503
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

A Review on Atmospheric Analysis Focusing on Public Health, Environmental Legislation and Chemical Characterization

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1772-1794 | Published online: 07 Jun 2021

References

  • Jacobson, M. Atmospheric Pollution: History, Science and Regulation; Cambridge University Press: New York, NY, 2002.
  • Kim, K. H.; Kabir, E.; Kabir, S. A Review on the Human Health Impact of Airborne Particulate Matter. Environ. Int. 2015, 74, 136–143. DOI: 10.1016/j.envint.2014.10.005.
  • Bruce, N.; Perez-Padilla, R.; Albalak, R. Indoor Air Pollution in Developing Countries: A Major Environmental and Public Health Challenge. Bull. World Health Organ 2000, 78, 1078–1092. DOI: 10.1590/S0042-96862000000900004.
  • Bo, M.; Salizzoni, P.; Clerico, M.; Buccolieri, R. Assessment of Indoor-Outdoor Particulate Matter Air Pollution: A Review. Atmosphere (Basel) 2017, 8, 136. DOI: 10.3390/atmos8080136.
  • Leung, D. Y. C. Outdoor-Indoor Air Pollution in Urban Environment: Challenges and Opportunity. Front. Environ. Sci. 2015, 2, 1–7. DOI: 10.3389/fenvs.2014.00069.
  • Gioda, A. Comparison of the Pollutant Levels Emitted by Different Fuels Used for Cooking and Their Influences on Global Warming. Quim. Nova 2018, 41, 839–848. DOI: 10.21577/0100-4042.20170260.
  • Ielpo, P.; Mangia, C.; Marra, G. P.; Comite, V.; Rizza, U.; Uricchio, V. F.; Fermo, P. Outdoor Spatial Distribution and Indoor Levels of NO2 and SO2 in a High Environmental Risk Site of the South Italy. Sci. Total Environ. 2019, 648, 787–797. DOI: 10.1016/j.scitotenv.2018.08.159.
  • Ali, M. U.; Lin, S.; Yousaf, B.; Abbas, Q.; Ahmed, M.; Munir, M.; Rashid, A.; Zheng, C.; Kuang, X. Pollution Characteristics, Mechanism of Toxicity and Health Effects of the Ultrafine Particles in the Indoor Environment: Current Status and Future Perspectives. Crit. Rev. Environ. Sci. Technol. 2020, 1–38. DOI: 10.1080/10643389.2020.1831359.
  • Michulec, M.; Wardencki, W.; Partyka, M.; Namieśnik, J. Analytical Techniques Used in Monitoring of Atmospheric Air Pollutants. Crit. Rev. Anal. Chem. 2005, 35, 117–133. DOI: 10.1080/10408340500207482.
  • Hamra, G. B.; Guha, N.; Cohen, A.; Laden, F.; Raaschou-Nielsen, O.; Samet, J. M.; Vineis, P.; Forastiere, F.; Saldiva, P.; Yorifuji, T.; et al. Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2014, 122, 906–911. DOI: 10.1289/ehp.1408092.
  • Kuklinska, K.; Wolska, L.; Namiesnik, J. Air Quality Policy in the U.S. and the EU - a Review. Atmospheric Pollut. Res. 2015, 6, 129–137. DOI: 10.5094/APR.2015.015.
  • Sun, Z.; Zhu, D. Exposure to Outdoor Air Pollution and Its Human-Related Health Outcomes: An Evidence Gap Map. BMJ Open 2019, 9, e031312-9. DOI: 10.1136/bmjopen-2019-031312.
  • World Health Organization. Air Pollution. https://www.who.int/health-topics/air-pollution. (accessed Oct. 1, 2020).
  • Sénéchal, H.; Visez, N.; Charpin, D.; Shahali, Y.; Peltre, G.; Biolley, J. P.; Lhuissier, F.; Couderc, R.; Yamada, O.; Malrat-Domenge, A.; et al. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity. Sci. World J. 2015, 2015, 29, DOI: 10.1155/2015/940243.
  • Gulia, S.; Shiva Nagendra, S. M.; Khare, M.; Khanna, I. Urban Air Quality Management-A Review. Atmospheric Pollut. Res. 2015, 6, 286–304. DOI: 10.5094/APR.2015.033.
  • Omidvarborna, H.; Baawain, M.; Al-Mamun, A. Ambient Air Quality and Exposure Assessment Study of the Gulf Cooperation Council Countries: A Critical Review. Sci. Total Environ. 2018, 636, 437–448. DOI: 10.1016/j.scitotenv.2018.04.296.
  • World Health Organization. Air quality guidelines-global update 2005. https://www.who.int/airpollution/publications/aqg2005/en/. (accessed July 10, 2020).
  • Calef, D.; Goble, R. The Allure of Technology: How France and California Promoted Electric and Hybrid Vehicles to Reduce Urban Air Pollution. Policy Sci. 2007, 40, 1–34. DOI: 10.1007/s11077-006-9022-7.
  • Giles, L. V.; Brauer, M.; Barn, P.; Künzli, N.; Romieu, I.; Mittleman, M. A.; van Eeden, S.; Allen, R.; Carlsten, C.; Stieb, D.; et al. From Good Intentions to Proven Interventions: Effectiveness of Actions to Reduce the Health Impacts of Air Pollution. Environ. Health Perspect. 2011, 119, 29–36. DOI: 10.1289/ehp.1002246.
  • Landrigan, P. J. Air Pollution and Health. Lancet Public Health 2017, 2, e4–e5. DOI: 10.1016/S2468-2667(16)30023-8.
  • Giannouli, M.; Kalognomou, E. A.; Mellios, G.; Moussiopoulos, N.; Samaras, Z.; Fiala, J. Impact of European Emission Control Strategies on Urban and Local Air Quality. Atmospheirc Environ. 2011, 45, 4753–4762. DOI: 10.1016/j.atmosenv.2010.03.016.
  • Santana, E.; Cunha, K. B. d.; Ferreira, A. L.; Zamboni, A. Padrões de qualidade do ar Experiência comparada Brasil, EUA e União Europeia. https://iema-site-staging.s3.amazonaws.com/padroes-final01.pdf. (accessed July 10, 2020).
  • Martins, E. M.; Meireles, A. R.; Magalhaes, F. R.; Carvalho, J. B. B.; Ribeiro, M. M. Concentrações de Poluentes Atmosféricos No Rio De Janeiro Em Relação a Normas Nacionais e Internacionais. Rev. Int. Ciências 2017, 7, 32–48. DOI: 10.12957/ric.2017.25799.
  • Korc, M. E.; Cerda, R.; Farías, E. F. El proceso de fijación y revisión de normas de calidad del aire. https://www.paho.org/hq/index.php?option=com_docman&task=doc_download&gid=44643&Itemid=270&lang=es. (accessed Oct. 19, 2020).
  • United States Environmental Protection Agency. Reviewing National Ambient Air Quality Standards (NAAQS): Scientific and Technical Information, Table of current NAAQS. https://www.epa.gov/criteria-air-pollutants/naaqs-table. (accessed Jan. 27, 2020).
  • European Environment Agency. Air Quality Standards. Based on Directive on Ambient Air Quality and Cleaner Air for Europe. https://www.eea.europa.eu/downloads/6cbbc2402c194045a4ad7fcc 26cdfc6e/1574331026/air-quality-standards.pdf. (accessed July 10, 2020).
  • Brazilian Environmental Council (CONAMA). Brazilian Air Quality Standards. https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/51058895. (accessed July 11, 2020).
  • Liu, B.; Yang, J.; Yuan, J.; Wang, J.; Dai, Q.; Li, T.; Bi, X.; Feng, Y.; Xiao, Z.; Zhang, Y.; et al. Source Apportionment of Atmospheric Pollutants Based on the Online Data by Using PMF and ME2 Models at a Megacity, China. Atmospheric Res. 2017, 185, 22–31. DOI: 10.1016/j.atmosres.2016.10.023.
  • Fioletov, V. E.; McLinden, C. A.; Krotkov, N.; Li, C. Lifetimes and Emissions of SO2 from Point Sources Estimated from OMI. Geophys. Res. Lett. 2015, 42, 1969–1976. DOI: 10.1002/2013GL058740.Received.
  • Qi, J.; Zheng, B.; Li, M.; Yu, F.; Chen, C.; Liu, F.; Zhou, X.; Yuan, J.; Zhang, Q.; He, K. A High-Resolution Air Pollutants Emission Inventory in 2013 for the Beijing-Tianjin-Hebei Region, China. Atmospheirc Environ. 2017, 170, 156–168. DOI: 10.1016/j.atmosenv.2017.09.039.
  • Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y. F.; Li, L.; Zhang, L. Ozone Pollution in China: A Review of Concentrations, Meteorological Influences, Chemical Precursors, and Effects. Sci. Total Environ. 2017, 575, 1582–1596. DOI: 10.1016/j.scitotenv.2016.10.081.
  • Bravo, H.; Sosa, R.; Sánchez, P.; Bueno, E.; González, L. Concentrations of Benzene and Toluene in the Atmosphere of the Southwestern Area at the Mexico City Metropolitan Zone. Atmospheric Environ. 2002, 36, 3843–3849. DOI: 10.1016/S1352-2310(02)00292-3.
  • Cerón Bretón, J. G.; Cerón Bretón, R. M.; Kahl, J. D. W.; Lara-Severino, R.; del, C.; Ramírez Lara, E.; Espinosa Fuentes, M.; de la, L.; Rangel Marrón, M.; Uc Chi, M. P. Atmospheric Levels of Benzene and C1-C2 Carbonyls in San Nicolas de Los Garza, Nuevo Leon, Mexico: Source Implications and Health Risk. Atmosphere (Basel) 2017, 8, 1–26. DOI: 10.3390/atmos8100196.
  • Larsen, R. K.; Baker, J. E. Source Apportionment of Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere: A Comparison of Three Methods. Environ. Sci. Technol 2003, 37, 1873–1881. DOI: 10.1021/es0206184.
  • Singh, K. P.; Malik, A.; Kumar, R.; Saxena, P.; Sinha, S. Receptor Modeling for Source Apportionment of Polycyclic Aromatic Hydrocarbons in Urban Atmosphere. Environ. Monit. Assess 2008, 136, 183–196. DOI: 10.1007/s10661-007-9674-6.
  • Cai, J.; Wang, J.; Zhang, Y.; Tian, H.; Zhu, C.; Gross, D. S.; Hu, M.; Hao, J.; He, K.; Wang, S.; et al. Source Apportionment of Pb-Containing Particles in Beijing during January 2013. Environ. Pollut. 2017, 226, 30–40. DOI: 10.1016/j.envpol.2017.04.004.
  • Sha, Q.; Lu, M.; Huang, Z.; Yuan, Z.; Jia, G.; Xiao, X.; Wu, Y.; Zhang, Z.; Li, C.; Zhong, Z.; et al. Anthropogenic Atmospheric Toxic Metals Emission Inventory and Its Spatial Characteristics in Guangdong Province, China. Sci. Total Environ. 2019, 670, 1146–1158. DOI: 10.1016/j.scitotenv.2019.03.206.
