Used for the Preparation of Gas Standards for Air Pollution Analysis. Analyst 2005, 130, 1369–1374. DOI: 10.1039/b508536e.
  • Janicki, W.; Wolska, L.; Górecki, T.; Namiesnik, J. Apparatus for Calibration of Gas-Chromatographic Systems for Thermal-Desorption. Chem. Anal 1993, 38, 423–428.
  • Hopkins, J. R.; Lewis, A. C.; Read, K. A. A Two-Column Method for Long-Term Monitoring of Non-Methane Hydrocarbons (NMHCs) and Oxygenated Volatile Organic Compounds (o-VOCs). J. Environ. Monit. 2003, 5, 8–13. DOI: 10.1039/b202798d.
  • Huang, P. H.; Kacker, R. Repeatability and Reproducibility Standard Deviations in the Measurement of Trace Moisture Generated Using Permeation Tubes. J. Res. Natl. Inst. Stand. Technol. 2003, 108, 235–240. DOI: https://dx.doi.org/10.6028/jres.108.022. DOI: 10.6028/jres.108.022.
  • Bruno, T. J. Permeation Tube Approach to Long-Term Use of Automatic Sampler Retention Index Standards. J. Chromatogr. A. 1995, 704, 157–162. DOI: 10.1016/0021-9673(95)00184-O.
  • Mao, F.; Gaunt, J. A.; Ong, S. K. Permeation of Organic Contaminants through PVC Pipes. J. Am. Water Work. Assoc. 2009, 101, 128–136. DOI: 10.1002/j.1551-8833.2009.tb09895.x.
  • Namieśnik, J.; Gorlo, D.; Wolska, L.; Zygmunt, B. On Calibration of Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry System for Analysis of Organic Air Contaminants Using Gaseous Standard Mixtures. Chem. Anal. 1999, 44, 201–213.
  • Mitchell, G. D. A Review of Permeation Tubes and Permeators. Sep. Purif. Methods 2000, 29, 119–128. DOI: 10.1081/SPM-100100005.
  • Röck, F.; Barsan, N.; Weimar, U. System for Dosing Formaldehyde Vapor at the Ppb Level. Meas. Sci. Technol. 2010, 21, 115201. DOI: 10.1088/0957-0233/21/11/115201.
  • Hunter, M.; Bartle, K.; Seakins, P.; Lewis, A. Direct Measurement of Atmospheric Formaldehyde Using Gas Chromatography-Pulsed Discharge Ionisation Detection. Anal. Commun. 1999, 36, 101–104. DOI: 10.1039/a809762c.
  • Goelen, E.; Lambrechts, M.; Geyskens, F. Sampling Intercomparisons for Aldehydes in Simulated workplace air. Analyst 1997, 122, 411–419. DOI: 10.1039/a607047g.
  • Beasley, R. K.; Hoffmann, C. E.; Rueppel, M. L.; Worley, J. W. Sampling of Formaldehyde in Air with Coated Solid Sorbent and Determination by High Performance Liquid Chromatography. Anal. Chem. 1980, 52, 1110–1114. DOI: 10.1021/ac50057a026.
  • Büldt, A.; Lindahl, R.; Levin, O.; Karst, U. A Diffusive Sampling Device for the Determination of Formaldehyde in Air Using N-Methyl-4-Hydrazino-7-Nitrobenzofurazan (MNBDH) as Reagent. J. Environ. Monit. 1999, 1, 39–43. DOI: 10.1039/a807631f.
  • Thomas, C. L. P.; McGill, C.; R, T. Determination of Formaldehyde by Conversion to Hexahydrooxazolo [3, 4-a] Pyridine in a Denuder Tube with Recovery by Thermal Desorption, and Analysis by Gas Chromatography–Mass Spectrometry. Analyst 1997, 122, 1471–1476. DOI: 10.1039/a704731b.
  • Aoyagi, R.; Matsunobu, K. Stability of Formaldehyde Calibration Gas by Permeation Tube Using Paraformaldehyde. Indoor Environ. 2012, 15, 7–14. DOI: 10.7879/siej.15.7.
  • Van De Wiel, H. J.; Uiterwijk, J. W.; Regts, T. A. Dynamic Generation of Test Atmospheres-Quantitative Aspects. Stud. Environ. Sci. 1978, 2, 41–51.
  • Hwang, H.; Dasgupta, P. K. Thermodynamics of the Hydrogen Peroxide-Water System. Environ. Sci. Technol. 1985, 19, 255–258. DOI: 10.1021/es00133a006.