  • Zhu, C.; Tian, H.; Hao, J. Global Anthropogenic Atmospheric Emission Inventory of Twelve Typical Hazardous Trace Elements, 1995–2012. Atmospheric Environ. 2020, 220, 117061. DOI: 10.1016/j.atmosenv.2019.117061.
  • Kumar, A.; Singh, D.; Singh, B. P.; Singh, M.; Anandam, K.; Kumar, K.; Jain, V. K. Spatial and Temporal Variability of Surface Ozone and Nitrogen Oxides in Urban and Rural Ambient Air of Delhi-NCR. Air Qual. Atmos. Health 2015, 8, 391–399. DOI: 10.1007/s11869-014-0309-0.
  • Tong, L.; Zhang, H.; Yu, J.; He, M.; Xu, N.; Zhang, J.; Qian, F.; Feng, J.; Xiao, H. Characteristics of Surface Ozone and Nitrogen Oxides at Urban, Suburban and Rural Sites in Ningbo, China. Atmospheric Res. 2017, 187, 57–68. DOI: 10.1016/j.atmosres.2016.12.006.
  • Guo, H.; Wang, Y.; Zhang, H. Characterization of Criteria Air Pollutants in Beijing during 2014–2015. Environ. Res. 2017, 154, 334–344. DOI: 10.1016/j.envres.2017.01.029.
  • Villanueva, F.; Notario, A.; Tapia, A.; Albaladejo, J.; Cabañas, B.; Martínez, E. Ambient Levels of Volatile Organic Compounds and Criteria Pollutants in the Most Industrialized Area of Central Iberian Peninsula: Intercomparison with an Urban Site. Environ. Technol. 2016, 37, 983–996. DOI: 10.1080/09593330.2015.1096309.
  • Cichowicz, R.; Wielgosiński, G. Analysis of Variations in Air Pollution Fields in Selected Cities in Poland and Germany. Ecol. Chem. Eng. S 2018, 25, 217–227. DOI: 10.1515/eces-2018-0014.
  • Ibe, F. C.; Opara, A. I.; Duru, C. E.; Obinna, I. B.; Enedoh, M. C. Statistical Analysis of Atmospheric Pollutant Concentrations in Parts of Imo State. Southeastern Nigeria. Sci. African 2020, 7, e00237. DOI: 10.1016/j.sciaf.2019.e00237.
  • Civan, M. Y.; Elbir, T.; Seyfioglu, R.; Kuntasal, Ö. O.; Bayram, A.; Doğan, G.; Yurdakul, S.; Andiç, Ö.; Müezzinoğlu, A.; Sofuoglu, S. C.; et al. Spatial and Temporal Variations in Atmospheric VOCs, NO2, SO2, and O3 Concentrations at a Heavily Industrialized Region in Western Turkey, and Assessment of the Carcinogenic Risk Levels of Benzene. Atmospheric Environ. 2015, 103, 102–113. DOI: 10.1016/j.atmosenv.2014.12.031.
  • Bahino, J.; Yoboué, V.; Galy-Lacaux, C.; Adon, M.; Akpo, A.; Keita, S.; Liousse, C.; Gardrat, E.; Chiron, C.; Ossohou, M.; et al. A Pilot Study of Gaseous Pollutants’ Measurement (NO2, SO2, NH3, HNO3 and O3) in Abidjan, Côte D’Ivoire: Contribution to an Overview of Gaseous Pollution in African Cities. Atmospheric Chem. Phys. 2018, 18, 5173–5198. DOI: 10.5194/acp-18-5173-2018.
  • Koch, N. M.; Lucheta, F.; Käffer, M. I.; Martins, S. M.; de, A.; Vargas, V. M. F. Air Quality Assessment in Different Urban Areas from Rio Grande Do Sul State, Brazil, Using Lichen Transplants. An. Acad. Bras. Ciênc. 2018, 90, 2233–2248. DOI: 10.1590/0001-3765201820170987.
  • De La Cruz, A. R. H.; Dionisio Calderon, E. R.; França, B. B.; Réquia, W. J.; Gioda, A. Evaluation of the Impact of the Rio 2016 Olympic Games on Air Quality in the City of Rio De Janeiro, Brazil. Atmospheric Environ. 2019, 203, 206–215. DOI: 10.1016/j.atmosenv.2019.02.007.
  • Cruz, L. P. S.; Santos, D. F.; dos Santos, I. F.; Gomes, Í. V. S.; Santos, A. V. S.; Souza, K. S. P. P. Exploratory Analysis of the Atmospheric Levels of BTEX, Criteria Air Pollutants and Meteorological Parameters in a Tropical Urban Area in Northeastern Brazil. Microchem. J. 2020, 152, 104265. DOI: 10.1016/j.microc.2019.104265.
  • Ahmed Abdul–Wahab, S. A.; En, S. C. F.; Elkamel, A.; Ahmadi, L.; Yetilmezsoy, K. A Review of Standards and Guidelines Set by International Bodies for the Parameters of Indoor Air Quality. Atmospheric Pollut. Res. 2015, 6, 751–767. DOI: 10.5094/APR.2015.084.
  • United States Environmental Protection Agency. Indoor Air Quality (IAQ). https://www.epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality. (accessed October 19, 2020.
  • World Health Organization. Guidelines for indoor air quality. https://www.who.int/airpollution/guidelines/en/. (accessed Oct 19, 2020.
  • Occupational Safety and Health Administration. U.S. Department of Labor, Code of Federal Regulations. https://www.osha.gov/laws-regs. (accessed Oct 19, 2020.
  • The National Institute for Occupational Safety and Health. NIOSH Pocket Guide to Chemical Hazards. https://www.cdc.gov/niosh/npg/default.html. (accessed Oct 19, 2020.
  • American Conference of Governmental Industrial Hygienists. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. https://www.acgih.org/. (accessed October 19, 2020).
  • American Society of Heating, R. and A.-C. E. Standard Ventilation for Acceptable Indoor Air Quality. http://isites.harvard.edu/fs/docs/icb.topic256760.files/62_1_2004.pdf. (accessed Oct 19, 2020).
  • Brazil - Ministry of Labour. NR-15 - Unalubered Activities and Operations. https://sit.trabalho.gov.br/portal/index.php/ctpp-nrs/nr-15?view=default. (accessed Oct 19, 2020.
  • Brazil -The National Health Surveillance Agency. Resolution 176 (RE-176/2000). https://www.gov.br/anvisa. (accessed Oct 19, 2020.
  • Brazil -The National Health Surveillance Agency. Resolution (RE-9/2003 ). https://www.gov.br/anvisa. (accessed Oct 19, 2020.
  • Ali, M. U.; Liu, G.; Yousaf, B.; Ullah, H.; Abbas, Q.; Munir, M. A. M. A Systematic Review on Global Pollution Status of Particulate Matter-Associated Potential Toxic Elements and Health Perspectives in Urban Environment. Environ. Geochem. Health 2019, 41, 1131–1162. DOI: 10.1007/s10653-018-0203-z.
  • Kodzius, R.; Sabir, D. K.; Rabiei, N.; Abdulkareem, A. F. The Pollutant Particle Size and Chemistry Matters. Biomed. Chem. Eng. 2018, 2018050004. DOI: 10.20944/preprints201805.0004.v1.
  • Sioutas, C.; Delfino, R. J.; Singh, M. Exposure Assessment for Atmospheric Ultrafine Particles (UFPs) and Implications in Epidemiologic Research. Environ. Health Perspect. 2005, 113, 947–955. DOI: 10.1289/ehp.7939.
  • Slezakova, K.; Morais, S.; do Carmo Pereira, M. Atmospheric Nanoparticles and Their Impacts on Public Health. Curr. Top. Public Health 2013, 503. DOI: 10.1016/j.colsurfa.2011.12.014.
  • Owono, A. P. Trace Element Analysis of Filter and Impactor Samples of Atmospheric Aerosols by Photon Induced X-Ray Fluorescence. J. Aerosol Sci. 1982, 13, 321–325. DOI: 10.1016/0021-8502(82)90033-7.
  • Morselli, L.; Cecchini, M.; Grand, E.; Iannuccilli, A.; Barilli, L.; Olivieri, P. Heavy Metals in Atmospheric Surrogate Dry Deposition. Chemosphere 1999, 38, 899–907. DOI: 10.1016/S0045-6535(98)00309-9.
  • De Almeida, T. S.; Sant’Ana, M. O.; Cruz, J. M.; Tormen, L.; Curtius, A. J.; Do Patrocínio, H.; Alves, J.; Garcia, C. A. B.; Santos, P. A.; Araujo, R. G. O. Optimization Method for Sequential Determination of Cu and Fe in Airborne Particulate Matter Collected on Glass Fiber Filters by Slurry Sampling FAAS. J. Braz. Chem. Soc. 2013, 24, 700–706. DOI: 10.5935/0103-5053.20130088.
  • Sanguineti, P. B.; Lanzaco, B. L.; López, M. L.; Achad, M.; Palancar, G. G.; Olcese, L. E.; Toselli, B. M. PM2.5 Monitoring during a 10-Year Period: Relation between Elemental Concentration and Meteorological Conditions. Environ. Monit. Assess. 2020, 192, 313. DOI: 10.1007/s10661-020-08288-0.
  • Hayward, S. J.; Gouin, T.; Wania, F. Comparison of Four Active and Passive Sampling Techniques for Pesticides in Air. Environ. Sci. Technol. 2010, 44, 3410–3416. DOI: 10.1021/es902512h.
  • Namieśnik, J.; Zabiegała, B.; Kot-Wasik, A.; Partyka, M.; Wasik, A. Passive Sampling and/or Extraction Techniques in Environmental Analysis: A Review. Anal. Bioanal. Chem. 2005, 381, 279–301. DOI: 10.1007/s00216-004-2830-8.
  • Lévy, M.; Fournier, E.; Heyrich, Y.; Millet, M. Coupling ASE, SPE and SPME for the Extraction and Quantification of PAH in Passive Samplers and Biological Materials (Pine Needles). Polycycl. Aromat. Compd. 2017, 37, 178–188. DOI: 10.1080/10406638.2016.1253595.
  • Li, Q.; Yang, K.; Li, J.; Zeng, X.; Yu, Z.; Zhang, G. An Assessment of Polyurethane Foam Passive Samplers for Atmospheric Metals Compared with Active Samplers. Environ. Pollut. 2018, 236, 498–504. DOI: 10.1016/j.envpol.2018.01.043.
  • Campos, V. P.; Cruz, L. P. S.; Godoi, R. H. M.; Godoi, A. F. L.; Tavares, T. M. Development and Validation of Passive Samplers for Atmospheric Monitoring of SO2, NO2, O3 and H2S in Tropical Areas. Microchem. J. 2010, 96, 132–138. DOI: 10.1016/j.microc.2010.02.015.
  • Nazir, R.; Shaheen, N.; Shah, M. H. Indoor/Outdoor Relationship of Trace Metals in the Atmospheric Particulate Matter of an Industrial Area. Atmospheric Res. 2011, 101, 765–772. DOI: 10.1016/j.atmosres.2011.05.003.
  • Niu, J.; Rasmussen, P. E.; Wheeler, A.; Williams, R.; Chénier, M. Evaluation of Airborne Particulate Matter and Metals Data in Personal, Indoor and Outdoor Environments Using ED-XRF and ICP-MS and Co-Located Duplicate Samples. Atmospheric. Environ. 2010, 44, 235–245. DOI: 10.1016/j.atmosenv.2009.10.009.
  • Zíková, N.; Ondráček, J.; Ždímal, V. Size-Resolved Penetration through High-Efficiency Filter Media Typically Used for Aerosol Sampling. Aerosol Sci. Technol. 2015, 49, 239–249. DOI: 10.1080/02786826.2015.1020997.
  • Lindsley, W. G. Filter Pore Size and Aerosol Sample Collection. In NIOSH Manual of Analytical Methods; CDC: Atlanta, 2016; pp 1–14.
  • Pöykiö, R.; Perämäki, P.; Rönkkömäki, H. The Homogeneity of Heavy Metal Deposition on Glass Fibre Filters Collected Using a High-Volume Sampler in the Vicinity of an Opencast Chrome Mine Complex at Kemi, Northern Finland. Anal. Bioanal. Chem. 2003, 375, 476–481. DOI: 10.1007/s00216-002-1704-1.
  • Rasmussen, P. E.; Wheeler, A. J.; Hassan, N. M.; Filiatreault, A.; Lanouette, M. Monitoring Personal, Indoor, and Outdoor Exposures to Metals in Airborne Particulate Matter: Risk of Contamination during Sampling, Handling and Analysis. Atmospheric Environ. 2007, 41, 5897–5907. DOI: 10.1016/j.atmosenv.2007.03.018.
  • Marrero, J.; Rebagliati, R. J.; Gómez, D.; Smichowski, P. A Study of Uniformity of Elements Deposition on Glass Fiber Filters after Collection of Airborne Particulate Matter (PM-10), Using a High-Volume Sampler. Talanta 2005, 68, 442–447. DOI: 10.1016/j.talanta.2005.09.005.
  • Deng, L.; Bi, C.; Jia, J.; Zeng, Y.; Chen, Z. Effects of Heating Activities in Winter on Characteristics of PM2.5-Bound Pb, Cd and Lead Isotopes in Cities of China. J. Clean. Prod. 2020, 265, 121826. DOI: 10.1016/j.jclepro.2020.121826.
  • De Oliveira, P. L.; Figueiredo, B. R.; Cardoso, A. A.; Angélica, R. S. Elementos Traço Em Material Particulado Atmosférico de Uma Região Agroindustrial Do Sudeste Do Brasil. Quím. Nova 2013, 36, 533–539. DOI: 10.1590/S0100-40422013000400009.
  • Morales, J. A.; Pirela, D.; Durán, J. Determination of the Levels of Na, K, Ca, Mg, Fe, Zn and Cu in Aerosols of the Western Venezuelan Savannah Region. Sci. Total Environ. 1996, 180, 155–164. DOI: 10.1016/0048-9697(95)04941-X.
  • Ventura, L. M. B.; Amaral, B. S.; Wanderley, K. B.; Godoy, J. M.; Gioda, A. Validation Method to Determine Metals in Atmospheric Particulate Matter by Inductively Coupled Plasma Optical Emission Spectrometry. J. Braz. Chem. Soc. 2014, 25, 1571–1582. DOI: 10.5935/0103-5053.20140142.
  • de Oliveira Alves, N.; Brito, J.; Caumo, S.; Arana, A.; de Souza Hacon, S.; Artaxo, P.; Hillamo, R.; Teinilä, K.; Batistuzzo de Medeiros, S. R.; de Castro Vasconcellos, P. Biomass Burning in the Amazon Region: Aerosol Source Apportionment and Associated Health Risk Assessment. Atmospheric Environ. 2015, 120, 277–285. DOI: 10.1016/j.atmosenv.2015.08.059.
  • Alves, D. D.; Riegel, R. P.; Klauck, C. R.; Ceratti, A. M.; Hansen, J.; Cansi, L. M.; Pozza, S. A.; de Quevedo, D. M.; Osório, D. M. M. Source Apportionment of Metallic Elements in Urban Atmospheric Particulate Matter and Assessment of Its Water-Soluble Fraction Toxicity. Environ. Sci. Pollut. Res. Int. 2020, 27, 12202–12214. DOI: 10.1007/s11356-020-07791-8.
  • Macedo, S. M.; dos Santos, D. C.; de Jesus, R. M.; da Rocha, G. O.; Ferreira, S. L. C.; de Andrade, J. B. Development of an Analytical Approach for Determination of Total Arsenic and Arsenic (III) in Airborne Particulate Matter by Slurry Sampling and HG-FAAS. Microchem. J. 2010, 96, 46–49. DOI: 10.1016/j.microc.2010.01.019.
  • Hassan, N. M.; Rasmussen, P. E.; Dabek-Zlotorzynska, E.; Celo, V.; Chen, H. Analysis of Environmental Samples Using Microwave-Assisted Acid Digestion and Inductively Coupled Plasma Mass Spectrometry: Maximizing Total Element Recoveries. Water. Air. Soil Pollut. 2007, 178, 323–334. DOI: 10.1007/s11270-006-9201-3.
  • Lopes Costa, S. S.; Alves, J. C.; Almeida, T. S.; Ribeiro, V. S.; Azzolin Frescura Bascuñan, V. L.; Andrade Maranhão, T.; Borges Garcia, C. A.; Olímpio da Rocha, G.; Oliveira Araujo, R. G. Seasonality of Airborne Trace Element Sources in Aracaju, Northeastern, Brazil. J. Environ. Manage. 2019, 247, 19–28. DOI: 10.1016/j.jenvman.2019.06.033.
  • Sánchez de la Campa, A. M.; Sánchez-Rodas, D.; Márquez, G.; Romero, E.; de la Rosa, J. D. 2009–2017 Trends of PM10 in the Legendary Riotinto Mining District of SW Spain. Atmospheric Res. 2020, 238, 104878. DOI: 10.1016/j.atmosres.2020.104878.
  • Adon, A. J.; Liousse, C.; Doumbia, E. T.; Baeza-Squiban, A.; Cachier, H.; Léon, J.-F.; Yoboué, V.; Akpo, A. B.; Galy-Lacaux, C.; Guinot, B.; et al. Physico-Chemical Characterization of Urban Aerosols from Specific Combustion Sources in West Africa at Abidjan in Côte D’Ivoire and Cotonou in Benin in the Frame of the DACCIWA Program. Atmospheric Chem. Phys. 2020, 20, 5327–5354. DOI: 10.5194/acp-20-5327-2020.
  • Bein, K. J.; Wexler, A. S. Compositional Variance in Extracted Particulate Matter Using Different Filter Extraction Techniques. Atmospheric Environ. 2015, 107, 24–34. DOI: 10.1016/j.atmosenv.2015.02.026.
  • Mateus, V. L.; Monteiro, I. L. G.; Rocha, R. C. C.; Saint'Pierre, T. D.; Gioda, A. Study of the Chemical Composition of Particulate Matter from the Rio De Janeiro Metropolitan Region, Brazil, by Inductively Coupled Plasma-Mass Spectrometry and Optical Emission Spectrometry. Spectrochim Acta Part B At Spectrosc. 2013, 86, 131–136. DOI: 10.1016/j.sab.2013.03.003.
  • Schleicher, N. J.; Norra, S.; Chai, F.; Chen, Y.; Wang, S.; Cen, K.; Yu, Y.; Stüben, D. Temporal Variability of Trace Metal Mobility of Urban Particulate Matter from Beijing - A Contribution to Health Impact Assessments of Aerosols. Atmospheric Environ. 2011, 45, 7248–7265. DOI: 10.1016/j.atmosenv.2011.08.067.
  • Danadurai, K. S. K.; Chellam, S.; Lee, C. T.; Fraser, M. P. Trace Elemental Analysis of Airborne Particulate Matter Using Dynamic Reaction Cell Inductively Coupled Plasma - Mass Spectrometry: Application to Monitoring Episodic Industrial Emission Events. Anal. Chim Acta 2011, 686, 40–49. DOI: 10.1016/j.aca.2010.11.037.
  • Cheung, K.; Daher, N.; Kam, W.; Shafer, M. M.; Ning, Z.; Schauer, J. J.; Sioutas, C. Spatial and Temporal Variation of Chemical Composition and Mass Closure of Ambient Coarse Particulate Matter (PM10-2.5) in the Los Angeles Area. Atmospheric Environ. 2011, 45, 2651–2662. [Database] DOI: 10.1016/j.atmosenv.2011.02.066.
  • Schothorst, R. C.; Géron, H. M. A.; Spitsbergen, D.; Herber, R. F. M. Determination of Heavy Metals on Filter Material by Solid Sampling Direct Zeeman AAS. Z Anal. Chem. 1987, 328, 393–395. DOI: 10.1007/BF02427306.
  • Pozza, S. A.; Bruno, R. L.; Tazinassi, M. G.; Gonçalves, J. A. S.; Do Nascimento Filho, V. F.; Barrozo, M. A. S.; Coury, J. R. Sources of Particulate Matter: Emission Profile of Biomass Burning. IJEP. 2009, 36, 276–286. DOI: 10.1504/IJEP.2009.021832.
  • Fomba, K. W.; van Pinxteren, D.; Müller, K.; Spindler, G.; Herrmann, H. Assessment of Trace Metal Levels in Size-Resolved Particulate Matter in the Area of Leipzig. Atmospheric Environ. 2018, 176, 60–70. DOI: 10.1016/j.atmosenv.2017.12.024.
  • Dabek-Zlotorzynska, E.; Dann, T. F.; Kalyani Martinelango, P.; Celo, V.; Brook, J. R.; Mathieu, D.; Ding, L.; Austin, C. C. Canadian National Air Pollution Surveillance (NAPS) PM2.5 Speciation Program: Methodology and PM2.5 Chemical Composition for the Years 2003-2008. Atmospheric Environ. 2011, 45, 673–686. DOI: 10.1016/j.atmosenv.2010.10.024.
  • Datta, S.; Rule, A. M.; Mihalic, J. N.; Chillrud, S. N.; Bostick, B. C.; Ramos-Bonilla, J. P.; Han, I.; Polyak, L. M.; Geyh, A. S.; Breysse, P. N. Use of X-Ray Absorption Spectroscopy to Speciate Manganese in Airborne Particulate Matter from Five Counties across the United States. Environ. Sci. Technol. 2012, 46, 3101–3109. DOI: 10.1021/es203435n.
  • d'Acapito, F.; Mazziotti Tagliani, S.; Di Benedetto, F.; Gianfagna, A. Local Order and Valence State of Fe in Urban Suspended Particulate Matter. Atmopheric Environ. 2014, 99, 582–586. DOI: 10.1016/j.atmosenv.2014.10.028.