  • Fortuin, J. M. H. Low Constant Vapour Concentrations Obtained by a Dynamic Method Based on Diffusion. Anal. Chim. Acta 1956, 15, 521–533. DOI: 10.1016/0003-2670(56)80100-1.
  • McKelvey, J. M.; Hoelscher, H. E. Apparatus for Preparation of Very Dilute Gas Mixtures. Anal. Chem. 1957, 29, 123–123. DOI: 10.1021/ac60121a036.
  • Altshuller, A. P.; Cohen, I. R. Application of Diffusion Cells to Production of Known Concentration of Gaseous Hydrocarbons. Anal. Chem. 1960, 32, 802–810. DOI: 10.1021/ac60163a021.
  • Altshuller, A. P.; Clemons, C. A. Gas Chromatographic Analysis of Aromatic Hydrocarbons at Atmospheric Concentrations Using Flame Ionization Detection. Anal. Chem. 1962, 34, 466–472. DOI: 10.1021/ac60184a006.
  • Lambert, J. L.; Paukstelis, J. V.; Liaw, Y. L.; Chiang, Y. C. Sensitive Solid Reagent for Formaldehyde, and a New Formaldehyde Generator. Anal. Lett 1984, 17, 1987–1999. DOI: 10.1080/00032718408065360.
  • Geisling, K. L.; Miksch, R. R.; Rappaport, S. M. Generation of Dry Formaldehyde at Trace Levels by the Vapor-Phase Depolymerization of Trioxane. Anal. Chem. 1982, 54, 140–142. DOI: 10.1021/ac00238a042.
  • Brewer, P. J.; di Meane, E. A.; Vargha, G. M.; Brown, R. J.; Milton, M. J. Gaseous Reference Standards of Formaldehyde from Trioxane. Talanta 2013, 108, 83–87. DOI: 10.1016/j.talanta.2013.02.075.
  • Tsang, W.; Walker, J. A. Instrument for the Generation of Reactive Gases. Anal. Chem. 1977, 49, 13–17. DOI: 10.1021/ac50009a011.
  • Panda, N.; Kim, M.; Aoki, N.; Zhou, Z.; Shimosaka, T.; Kim, Y.; Kim, Y.; Lee, S.; Kim, D. Validation of Primary Formaldehyde Gas Standards Prepared by Dynamic Thermogravimetry through a Tri-National Comparison of Gaseous Formaldehyde Amount Fraction. Accreditation Qual. Assur. 2016, 21, 295–304. DOI: 10.1007/s00769-016-1219-7.
  • Health Photon. TDLAS Modules - Laser Diode Driver with Touchscreen Model:DFB-2000. http://en.healthyphoton.com/jiguang/products/33.html. (accessed Sept 7, 2020).
  • SANTEC CORPORATION. The Photonics Pioneer - Premium Performance Tunable Laser TSL-710. https://www.santec.com/en/products/instruments/tunablelaser/TSL-710/. (accessed Sept 7, 2020).
  • Moroville, J.; Romanini, D.; Chenevier, M. Laser device coupled to a cavity by optical feedback for detecting gas traces WIPO (PCT) Patent WO2003031949A1, April 17, 2003.
  • Ap2e. ProCeas FORMALDEHYDE analyzer. https://ap2e.com/wp-content/uploads/ProCeas-FORMALDEHYDE-analyzer.pdf (accessed Sept 12, 2020).
  • Aeris Technologies. Direct Formaldehyde Sensing at ppb-level Sensitivity and Absolute Accuracy. http://aerissensors.com/formaldehyde-trace-quantification/ (accessed Sept 12, 2020).
  • Aeris Technologies. MIRA Pico VOC Real-Time Formaldehyde Analyzer. http://aerissensors.com/wp-content/uploads/2019/12/MIRA-PicoVOC_191208_FINAL_quartz.pdf. (accessed Sept 12, 2020).
  • G. Gasera One Formaldehyde. https://www.gasera.fi/product/gasera-one-formaldehyde-photoacoustic-gas-monitor (accessed Sept 12, 2020).
  • UNI Ente Italiano di Normazione. UNI CEI EN ISO 17034:2017 General requirements for the competence of reference material producers. http://store.uni.com/catalogo/uni-cei-en-iso-17034-2017?___store=en&josso_back_to=http%3A//store.uni.com/josso-security-check.php&josso_cmd=login_optional&josso_partnerapp_host=store.uni.com&___from_store=it (accessed Sept 14, 2020).
  • UNI Ente Italiano di Normazione. UNI CEI EN ISO/IEC 17025:2018 General requirements for the competence of testing and calibration laboratories. http://store.uni.com/catalogo/uni-cei-en-iso-iec-17025-2018. (accessed Sept 14, 2020).
  • NIOSH - National Institute for Occupational Safety and Health. FORMALDEHYDE by GC. https://www.cdc.gov/niosh/docs/2003-154/pdfs/2541.pdf. (accessed Sept 14, 2020).
  • OSHA - Occupational Safety and Healt Administration. Acrolein and/or Formaldehyde - Method no: 52. https://www.osha.gov/dts/sltc/methods/organic/org052/org052.html. (accessed Sept 14, 2020).
  • Miura, H. Determination of Formaldehyde by the 4-Amino-3-Hydrazino-5-Mercapto-1, 2, 4, -Triazol Method. J. Hyg. Chem 1976, 22, 39–41.
  • Andrawes, F. F. Analysis of Liquid Samples by Capillary Gas Chromatography and Helium Ionization Detection. J. Chromatogr. A 1984, 290, 65–74. DOI: 10.1016/S0021-9673(01)93561-7.
  • Barratt, R. S. The Preparation of Standard Gas Mixtures. A Review. Analyst 1981, 106, 817–849. DOI: 10.1039/an9810600817.
  • Altshuller, A. P.; Wartburg, A. F.; Cohen, I. R.; Sleva, S. F. Storage of Vapors and Gases in Plastic Bags. Int. J. Air Water Pollut. 1962, 6, 75–81.
  • Altshuller, A. P.; Miller, D. L.; Sleva, S. F. Determination of Formaldehyde in Gas Mixtures by the Chromotropic Acid Method. Anal. Chem. 1961, 33, 621–625. DOI: 10.1021/ac60172a043.
  • Andino, J. M.; Butler, J. W. A Study of the Stability of Methanol-Fueled Vehicle Emissions in Tedlar Bags. Environ. Sci. Technol. 1991, 25, 1644–1646. DOI: 10.1021/es00021a017.
  • Mochalski, P.; King, J.; Unterkofler, K.; Amann, A. Stability of Selected Volatile Breath Constituents in Tedlar, Kynar and Flexfilm Sampling Bags. Analyst 2013, 138, 1405–1418. DOI: 10.1039/c2an36193k.
  • Cariou, S.; Guillot, J. M. Double-Layer Tedlar Bags: A Means to Limit Humidity Evolution of Air Samples and to Dry Humid Air Samples. Anal. Bioanal. Chem. 2006, 384, 468–474. DOI: 10.1007/s00216-005-0177-4.
  • Beauchamp, J.; Herbig, J.; Gutmann, R.; Hansel, A. On the Use of Tedlar® Bags for Breath-Gas Sampling and Analysis. J. Breath Res. 2008, 2, 046001. DOI: 10.1088/1752-7155/2/4/046001.
  • Hoshika, Y.; Nishikitani, M.; Yokoyama, K.; Araki, S. A Study on the Determination of Odor Recognition Threshold Values of n-and Iso-Amyl (Pentyl) Acetates Using Tedlar Bag Static Methods. Anal. Sci. 1997, 13, 505–508. DOI: 10.2116/analsci.13.Supplement_505.
  • Beghi, S.; Guillot, J. M. Use of Poly(ethylene terephtalate) Film Bag to Sample and Remove Humidity from Atmosphere Containing Volatile Organic Compounds. J. Chromatogr. A. 2008, 1183, 1–5. DOI: 10.1016/j.chroma.2007.12.051.
  • Ghimenti, S.; Lomonaco, T.; Bellagambi, F. G.; Tabucchi, S.; Onor, M.; Trivella, M. G.; Ceccarini, A.; Fuoco, R.; Di Francesco, F. Comparison of Sampling Bags for the Analysis of Volatile Organic Compounds in Breath. J. Breath Res. 2015, 9, 047110. DOI: 10.1088/1752-7155/9/4/047110.
  • Papurello, D. Direct Injection Mass Spectrometry Technique for the Odorant Losses at Ppb (v) Level from Nalophan™ Sampling Bags. Int. J. Mass Spectrom. 2019, 436, 137–146. DOI: 10.1016/j.ijms.2018.12.008.