  • Malandrino, M.; Di Martino, M.; Giacomino, A.; Geobaldo, F.; Berto, S.; Grosa, M. M.; Abollino, O. Temporal Trends of Elements in Turin (Italy) Atmospheric Particulate Matter from 1976 to 2001. Chemosphere 2013, 90, 2578–2588. DOI: 10.1016/j.chemosphere.2012.10.102.
  • González-Castanedo, Y.; Moreno, T.; Fernández-Camacho, R.; Sánchez de la Campa, A. M.; Alastuey, A.; Querol, X.; de la Rosa, J. Size Distribution and Chemical Composition of Particulate Matter Stack Emissions in and around a Copper Smelter. Atmopheric Environ. 2014, 98, 271–282. DOI: 10.1016/j.atmosenv.2014.08.057.
  • Zhou, S.; Yuan, Q.; Li, W.; Lu, Y.; Zhang, Y.; Wang, W. Trace Metals in Atmospheric Fine Particles in One Industrial Urban City: Spatial Variations, Sources, and Health Implications. J. Environ. Sci. (China) 2014, 26, 205–213. DOI: 10.1016/S1001-0742(13)60399-X.
  • Ault, A. P.; Peters, T. M.; Sawvel, E. J.; Casuccio, G. S.; Willis, R. D.; Norris, G. A.; Grassian, V. H. Single-Particle SEM-EDX Analysis of Iron-Containing Coarse Particulate Matter in an Urban Environment: Sources and Distribution of Iron within Cleveland, Ohio. Environ. Sci. Technol. 2012, 46, 4331–4339. DOI: 10.1021/es204006k.
  • Quijano, M. F. C.; Mateus, V. L.; Saint'Pierre, T. D.; Bott, I. S.; Gioda, A. Exploratory and Comparative Analysis of the Morphology and Chemical Composition of PM 2.5 from Regions with Different Socioeconomic Characteristics. Microchem. J. 2019, 147, 507–515. DOI: 10.1016/j.microc.2019.03.071.
  • Araujo, R. G. O.; Welz, B.; Castilho, I. N. B.; Vale, M. G. R.; Smichowski, P.; Ferreira, S. L. C.; Becker-Ross, H. Determination of Antimony in Airborne Particulate Matter Collected on Filters Using Direct Solid Sampling and High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2010, 25, 580–584. DOI: 10.1039/B914868J.
  • Yu, J. C.; Zhang, B.; Lai, Y. K. Direct Determination of Mercury in Atmospheric Particulate Matter by Graphite Plate Filtration-Electrothermal Atomic Absorption Spectrometry with Zeeman Background Correction. Spectrochim Acta, Part B At. Spectrosc. 2000, 55, 395–402. DOI: 10.1016/S0584-8547(00)00166-X.
  • Beldowska, M.; Saniewska, D.; Falkowska, L.; Lewandowska, A. Mercury in Particulate Matter over Polish Zone of the Southern Baltic Sea. Atmopheric Environ. 2012, 46, 397–404. DOI: 10.1016/j.atmosenv.2011.09.046.
  • Fang, G. C.; Lo, C. T.; Huang, J. H.; Liu, C. K.; Huang, Y. L. Atmospheric Particle Bound Mercury Hg(p) Concentrations and Amounts in Total Suspended Particulates and Dry Deposition at an Industrial and Wetland Sampling Sites in Taiwan. Environ. Forensics 2011, 12, 200–205. DOI: 10.1080/15275922.2011.595050.
  • De Gois, J. S.; Almeida, T. S.; Alves, J. C.; Araujo, R. G. O.; Borges, D. L. G. Assessment of the Halogen Content of Brazilian Inhalable Particulate Matter (PM10) Using High Resolution Molecular Absorption Spectrometry and Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry, with Direct Solid Sample Analysis. Environ. Sci. Technol. 2016, 50, 3031–3038. DOI: 10.1021/acs.est.5b01934.
  • Correia, F. O.; Almeida, T. S.; Garcia, R. L.; Queiroz, A. F. S.; Smichowski, P.; Rocha, G. O.; da Araujo, R. G. O. Sequential Determination and Chemical Speciation Analysis of Inorganic as and Sb in Airborne Particulate Matter Collected in Outdoor and Indoor Environments Using Slurry Sampling and Detection by HG AAS. Environ. Sci. Pollut. Res. 2019, 26, 21416–21424. DOI: 10.1007/s11682-018-9832-1.
  • Villalobos, A. M.; Barraza, F.; Jorquera, H.; Schauer, J. J. Chemical Speciation and Source Apportionment of Fine Particulate Matter in Santiago, Chile, 2013. Sci. Total Environ. 2015, 512-513, 133–142. DOI: 10.1016/j.scitotenv.2015.01.006.
  • Gómez, D.; Nakazawa, T.; Furuta, N.; Smichowski, P. Multielemental Chemical Characterisation of Fine Urban Aerosols Collected in Buenos Aires and Tokyo by Plasma-Based Techniques. Microchem. J. 2017, 133, 346–351. DOI: 10.1016/j.microc.2017.03.041.
  • Pan, Y.; Tian, S.; Li, X.; Sun, Y.; Li, Y.; Wentworth, G. R.; Wang, Y. Trace Elements in Particulate Matter from Metropolitan Regions of Northern China: Sources, Concentrations and Size Distributions. Sci. Total Environ. 2015, 537, 9–22. DOI: 10.1016/j.scitotenv.2015.07.060.
  • Pyta, H.; Rogula-Kozłowska, W. Determination of Mercury in Size-Segregated Ambient Particulate Matter Using CVAAS. Microchem. J. 2016, 124, 76–81. DOI: 10.1016/j.microc.2015.08.001.
  • Sánchez-Rodas, D.; Alsioufi, L.; Sánchez de la Campa, A. M.; González-Castanedo, Y. Antimony Speciation as Geochemical Tracer for Anthropogenic Emissions of Atmospheric Particulate Matter. J. Hazard. Mater. 2017, 324, 213–220. DOI: 10.1016/j.jhazmat.2016.10.051.
  • International Agency for Research on Cancer. IARC Monographs on the Identification of Carcinogenic Hazards to Humans. https://monographs.iarc.fr/list-of-classifications. (accessed Oct 19, 2020).
  • Liu, J.; Man, R.; Ma, S.; Li, J.; Wu, Q.; Peng, J. Atmospheric Levels and Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) Bound to PM2.5 in Guangzhou, China. Mar. Pollut. Bull. 2015, 100, 134–143. DOI: 10.1016/j.marpolbul.2015.09.014.
  • Kamal, A.; Cincinelli, A.; Martellini, T.; Malik, R. N. A Review of PAH Exposure from the Combustion of Biomass Fuel and Their Less Surveyed Effect on the Blood Parameters. Environ. Sci. Pollut. Res. Int. 2015, 22, 4076–4098. DOI: 10.1007/s11356-014-3748-0.
  • Zhang, Y.; Lin, Y.; Cai, J.; Liu, Y.; Hong, L.; Qin, M.; Zhao, Y.; Ma, J.; Wang, X.; Zhu, T.; et al. Atmospheric PAHs in North China: Spatial Distribution and Sources. Sci. Total Environ. 2016, 565, 994–1000. DOI: 10.1016/j.scitotenv.2016.05.104.
  • Ohura, T.; Morita, M.; Makino, M.; Amagai, T.; Shimoi, K. Aryl Hydrocarbon Receptor-Mediated Effects of Chlorinated Polycyclic Aromatic Hydrocarbons. Chem. Res. Toxicol. 2007, 20, 1237–1241. DOI: 10.1021/tx700148b.
  • Jin, R.; Liu, G.; Zheng, M.; Fiedler, H.; Jiang, X.; Yang, L.; Wu, X.; Xu, Y. Congener-Specific Determination of Ultratrace Levels of Chlorinated and Brominated Polycyclic Aromatic Hydrocarbons in Atmosphere and Industrial Stack Gas by Isotopic Dilution Gas Chromatography/High Resolution Mass Spectrometry Method. J. Chromatogr. A 2017, 1509, 114–122. DOI: 10.1016/j.chroma.2017.06.022.
  • Franco, A.; Kummrow, F.; Umbuzeiro, G. D. A.; Vasconcellos, P. D. C.; De Carvalho, L. R. F. Occurrence of Polycyclic Aromatic Hydrocarbons Derivatives and Mutagenicity Study in Extracts of PM10 Collected in São Paulo, Brazil. Rev. Bras. Toxicol. 2010, 23, 1–10.
  • Souza, K. F.; Carvalho, L. R. F.; Allen, A. G.; Cardoso, A. A. Diurnal and Nocturnal Measurements of PAH, Nitro-PAH, and Oxy-PAH Compounds in Atmospheric Particulate Matter of a Sugar Cane Burning Region. Atmopheric Environ. 2014, 83, 193–201. DOI: 10.1016/j.atmosenv.2013.11.007.
  • Mueller, A.; Ulrich, N.; Hollmann, J.; Zapata Sanchez, C. E.; Rolle-Kampczyk, U. E.; von Bergen, M. Characterization of a Multianalyte GC-MS/MS Procedure for Detecting and Quantifying Polycyclic Aromatic Hydrocarbons (PAHs) and PAH Derivatives from Air Particulate Matter for an Improved Risk Assessment. Environ. Pollut. 2019, 255, 112967. DOI: 10.1016/j.envpol.2019.112967.
  • Tasdemir, Y.; Esen, F. Urban Air PAHs: Concentrations, Temporal Changes and Gas/Particle Partitioning at a Traffic Site in Turkey. Atmopheric Res. 2007, 84, 1–12. DOI: 10.1016/j.atmosres.2006.04.003.
  • Schummer, C.; Tuduri, L.; Briand, O.; Appenzeller, B. M.; Millet, M. Application of XAD-2 Resin-Based Passive Samplers and SPME-GC-MS/MS Analysis for the Monitoring of Spatial and Temporal Variations of Atmospheric Pesticides in Luxembourg. Environ. Pollut. 2012, 170, 88–94. DOI: 10.1016/j.envpol.2012.05.025.
  • Raeppel, C.; Fabritius, M.; Nief, M.; Appenzeller, B. M. R.; Millet, M. Coupling ASE, Sylilation and SPME-GC/MS for the Analysis of Current-Used Pesticides in Atmosphere. Talanta 2014, 121, 24–29. DOI: 10.1016/j.talanta.2013.12.040.
  • Salquèbre, G.; Schummer, C.; Millet, M.; Briand, O.; Appenzeller, B. M. R. Multi-Class Pesticide Analysis in Human Hair by Gas Chromatography Tandem (Triple Quadrupole) Mass Spectrometry with Solid Phase Microextraction and Liquid Injection. Anal. Chim Acta 2012, 710, 65–74. DOI: 10.1016/j.aca.2011.10.029.
  • Zhang, Q.; He, M.; Chen, B.; Hu, B. Preparation, Characterization and Application of Saussurea Tridactyla Sch-Bip as Green Adsorbents for Preconcentration of Rare Earth Elements in Environmental Water Samples. Spectrochim. Acta - Part B At. Spectrosc. 2016, 121, 1–10. DOI: 10.1016/j.sab.2016.04.005.
  • Gao, P. P.; Zhao, Y. B.; Ni, H. G. Incidence of Real-World Automotive Parent and Halogenated PAH in Urban Atmosphere. Environ. Pollut. 2018, 237, 515–522. DOI: 10.1016/j.envpol.2018.02.077.
  • Chen, P.; Li, C.; Kang, S.; Rupakheti, M.; Panday, A. K.; Yan, F.; Li, Q.; Zhang, Q.; Guo, J.; Ji, Z.; et al. Characteristics of Particulate-Phase Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmosphere over the Central Himalayas. Aerosol Air Qual. Res. 2017, 17, 2942–2954. DOI: 10.4209/aaqr.2016.09.0385.
  • Caliskan, B.; Kücük, A.; Tasdemir, Y.; Cindoruk, S. S. PAH Levels in a Furniture-Manufacturing City Atmosphere. Chemosphere 2020, 240, 124757–124710. DOI: 10.1016/j.chemosphere.2019.124757.
  • Crimmins, B. S.; Baker, J. E. Improved GC/MS Methods for Measuring Hourly PAH and Nitro-PAH Concentrations in Urban Particulate Matter. Atmopheric Environ. 2006, 40, 6764–6779. DOI: 10.1016/j.atmosenv.2006.05.078.
  • Garcia, K. O.; Teixeira, E. C.; Agudelo-Castañeda, D. M.; Braga, M.; Alabarse, P. G.; Wiegand, F.; Kautzmann, R. M.; Silva, L. F. O. Assessment of Nitro-Polycyclic Aromatic Hydrocarbons in PM1 near an Area of Heavy-Duty Traffic. Sci. Total Environ. 2014, 479-480, 57–65. DOI: 10.1016/j.scitotenv.2014.01.126.
  • Priego-Capote, F.; Luque-Garcı́a, J. L.; Luque de Castro, M. D. Automated Fast Extraction of Nitrated Polycyclic Aromatic Hydrocarbons from Soil by Focused Microwave-Assisted Soxhlet Extraction Prior to Gas Chromatography-Electron-Capture Detection. J. Chromatogr. A 2003, 994, 159–167. DOI: 10.1016/S0021-9673(03)00441-2.
  • Bandowe, B. A. M.; Meusel, H. Nitrated Polycyclic Aromatic Hydrocarbons (Nitro-PAHs) in the Environment – a Review. Sci. Total Environ. 2017, 581-582, 237–257. DOI: 10.1016/j.scitotenv.2016.12.115.
  • Sun, C.; Qu, L.; Wu, L.; Wu, X.; Sun, R.; Li, Y. Advances in Analysis of Nitrated Polycyclic Aromatic Hydrocarbons in Various Matrices. Trends Anal. Chem. 2020, 127, 115878. DOI: 10.1016/j.trac.2020.115878.
  • Hien, T. T.; Thanh, L. T.; Kameda, T.; Takenaka, N.; Bandow, H. Nitro-Polycyclic Aromatic Hydrocarbons and Polycyclic Aromatic Hydrocarbons in Particulate Matter in an Urban Area of a Tropical Region: Ho Chi Minh City, Vietnam. Atmopheric Environ. 2007, 41, 7715–7725. DOI: 10.1016/j.atmosenv.2007.06.020.
  • Delhomme, O.; Herckes, P.; Millet, M. Determination of Nitro-Polycyclic Aromatic Hydrocarbons in Atmospheric Aerosols Using HPLC Fluorescence with a Post-Column Derivatisation Technique. Anal. Bioanal. Chem. 2007, 389, 1953–1959. DOI: 10.1007/s00216-007-1562-y.
  • Barrado, A. I.; García, S.; Castrillejo, Y.; Barrado, E. Exploratory Data Analysis of PAH, Nitro-PAH and Hydroxy-PAH Concentrations in Atmospheric PM10-Bound Aerosol Particles. Correlations with Physical and Chemical Factors. Atmopheric Environ. 2013, 67, 385–393. DOI: 10.1016/j.atmosenv.2012.10.030.
  • Cochran, R. E.; Dongari, N.; Jeong, H.; Beránek, J.; Haddadi, S.; Shipp, J.; Kubátová, A. Determination of Polycyclic Aromatic Hydrocarbons and Their Oxy-, Nitro-, and Hydroxy-Oxidation Products. Anal. Chim Acta 2012, 740, 93–103. DOI: 10.1016/j.aca.2012.05.050.
  • Simoneit, B. R. T.; Bi, X.; Oros, D. R.; Medeiros, P. M.; Sheng, G.; Fu, J. Phenols and Hydroxy-PAHs (Arylphenols) as Tracers for Coal Smoke Particulate Matter: Source Tests and Ambient Aerosol Assessments. Environ. Sci. Technol. 2007, 41, 7294–7302. DOI: 10.1021/es071072u.
  • Albinet, A.; Nalin, F.; Tomaz, S.; Beaumont, J.; Lestremau, F. A Simple QuEChERS-like Extraction Approach for Molecular Chemical Characterization of Organic Aerosols: Application to Nitrated and Oxygenated PAH Derivatives (NPAH and OPAH) Quantified by GC-NICIMS. Anal. Bioanal. Chem. 2014, 406, 3131–3148. DOI: 10.1007/s00216-014-7760-5.
  • Wang, W.; Jariyasopit, N.; Schrlau, J.; Jia, Y.; Tao, S.; Yu, T. W.; Dashwood, R. H.; Zhang, W.; Wang, X.; Simonich, S. L. M. Concentration and Photochemistry of PAHs, NPAHs, and OPAHs and Toxicity of PM 2.5 during the Beijing Olympic Games. Environ. Sci. Technol. 2011, 45, 6887–6895. DOI: 10.1021/es201443z.
  • Delhomme, O.; Millet, M.; Herckes, P. Determination of Oxygenated Polycyclic Aromatic Hydrocarbons in Atmospheric Aerosol Samples by Liquid Chromatography-Tandem Mass Spectrometry. Talanta 2008, 74, 703–710. DOI: 10.1016/j.talanta.2007.06.037.
  • Lintelmann, J.; Fischer, K.; Matuschek, G. Determination of Oxygenated Polycyclic Aromatic Hydrocarbons in Particulate Matter Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2006, 1133, 241–247. DOI: 10.1016/j.chroma.2006.08.038.
  • Fujiwara, F.; Guiñez, M.; Cerutti, S.; Smichowski, P. UHPLC-(+)APCI-MS/MS Determination of Oxygenated and Nitrated Polycyclic Aromatic Hydrocarbons in Airborne Particulate Matter and Tree Barks Collected in Buenos Aires City. Microchem. J. 2014, 116, 118–124. DOI: 10.1016/j.microc.2014.04.004.
  • Mirivel, G.; Riffault, V.; Galloo, J. C. Simultaneous Determination by Ultra-Performance Liquid Chromatography- Atmospheric Pressure Chemical Ionization Time-of-Flight Mass Spectrometry of Nitrated and Oxygenated PAHs Found in Air and Soot Particles. Anal. Bioanal. Chem. 2010, 397, 243–256. DOI: 10.1007/s00216-009-3416-2.
  • Friberg, N.; Bonada, N.; Bradley, D. C.; Dunbar, M. J.; Edwards, F. K.; Grey, J.; Hayes, R. B.; Hildrew, A. G.; Lamouroux, N.; Trimmer, M. Biomonitoring of Human Impacts in Freshwater Ecosystems. The Good, the Bad and the Ugly. Adv. Ecol. Res. 2011, 44, 1–68. DOI: 10.1016/B978-0-12-374794-5.00001-8.
  • Barbosa, J. P. R. A. D.; Rambal, S.; Soares, A. M.; Mouillot, F.; Nogueira, J. M. P.; Martins, G. A. Plant Physiological Ecology and the Global Changes | Ecofisiologia Vegetal e as Mudanças Globais. Ciênc. Agrotec. 2012, 36, 253–269. DOI: 10.1590/S1413-70542012000300001.
  • Wolterbeek, B.; Sarmento, S.; Verburg, T. Is There a Future for Biomonitoring of Elemental Air Pollution? A Review Focused on a Larger-Scaled Health-Related (Epidemiological) Context. J. Radioanal. Nucl. Chem. 2010, 286, 195–210. DOI: 10.1007/s10967-010-0637-y.
  • Rai, P. K. Impacts of Particulate Matter Pollution on Plants: Implications for Environmental Biomonitoring. Ecotoxicol. Environ. Saf. 2016, 129, 120–136. DOI: 10.1016/j.ecoenv.2016.03.012.
  • Szczepaniak, K.; Biziuk, M. Aspects of the Biomonitoring Studies Using Mosses and Lichens as Indicators of Metal Pollution. Environ. Res. 2003, 93, 221–230. DOI: 10.1016/S0013-9351(03)00141-5.
  • Dmuchowski, W.; Bytnerowicz, A. Long-Term (1992-2004) Record of Lead, Cadmium, and Zinc Air Contamination in Warsaw, Poland: Determination by Chemical Analysis of Moss Bags and Leaves of Crimean linden. Environ. Pollut. 2009, 157, 3413–3421. DOI: 10.1016/j.envpol.2009.06.019.
  • Loppi, S.; Pirintsos, S. A. Epiphytic Lichens as Sentinels for Heavy Metal Pollution at Forest Ecosystems (Central Italy). Environ. Pollut. 2003, 121, 327–332. DOI: 10.1016/S0269-7491(02)00269-5.
  • Harmens, H.; Norris, D.; Mills, G. Heavy Metals and Nitrogen in Mosses: Spatial Patterns in 2010/2011 and Long-Term Temporal Trends in Europe. ICP Vegetation Programme Coordination Centre, Centre for Ecology and Hydrology, Bangor, UK 2013, 63.
  • Giampaoli, P.; Wannaz, E. D.; Tavares, A. R.; Domingos, M. Suitability of Tillandsia usneoides and Aechmea fasciata for Biomonitoring Toxic Elements under Tropical Seasonal Climate. Chemosphere 2016, 149, 14–23. DOI: 10.1016/j.chemosphere.2016.01.080.
  • Fernández, J. A.; Boquete, M. T.; Carballeira, A.; Aboal, J. R. A Critical Review of Protocols for Moss Biomonitoring of Atmospheric Deposition: Sampling and Sample Preparation. Sci. Total Environ. 2015, 517, 132–150. DOI: 10.1016/j.scitotenv.2015.02.050.
  • Adamo, P.; Giordano, S.; Sforza, A.; Bargagli, R. Implementation of Airborne Trace Element Monitoring with Devitalised Transplants of Hypnum cupressiforme Hedw.: Assessment of Temporal Trends and Element Contribution by Vehicular Traffic in Naples City. Environ. Pollut. 2011, 159, 1620–1628. DOI: 10.1016/j.envpol.2011.02.047.
  • Salo, H.; Mäkinen, J. Magnetic Biomonitoring by Moss Bags for Industry-Derived Air Pollution in SW Finland. Atmospheric Environ. 2014, 97, 19–27. DOI: 10.1016/j.atmosenv.2014.08.003.