  • Wisthaler, A.; Apel, E. C.; Bossmeyer, J.; Hansel, A.; Junkermann, W.; Koppmann, R.; Meier, R.; Müller, K.; Solomon, S. J.; Steinbrecher, R.; et al. Technical Note: Intercom-Parison of Formaldehyde Measurements at the Atmosphere Simulation Chamber SAPHIR. Atmos. Chem. Phys. 2008, 8, 2189–2200. DOI: 10.5194/acp-8-2189-2008.
  • EPA - United States Environmental Protection Agency. Air Method, Toxic Organics-15 (TO-15): Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition: Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed. https://19january2017snapshot.epa.gov/sites/production/files/2015-07/documents/epa-to-15_0.pdf. (accessed Sept 18, 2020).
  • Restek - Superchrom. A Guide to Passive Air SamplingEquipment Needed and Practical Techniquesfor Collecting Air Samples. http://www.superchrom.it/images/file/guide.pdf. (accessed Jan 10, 2021).
  • Entech Instrurments, Inc. Formaldehyde and VOC’s in Indoor Air Quality Determinations by GCMS. http://youngin.com/application/0411-0010EN-E.pdf. (accessed Jan 06, 2021).
  • Entech Instruments, Inc. Personal Monitoring Using Helium Diffusion Sampling to Collect Whole Air Samples near The Breathing Zone without Using Pumps. https://bioforumconf.com/IICHE-abs/outofhtml/IICHE_2017/personalmonito_Dan__Cardin_.html. (accessed Jan 10, 2021).
  • Jayanty, R. K. M.; Albritton, J. R.; Straley, Y. H.; Lehmden, D. V. Stability of PPB and PPM Organic Cylinder Gases Used for Calibration and Audits. J. Air Waste Manage. 1992, 42, 1198–1203. DOI: 10.1080/10473289.1992.10467068.
  • Sampson, M. M.; Chambers, D. M.; Pazo, D. Y.; Moliere, F.; Blount, B. C.; Watson, C. H. Simultaneous Analysis of 22 Volatile Organic Compounds in Cigarette Smoke Using Gas Sampling Bags for High-Throughput Solid-Phase Microextraction. Anal. Chem. 2014, 86, 7088–7095. DOI: 10.1021/ac5015518.
  • Viallon, J.; Flores, E.; Idrees, F.; Moussay, P.; Wielgosz, R. I.; Kim, D.; Kim, Y. D.; Lee, S.; Persijn, S.; Konopelko, L. A.; et al. CCQM-K90, Formaldehyde in Nitrogen, 2 Μmol Mol − 1 Final Report. Metrologia 2017, 54, 08029–08029. DOI: 10.1088/0026-1394/54/1A/08029.
  • Taylor, L. A.; Barbeito, M. S.; Gremillion, G. G. Paraformaldehyde for Surface Sterilization and Detoxification. Appl. Microbiol. 1969, 17, 614–618.
  • Meadows, G. W.; Rusch, G. M. The Measuring and Monitoring of Formaldehyde in Inhalation Test Atmospheres. Am. Ind. Hyg. Assoc. J. 1983, 44, 71–77. DOI: 10.1080/15298668391404400.
  • Aoki, N.; Kato, K.; Aoyagi, R.; Wakayama, M. Evaluation of the Permeability of Formaldehyde and Water through a Permeation Tube for the Preparation of an Accurate Formaldehyde Reference Gas Mixture. Analyst 2013, 138, 6930–6937. 10.1039/C3AN00112A.
  • Susaya, J.; Kim, K. H.; Cho, J. W.; Parker, D. The Use of Permeation Tube Device and the Development of Empirical Formula for Accurate Permeation Rate. J. Chromatogr. A. 2011, 1218, 9328–9335. DOI: 10.1016/j.chroma.2011.11.007.
  • Susaya, J.; Kim, K. H.; Cho, J.; Parker, D. The Controlling Effect of Temperature in the Application of Permeation Tube Devices in Standard Gas Generation. J. Chromatogr. A. 2012, 1225, 8–16. DOI: 10.1016/j.chroma.2011.12.066.
  • Entech Instruments, Inc. ENTECH 4600A AUTOMATED DYNAMIC DILUTER. https://youngin.com/upload/equipment/2012/2/6/qaqeeaeacq_20120206162702919.pdf. (accessed Sept 21, 2020).