  • Salo, H.; Paturi, P.; Mäkinen, J. Moss Bag (Sphagnum papillosum) Magnetic and Elemental Properties for Characterising Seasonal and Spatial Variation in Urban Pollution. Int. J. Environ. Sci. Technol. 2016, 13, 1515–1524. DOI: 10.1007/s13762-016-0998-z.
  • Tretiach, M.; Pittao, E.; Crisafulli, P.; Adamo, P. Influence of Exposure Sites on Trace Element Enrichment in Moss-Bags and Characterization of Particles Deposited on the Biomonitor Surface. Sci. Total Environ. 2011, 409, 822–830. DOI: 10.1016/j.scitotenv.2010.10.026.
  • Barre, J. P. G.; Deletraz, G.; Frayret, J.; Pinaly, H.; Donard, O. F. X.; Amouroux, D. Approach to Spatialize Local to Long-Range Atmospheric Metal Input (Cd, Cu, Hg, Pb) in Epiphytic Lichens over a Meso-Scale Area (Pyrénées-Atlantiques. Environ. Sci. Pollut. Res. 2015, 22, 8536–8548. DOI: 10.1007/s11356-014-3990-5.
  • Cecconi, E.; Incerti, G.; Capozzi, F.; Adamo, P.; Bargagli, R.; Benesperi, R.; Candotto Carniel, F.; Favero-Longo, S. E.; Giordano, S.; Puntillo, D.; et al. Background Element Content of the Lichen Pseudevernia furfuracea: A Supra-National State of Art Implemented by Novel Field Data from Italy. Sci. Total Environ. 2018, 622-623, 282–292. DOI: 10.1016/j.scitotenv.2017.11.276.
  • Ares, A.; Aboal, J. R.; Carballeira, A.; Giordano, S.; Adamo, P.; Fernández, J. A. Moss Bag Biomonitoring: A Methodological Review. Sci. Total Environ. 2012, 432, 143–158. DOI: 10.1016/j.scitotenv.2012.05.087.
  • Di Palma, A.; Crespo Pardo, D.; Spagnuolo, V.; Adamo, P.; Bargagli, R.; Cafasso, D.; Capozzi, F.; Aboal, J. R.; González, A. G.; Pokrovsky, O.; et al. Molecular and Chemical Characterization of a Sphagnum palustre Clone: Key Steps towards a Standardized and Sustainable Moss Bag Technique. Ecol. Indic. 2016, 71, 388–397. DOI: 10.1016/j.ecolind.2016.06.044.
  • Ares, A.; Fernández, J. A.; Carballeira, A.; Aboal, J. R. Towards the Methodological Optimization of the Moss Bag Technique in Terms of Contaminants Concentrations and Replicability Values. Atmospheric Environ. 2014, 94, 496–507. DOI: 10.1016/j.atmosenv.2014.05.066.
  • Rogova, N. S.; Ryzhakova, N. K.; Borisenko, A. L. Effect of Placement Conditions for Active Monitoring of Trace Element with the Epiphytic Moss. Environ. Monit. Assess. 2018, 190, 733. DOI: 10.1007/s10661-018-7087-3.
  • Giordano, S.; Adamo, P.; Spagnuolo, V.; Tretiach, M.; Bargagli, R. Accumulation of Airborne Trace Elements in Mosses, Lichens and Synthetic Materials Exposed at Urban Monitoring Stations: Towards a Harmonisation of the Moss-Bag Technique. Chemosphere 2013, 90, 292–299. DOI: 10.1016/j.chemosphere.2012.07.006.
  • Schreck, E.; Viers, J.; Blondet, I.; Auda, Y.; Macouin, M.; Zouiten, C.; Freydier, R.; Dufréchou, G.; Chmeleff, J.; Darrozes, J. Tillandsia usneoides as Biomonitors of Trace Elements Contents in the Atmosphere of the Mining District of Cartagena-La Unión (Spain): New Insights for Element Transfer and Pollution Source Tracing. Chemosphere 2020, 241, 124955. DOI: 10.1016/j.chemosphere.2019.124955.
  • Dołęgowska, S.; Migaszewski, Z. M. A First Insight into the Estimation of Uncertainty Associated with Storage and Physical Preparation of Forest Moss Samples for Trace Element Analysis. Chemosphere 2020, 241, 125040. DOI: 10.1016/j.chemosphere.2019.125040.
  • Adamo, P.; Crisafulli, P.; Giordano, S.; Minganti, V.; Modenesi, P.; Monaci, F.; Pittao, E.; Tretiach, M.; Bargagli, R. Lichen and Moss Bags as Monitoring Devices in Urban Areas. Part II: Trace Element Content in Living and Dead Biomonitors and Comparison with Synthetic Materials. Environ. Pollut. 2007, 146, 392–399. DOI: 10.1016/j.envpol.2006.03.047.
  • Cesa, M.; Campisi, B.; Bizzotto, A.; Ferraro, C.; Fumagalli, F.; Nimis, P. L. A Factor Influence Study of Trace Element Bioaccumulation in Moss Bags. Arch. Environ. Contam. Toxicol. 2008, 55, 386–396. DOI: 10.1007/s00244-007-9127-9.
  • Gonzalez, A. G.; Pokrovsky, O. S.; Beike, A. K.; Reski, R.; Di Palma, A.; Adamo, P.; Giordano, S.; Angel Fernandez, J. Metal and Proton Adsorption Capacities of Natural and Cloned Sphagnum Mosses. J. Colloid Interface Sci. 2016, 461, 326–334. DOI: 10.1016/j.jcis.2015.09.012.
  • González, A. G.; Jimenez-Villacorta, F.; Beike, A. K.; Reski, R.; Adamo, P.; Pokrovsky, O. S. Chemical and Structural Characterization of Copper Adsorbed on Mosses (Bryophyta). J. Hazard. Mater. 2016, 308, 343–354. DOI: 10.1016/j.jhazmat.2016.01.060.
  • González, A. G.; Pokrovsky, O. S. Metal Adsorption on Mosses: Toward a Universal Adsorption Model. J. Colloid Interface Sci. 2014, 415, 169–178. DOI: 10.1016/j.jcis.2013.10.028.
  • Di Palma, A.; González, A. G.; Adamo, P.; Giordano, S.; Reski, R.; Pokrovsky, O. S. Biosurface Properties and Lead Adsorption in a Clone of Sphagnum palustre (Mosses): towards a Unified Protocol of Biomonitoring of Airborne Heavy Metal Pollution. Chemosphere 2019, 236, 124375. DOI: 10.1016/j.chemosphere.2019.124375.
  • Norouzi, S.; Khademi, H.; Cano, A. F.; Acosta, J. A. Biomagnetic Monitoring of Heavy Metals Contamination in Deposited Atmospheric Dust, a Case Study from Isfahan, Iran. J. Environ. Manage. 2016, 173, 55–64. DOI: 10.1016/j.jenvman.2016.02.035.
  • Paoli, L.; Vannini, A.; Monaci, F.; Loppi, S. Competition between Heavy Metal Ions for Binding Sites in Lichens: Implications for Biomonitoring Studies. Chemosphere 2018, 199, 655–660. DOI: 10.1016/j.chemosphere.2018.02.066.
  • Spagnuolo, V.; Zampella, M.; Giordano, S.; Adamo, P. Cytological Stress and Element Uptake in Moss and Lichen Exposed in Bags in Urban Area. Ecotoxicol. Environ. Saf. 2011, 74, 1434–1443. DOI: 10.1016/j.ecoenv.2011.02.011.
  • Tretiach, M.; Adamo, P.; Bargagli, R.; Baruffo, L.; Carletti, L.; Crisafulli, P.; Giordano, S.; Modenesi, P.; Orlando, S.; Pittao, E. Lichen and Moss Bags as Monitoring Devices in Urban Areas. Part I: Influence of Exposure on Sample Vitality. Environ. Pollut. 2007, 146, 380–391. DOI: 10.1016/j.envpol.2006.03.046.
  • Agnan, Y.; Probst, A.; Séjalon-Delmas, N. Séjalon-Delmas, N. Evaluation of Lichen Species Resistance to Atmospheric Metal Pollution by Coupling Diversity and Bioaccumulation Approaches: A New Bioindication Scale for French Forested Areas. Ecol. Indic 2017, 72, 99–110. DOI: 10.1016/j.ecolind.2016.08.006.
  • Basile, A.; Sorbo, S.; Aprile, G.; Conte, B.; Castaldo Cobianchi, R. Comparison of the Heavy Metal Bioaccumulation Capacity of an Epiphytic Moss and an Epiphytic Lichen. Environ. Pollut. 2008, 151, 401–407. DOI: 10.1016/j.envpol.2007.07.004.
  • Aboal, J. R.; Pérez-Llamazares, A.; Carballeira, A.; Giordano, S.; Fernández, J. A. Should Moss Samples Used as Biomonitors of Atmospheric Contamination Be Washed? Atmospheric Environ. 2011, 45, 6837–6840. DOI: 10.1016/j.atmosenv.2011.09.004.
  • Arndt, J.; Planer-Friedrich, B. Moss Bag Monitoring as Screening Technique to Estimate the Relevance of Methylated Arsine Emission. Sci. Total Environ. 2018, 610-611, 1590–1594. DOI: 10.1016/j.scitotenv.2017.06.123.
  • Cardoso-Gustavson, P.; Fernandes, F. F.; Alves, E. S.; Victorio, M. P.; Moura, B. B.; Domingos, M.; Rodrigues, C. A.; Ribeiro, A. P.; Nievola, C. C.; Figueiredo, A. M. G. Tillandsia usneoides: A Successful Alternative for Biomonitoring Changes in Air Quality Due to a New Highway in São Paulo, Brazil. Environ. Sci. Pollut. Res. Int. 2016, 23, 1779–1788. DOI: 10.1007/s11356-015-5449-8.
  • Cruz, A. R. H. D.; La; Ayuque, R. F. O.; Cruz, R. W. H. D.; La; López-Gonzales, J. L.; Gioda, A. Air Quality Biomonitoring of Trace Elements in the Metropolitan Area of Huancayo, Peru Using Transplanted Tillandsia capillaris as a Biomonitor. An. Acad. Bras. Cienc 2020, 92, 1–17. DOI: 10.1590/0001-3765202020180813.
  • Mejía-Echeverry, D.; Chaparro, M. A. E.; Duque-Trujillo, J. F.; Chaparro, M. A. E.; Miranda, A. G. C. Magnetic Biomonitoring as a Tool for Assessment of Air Pollution Patterns in a Tropical Valley Using Tillandsia Sp. Atmosphere (Basel) 2018, 9, 283. DOI: 10.3390/atmos9070283.
  • Vuković, G.; Urošević, M. A.; Pergal, M.; Janković, M.; Goryainova, Z.; Tomašević, M.; Popović, A. Residential Heating Contribution to Level of Air Pollutants (PAHs, Major, Trace, and Rare Earth Elements): a Moss Bag Case Study. Environ. Sci. Pollut. Res. Int. 2015, 22, 18956–18966. DOI: 10.1007/s11356-015-5096-0.
  • Ares, A.; Varela, Z.; Aboal, J. R.; Carballeira, A.; Fernández, J. A. Active Biomonitoring with the Moss Pseudoscleropodium purum: Comparison between Different Types of Transplants and Bulk Deposition. Ecotoxicol. Environ. Saf. 2015, 120, 74–79. DOI: 10.1016/j.ecoenv.2015.05.033.
  • Fernández, J. A.; Ares, A.; Rey-Asensio, A.; Carballeira, A.; Aboal, J. R. Effect of Growth on Active Biomonitoring with Terrestrial Mosses. J. Atmospheric Chem. 2009, 63, 1–11. DOI: 10.1007/s10874-010-9152-3.
  • Giordano, S.; Adamo, P.; Monaci, F.; Pittao, E.; Tretiach, M.; Bargagli, R. Bags with Oven-Dried Moss for the Active Monitoring of Airborne Trace Elements in Urban Areas. Environ. Pollut. 2009, 157, 2798–2805. DOI: 10.1016/j.envpol.2009.04.020.
  • Adamo, P.; Bargagli, R.; Giordano, S.; Modenesi, P.; Monaci, F.; Pittao, E.; Spagnuolo, V.; Tretiach, M. Natural and Pre-Treatments Induced Variability in the Chemical Composition and Morphology of Lichens and Mosses Selected for Active Monitoring of Airborne Elements. Environ. Pollut. 2008, 152, 11–19. DOI: 10.1016/j.envpol.2007.06.008.
  • Capozzi, F.; Adamo, P.; Di Palma, A.; Aboal, J. R.; Bargagli, R.; Fernandez, J. A.; Lopez Mahia, P.; Reski, R.; Tretiach, M.; Spagnuolo, V.; Giordano, S. Sphagnum palustre Clone vs Native Pseudoscleropodium purum: A First Trial in the Field to Validate the Future of the Moss Bag Technique. Environ. Pollut. 2017, 225, 323–328. DOI: 10.1016/j.envpol.2017.02.057.
  • Fernández, J. A.; Carballeira, A. Differences in the Responses of Native and Transplanted Mosses to Atmospheric Pollution: A Possible Role of Selenium. Environ. Pollut. 2000, 110, 73–78. DOI: 10.1016/S0269-7491(99)00278-X.
  • Świsłowski, P.; Kříž, J.; Rajfur, M. The Use of Bark in Biomonitoring Heavy Metal Pollution of Forest Areas on the Example of Selected Areas in Poland. Ecol. Chem. Eng. S 2020, 27, 195–210. DOI: 10.2478/eces-2020-0013.
  • Abdusamadzoda, D.; Abdushukurov, D. A.; Duliu, O. G.; Zinicovscaia, I.; Yushin, N. S.; Frontasyeva, M. V. Investigations of the Atmospheric Deposition of Major and Trace Elements in Western Tajikistan by Using the Hylocomium splendens Moss as Bioindicators. Arch. Environ. Contam. Toxicol. 2020, 78, 60–67. DOI: 10.1007/s00244-019-00687-w.
  • Dafré-Martinelli, M.; Figueiredo, A. M. G.; Domingos, M. Trace Element Leaf Accumulation in Native Trees from the Remaining Semideciduous Atlantic Forest in Brazil. Atmospheric Pollut. Res. 2020, 11, 871–879. DOI: 10.1016/j.apr.2020.01.015.
  • Aničić, U.; Krmar, M.; Radnović, M.; Jovanović, D.; Jakšić, G.; Vasić, T.; Popović, P. A. The Use of Moss as an Indicator of Rare Earth Element Deposition over Large Area. Ecol. Indic. 2020, 109, 105828. DOI: 10.1016/j.ecolind.2019.105828.
  • Iglesias, M.; Gilon, N.; Poussel, E.; Mermet, J.-M. Evaluation of an ICP-Collision/Reaction Cell-MS System for the Sensitive Determination of Spectrally Interfered and Non-Interfered Elements Using the Same Gas Conditions. J. Anal. At. Spectrom. 2002, 17, 1240–1247. DOI: 10.1039/b204786c.
  • Koppenaal, D. W.; Eiden, G. C.; Barinaga, C. J. Collision and Reaction Cells in Atomic Mass Spectrometry: Development, Status, and Applications. J. Anal. At. Spectrom 2004, 19, 561–570. DOI: 10.1039/B403510K.10.1039/b403510k.
  • Tanner, S. D.; Baranov, V. I.; Bandura, D. R. Reaction Cells and Collision Cells for ICP-MS: A Tutorial Review. Spectrochim. Acta - Part B At. Spectrosc. 2002, 57, 1361–1452. DOI: 10.1016/S0584-8547(02)00069-1.
  • Castanheiro, A.; Hofman, J.; Nuyts, G.; Joosen, S.; Spassov, S.; Blust, R.; Lenaerts, S.; De Wael, K.; Samson, R. Leaf Accumulation of Atmospheric Dust: Biomagnetic, Morphological and Elemental Evaluation Using SEM, ED-XRF and HR-ICP-MS. Atmospheric Environ. 2020, 221, 117082. DOI: 10.1016/j.atmosenv.2019.117082.
  • Konopka, Z.; Świsłowski, P.; Rajfur, M. Biomonitoring of Atmospheric Aerosol with the Use of Apis mellifera and Pleurozium schreberi. Chem. Didact. Ecol. Metrol. 2019, 24, 107–116. DOI: 10.2478/cdem-2019-0009.
  • Ndlovu, N. B.; Frontasyeva, M. V.; Newman, R. T.; Maleka, P. P. Active Biomonitoring of Atmospheric Pollution in the Western Cape (South Africa) Using INAA and ICP-MS. J. Radioanal. Nucl. Chem. 2019, 322, 1549–1559. DOI: 10.1007/s10967-019-06823-z.
  • Shotyk, W.; Cuss, C. W. Atmospheric Hg Accumulation Rates Determined Using Sphagnum Moss from Ombrotrophic (Rain-Fed) Bogs in the Athabasca bituminous Sands Region of Northern Alberta, Canada. Ecol. Indic. 2019, 107, 105626. DOI: 10.1016/j.ecolind.2019.105626.
  • Solgi, E.; Keramaty, M.; Solgi, M. Biomonitoring of Airborne Cu, Pb, and Zn in an Urban Area Employing a Broad Leaved and a Conifer Tree Species. J. Geochem. Explor. 2020, 208, 106400. DOI: 10.1016/j.gexplo.2019.106400.
  • Ristorini, M.; Astolfi, M. L.; Frezzini, M. A.; Canepari, S.; Massimi, L. Evaluation of the Efficiency of Arundo donax l. Leaves as Biomonitors for Atmospheric Element Concentrations in an Urban and Industrial Area of Central Italy. Atmosphere (Basel) 2020, 11, 226. DOI: 10.3390/atmos11030226.
  • Kłos, A.; Rajfur, M.; Šrámek, I.; Wacławek, M. Use of Lichen and Moss in Assessment of Forest Contamination with Heavy Metals in Praded and Glacensis Euroregions (Poland and Czech Republic). Water. Air. Soil Pollut. 2011, 222, 367–376. DOI: 10.1007/s11270-011-0830-9.
  • State, G.; Popescu, I. V.; Radulescu, C.; Macris, C.; Stihi, C.; Gheboianu, A.; Dulama, I.; Niţescu, O. Comparative Studies of Metal Air Pollution by Atomic Spectrometry Techniques and Biomonitoring with Moss and Lichens. Bull. Environ. Contam. Toxicol. 2012, 89, 580–586. DOI: 10.1007/s00128-012-0713-9.
  • Moreira, T. C. L.; Amato-Lourenço, L. F.; da Silva, G. T.; de André, C. D. S.; de André, P. A.; Barrozo, L. V.; Singer, J. M.; Saldiva, P. H. N.; Saiki, M.; Locosselli, G. M. The Use of Tree Barks to Monitor Traffic Related Air Pollution: A Case Study in São Paulo-Brazil. Front. Environ. Sci. 2018, 6, 1–12. DOI: 10.3389/fenvs.2018.00072.
  • Catinon, M.; Ayrault, S.; Daudin, L.; Sevin, L.; Asta, J.; Tissut, M.; Ravanel, P. Atmospheric Inorganic Contaminants and Their Distribution inside Stem Tissues of Fraxinus excelsior L. Atmospheric Environ. 2008, 42, 1223–1238. DOI: 10.1016/j.atmosenv.2007.10.082.
  • Pedro, P. A.; Lopes, W. A.; Carvalho, L. S.; da Rocha, G. O.; de Carvalho Bahia, N.; Loyola, J.; Quiterio, S. L.; Escaleira, V.; Arbilla, G.; de Andrade, J. B. Atmospheric Concentrations and Dry Deposition Fluxes of Particulate Trace Metals in Salvador, Bahia, Brazil. Atmospheric Environ. 2007, 41, 7837–7850. DOI: 10.1016/j.atmosenv.2007.06.013.
  • Ji, Y.; Feng, Y.; Wu, J.; Zhu, T.; Bai, Z.; Duan, C. Using Geoaccumulation Index to Study Source Profiles of Soil Dust in China. J. Environ. Sci. 2008, 20, 571–578. [Database] DOI: 10.1016/S1001-0742(08)62096-3.
  • Izhar, S.; Goel, A.; Chakraborty, A.; Gupta, T. Annual Trends in Occurrence of Submicron Particles in Ambient Air and Health Risk Posed by Particle Bound Metals. Chemosphere 2016, 146, 582–590. DOI: 10.1016/j.chemosphere.2015.12.039.
  • Loyola, J.; Arbilla, G.; Quiterio, S. L.; Escaleira, V.; Minho, A. S. Trace Metals in the Urban Aerosols of Rio De Janeiro City. J. Braz. Chem. Soc. 2012, 23, 628–638. DOI: 10.1590/s0103-50532012000400007.
  • Vasconcellos, P. C.; Souza, D. Z.; Ávila, S. G.; Araújo, M. P.; Naoto, E.; Nascimento, K. H.; Cavalcante, F. S.; Dos Santos, M.; Smichowski, P.; Behrentz, E. Comparative Study of the Atmospheric Chemical Composition of Three South American Cities. Atmospheric Environ. 2011, 45, 5770–5777. DOI: 10.1016/j.atmosenv.2011.07.018.
  • Mkoma, S. L.; Da Rocha, G. O.; Regis, A. C. D.; Domingos, J. S. S.; Santos, J. V. S.; De Andrade, S. J.; Carvalho, L. S.; De Andrade, J. B. Major Ions in PM2.5 and PM10 Released from Buses: The Use of Diesel/Biodiesel Fuels under Real Conditions. Fuel 2014, 115, 109–117. DOI: 10.1016/j.fuel.2013.06.044.
  • Mkoma, S. L.; da Rocha, G. O.; Domingos, J. S. S.; Santos, J. V. S.; Cardoso, M. P.; da Silva, R. L.; de Andrade, J. B. Atmospheric Particle Dry Deposition of Major Ions to the South Atlantic Coastal Area Observed at Baía de Todos Os Santos. An. Acad. Bras. Ciênc. 2014, 86, 37–55. DOI: 10.1590/0001-3765201420130234.