  • Ecotech Pty, L. GasCal, 1100 Dilution Calibrator. https://www.ecotech.com/wp-content/uploads/2015/03/GasCal-1100-User-manual-3.5.pdf. (accessed Sept 22, 2020).
  • Custom Sensor Solutions, Inc. Model 1010 Precision Gas Diluter. http://www.customsensorsolutions.com/m1010.html. (accessed Sept 22, 2020).
  • Scentroid. GD600 GAS DILUTION SYSTEM. https://scentroid.com/wp-content/uploads/2020/03/GD-600A-Automated-Portable-Gas-Dilution-Device.pdf. (accessed Sept 22, 2020).
  • Owlstone Inc. OFC-1 Flow Controller. https://www.owlstoneinc.com/products/ofc-1/ (accessed Sept 22, 2020).
  • Hottle, J. R.; Huisman, A. J.; DiGangi, J. P.; Kammrath, A.; Galloway, M. M.; Coens, K. L.; Keutsch, F. N. A Laser Induced Fluorescence-Based Instrument for in-Situ Measurements of Atmospheric Formaldehyde. Environ. Sci. Technol. 2009, 43, 790–795. DOI: 10.1021/es801621f.
  • ISO International Organization for Standardization. ISO/IEC 17043:2010 Conformity assessment — General requirements for proficiency testing. https://www.iso.org/standard/29366.html. (accessed Sept 22, 2020).
  • EPTIS. Proficiency Testing (PT) scheme or round for laboratories. https://www.eptis.org/. (accessed Sept 23, 2020).
  • LGC. AIR PT - Air and Stack Emissions Proficiency Testing Scheme. https://s3-eu-west-1.amazonaws.com/lgcstandards-assets/MediaGallery/PT/jan17/AIR-PT-SD-Issue-7-January-2017.pdf. (accessed Sept 23, 2020).
  • LGC. 8 – Aldehydes. https://www.lgcstandards.com/GB/en/8-Aldehydes/p/PT-AR-08. (accessed Sept 23, 2020).
  • Langlois, E.; Boulet, A.; Kauffer, E. ALASCA Proficiency Testing Scheme for Occupational Hygiene Laboratories. J. Environ. Monit. 2008, 10, 1460–1466. DOI: 10.1039/b807652a.
  • APHL Association of Public Health Laboratories. https://www.aphl.org/ (accessed Sept 23, 2020).
  • Nürnberger, F.; Breuer, D.; Gusbeth, K. AIRMON. Proficiency Testing for the Measurement of Hazardous Substances in Air at the IFA, Dresden, 2017.
  • IFA - Institut für Auslandsbeziehungen der Deutschen Gesetzlichen Unfallversicherung. Proficiency testing at the IFA. https://www.dguv.de/ifa/fachinfos/ringversuche/index-2.jsp. (accessed Sept 23, 2020).
  • Health and Safety Laboratory. The Workplace Analysis Scheme for Proficiency (WASP). https://www.hsl.gov.uk/media/230213/14th%20wasp%20participant%20handbook%202013%20v2.pdf. (accessed Sept 23, 2020).
  • Ramsey, R. S.; Andrawes, F. F. Detectors for Capillary Chromatography; Wiley: Chichester, UK, 1992.
  • Hunter, M. C.; Bartle, K. D.; Lewis, A. C.; McQuaid, J. B.; Myers, P.; Seakins, P. W.; Van Tilburg, C. The Use of the Helium Ionization Detector for Gas Chromatographic Monitoring of Trace Atmospheric Components. J. High Resolut. Chromatogr. 1998, 21, 75–80. DOI: 10.1002/(SICI)1521-4168(19980201)21:2<75::AID-JHRC75>3.0.CO;2-7.
  • Restek. Restek’s PLOT Column Family — The Benchmark for Performance! https://www.bgb-info.com/files/master/Kataloge/Restek/Restek%20Refined%20PLOT%20Column%20Family.pdf. (accessed Sept 23, 2020).
  • Rhoderick, G. C.; Cecelski, C. E.; Miller, W. R.; Worton, D. R.; Moreno, S.; Brewer, P. J.; Viallon, J.; Idrees, F.; Moussay, P.; Kim, Y. D. Stability of Gaseous Volatile Organic Compounds Contained in Gas Cylinders with Different Internal Wall Treatments. Elementa 2019, 7, 28.
  • Namieśnik, J. Generation of Standard Gaseous Mixtures. J. Chromatogr. A 1984, 300, 79–108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.