  • Zhang, N.; Cao, J.; Liu, S.; Zhao, Z. Z.; Xu, H.; Xiao, S. Chemical Composition and Sources of PM2.5 and TSP Collected at Qinghai Lake during Summertime. Atmospheric Res. 2014, 138, 213–222. DOI: 10.1016/j.atmosres.2013.11.016.
  • Mateus, V. L.; Gioda, A. A Candidate Framework for PM2.5 Source Identification in Highly Industrialized Urban-Coastal Areas. Atmospheric Environ. 2017, 164, 147–164. DOI: 10.1016/j.atmosenv.2017.05.025.
  • Vingiani, S.; De Nicola, F.; Purvis, W. O.; Concha-Graña, E.; Muniategui-Lorenzo, S.; López-Mahía, P.; Giordano, S.; Adamo, P. Active Biomonitoring of Heavy Metals and PAHs with Mosses and Lichens: A Case Study in the Cities of Naples and London. Water. Air. Soil Pollut. 2015, 226, 240. DOI: 10.1007/s11270-015-2504-5.
  • Adamo, P.; Giordano, S.; Vingiani, S.; Cobianchi, R. C.; Violante, P. Trace Element Accumulation by Moss and Lichen Exposed in Bags in the City of Naples (Italy). Environ. Pollut. 2003, 122, 91–103. DOI: 10.1016/S0269-7491(02)00277-4.
  • Cloquet, C.; Estrade, N.; Carignan, J. Ten Years of Elemental Atmospheric Metal Fallout and Pb Isotopic Composition Monitoring Using Lichens in Northeastern France. Comptes Rendus – Geosci. 2015, 347, 257–266. DOI: 10.1016/j.crte.2015.04.003.
  • De La Cruz, A. R. H.; De La Cruz, J. K. H.; Tolentino, D. A.; Gioda, A. Trace Element Biomonitoring in the Peruvian Andes Metropolitan Region Using Flavoparmelia caperata Lichen. Chemosphere 2018, 210, 849–858. DOI: 10.1016/j.chemosphere.2018.07.013.
  • de Paula, P. H. M.; Mateus, V. L.; Araripe, D. R.; Duyck, C. B.; Saint’Pierre, T. D.; Gioda, A. Biomonitoring of Metals for Air Pollution Assessment Using a Hemiepiphyte Herb (Struthanthus flexicaulis). Chemosphere 2015, 138, 429–437. DOI: 10.1016/j.chemosphere.2015.06.060.
  • Fernández, J. A.; Aboal, J. R.; Carballeira, A. Identification of pollution sources by Means of Moss Bags. Ecotoxicol. Environ. Saf. 2004, 59, 76–83. DOI: 10.1016/j.ecoenv.2004.01.007.
  • Di Palma, A.; Capozzi, F.; Spagnuolo, V.; Giordano, S.; Adamo, P. Atmospheric Particulate Matter Intercepted by Moss-Bags: Relations to Moss Trace Element Uptake and Land Use. Chemosphere 2017, 176, 361–368. DOI: 10.1016/j.chemosphere.2017.02.120.
  • Pellegrini, E.; Lorenzini, G.; Loppi, S.; Nali, C. Evaluation of the Suitability of Tillandsia usneoides (L.) L. As Biomonitor of Airborne Elements in an Urban Area of Italy, Mediterranean Basin. Atmospheric Pollut. Res. 2014, 5, 226–235. DOI: 10.5094/APR.2014.028.
  • Marques, A. N.; Panetto, D. P.; Lamego, F.; Nepomuceno, F. O.; Monna, F.; Losno, R.; Guillon, R. Tracking Atmospheric Dispersion of Metals in Rio De Janeiro Metropolitan Region (Brazil) with Epiphytes as Bioindicators. An. Acad. Bras. Ciênc. 2018, 90, 2991–3005. DOI: 10.1590/0001-3765201820170905.
  • Boamponsem, L. K.; de Freitas, C. R.; Williams, D. Source Apportionment of Air Pollutants in the Greater Auckland Region of New Zealand Using Receptor Models and Elemental Levels in the Lichen, Parmotrema reticulatum. Atmospheric Pollut. Res. 2017, 8, 101–113. DOI: 10.1016/j.apr.2016.07.012.
  • Turgut, E. T.; Gaga, E. O.; Jovanović, G.; Odabasi, M.; Artun, G.; Ari, A.; Urošević, M. A. Elemental Characterization of General Aviation Aircraft Emissions Using Moss Bags. Environ. Sci. Pollut. Res. 2019, 26, 26925–26938. DOI: 10.1007/s11356-019-05910-8.
  • Arndt, J.; Calabrese, S.; D'Alessandro, W.; Planer-Friedrich, B. Using Mosses as Biomonitors to Study Trace Element Emissions and Their Distribution in Six Different Volcanic Areas. J. Volcanol. Geotherm. Res. 2017, 343, 220–232. DOI: 10.1016/j.jvolgeores.2017.07.004.
  • Arndt, J.; Calabrese, S.; D'Alessandro, W.; Planer-Friedrich, B. Active Moss Monitoring Allows to Identify and Track Distribution of Metal(Loid)s Emitted from Fumaroles on Vulcano Island, Italy. J. Volcanol. Geotherm. Res. 2014, 280, 30–39. DOI: 10.1016/j.jvolgeores.2014.04.016.
  • Varrica, D.; Aiuppa, A.; Dongarrà, G. Volcanic and Anthropogenic Contribution to Heavy Metal Content in Lichens from Mt. Etna and Vulcano Island (Sicily). Environ. Pollut. 2000, 108, 153–162. DOI: 10.1016/S0269-7491(99)00246-8.
  • Calabrese, S.; D’Alessandro, W.; Bellomo, S.; Brusca, L.; Martin, R. S.; Saiano, F.; Parello, F. Characterization of the Etna Volcanic Emissions through an Active Biomonitoring Technique (Moss-Bags): Part 1 - Major and Trace Element Composition. Chemosphere 2015, 119, 1447–1455. DOI: 10.1016/j.chemosphere.2014.08.086.
  • Kolon, K.; Ruczakowska, A.; Samecka-Cymerman, A.; Kempers, A. J. Brachythecium rutabulum and Betula pendula as Bioindicators of Heavy Metal Pollution around a Chlor-Alkali Plant in Poland. Ecol. Indic. 2015, 52, 404–410. DOI: 10.1016/j.ecolind.2014.12.031.
  • Demková, L.; Baranová, B.; Oboňa, J.; Árvay, J.; Lošák, T. Assessment of Air Pollution by Toxic Elements on Petrol Stations Using Moss and Lichen Bag Technique. Plant, Soil Environ. 2017, 63, 355–361. DOI: 10.17221/297/2017-PSE.
  • Caggiano, R.; Trippetta, S.; Sabia, S. Assessment of Atmospheric Trace Element Concentrations by Lichen-Bag near an Oil/Gas Pre-Treatment Plant in the Agri Valley (Southern Italy). Nat. Hazards Earth Syst. Sci. 2015, 15, 325–333. DOI: 10.5194/nhess-15-325-2015.
  • Ares, Á.; Ángel Fernández, J.; Ramón Aboal, J.; Carballeira, A. Study of the Air Quality in Industrial Areas of Santa Cruz de Tenerife (Spain) by Active Biomonitoring with Pseudoscleropodium purum. Ecotoxicol. Environ. Saf. 2011, 74, 533–541. DOI: 10.1016/j.ecoenv.2010.08.019.
  • Landis, M. S.; Berryman, S. D.; White, E. M.; Graney, J. R.; Edgerton, E. S.; Studabaker, W. B. Use of an Epiphytic Lichen and a Novel Geostatistical Approach to Evaluate Spatial and Temporal Changes in Atmospheric Deposition in the Athabasca Oil Sands Region, Alberta, Canada. Sci. Total Environ. 2019, 692, 1005–1021. DOI: 10.1016/j.scitotenv.2019.07.011.
  • Popović, D.; Todorović, D.; Ajtić, J.; Nikolić, J. Active Biomonitoring of Air Radioactivity in Urban Areas. Nucl. Technol. Radiat. Prot. 2009, 24, 100–103. DOI: 10.2298/NTRP0902100P.
  • Aznar, J. C.; Richer-Laflèche, M.; Cluis, D. Metal Contamination in the Lichen Alectoria sarmentosa near the Copper Smelter of Murdochville, Québec. Environ. Pollut. 2008, 156, 76–81. DOI: 10.1016/j.envpol.2007.12.037.
  • Boamponsem, L. K.; Adam, J. I.; Dampare, S. B.; Nyarko, B. J. B.; Essumang, D. K. Assessment of Atmospheric Heavy Metal Deposition in the Tarkwa Gold Mining Area of Ghana Using Epiphytic Lichens. Nucl. Instrum. Methods Phys. Res. B 2010, 268, 1492–1501. DOI: 10.1016/j.nimb.2010.01.007.
  • Parviainen, A.; Casares-Porcel, M.; Marchesi, C.; Garrido, C. J. Lichens as a Spatial Record of Metal Air Pollution in the Industrialized City of Huelva (SW Spain). Environ. Pollut. 2019, 253, 918–929. DOI: 10.1016/j.envpol.2019.07.086.
  • Salas-Luévano, M. A.; Mauricio-Castillo, J. A.; González-Rivera, M. L.; Vega-Carrillo, H. R.; Salas-Muñoz, S. Accumulation and Phytostabilization of as, Pb and Cd in Plants Growing inside Mine Tailings Reforested in Zacatecas, Mexico. Environ. Earth Sci. 2017, 76, 1–12. DOI: 10.1007/s12665-017-7139-y.
  • Xie, F.; Tan, H.; Yang, B.; He, J. L.; Chen, A. N.; Wen, X. M. The Study of Atmospheric Transport and Deposition of Cadmium Emitted from Primitive Zinc Production Area. Water. Air. Soil Pollut. 2014, 225, 2162. DOI: 10.1007/s11270-014-2162-z.
  • De La Cruz, A. R. H.; Ferreira, L. D. S. C.; Andrade, V. P.; Gioda, A. Biomonitoring of Toxic Elements in Plants Collected near Leather Tanning Industry. J. Braz. Chem. Soc 2019, 30, 256–264. DOI: 10.21577/0103-5053.20180174.
  • Castañeda Miranda, A. G.; Chaparro, M. A. E.; Chaparro, M. A. E.; Böhnel, H. N. Magnetic Properties of Tillandsia recurvata L. and Its Use for Biomonitoring a Mexican Metropolitan Area. Ecol. Indic. 2016, 60, 125–136. DOI: 10.1016/j.ecolind.2015.06.025.
  • Piazzetta, K. D.; Ramsdorf, W. A.; Maranho, L. T. Use of Airplant Tillandsia recurvata L., Bromeliaceae, as Biomonitor of Urban Air Pollution. Aerobiologia (Bologna) 2019, 35, 125–137. DOI: 10.1007/s10453-018-9545-3.
  • Sánchez-Chardi, A. Biomonitoring Potential of Five Sympatric Tillandsia Species for Evaluating Urban Metal Pollution (Cd, Hg and Pb). Atmospheric Environ. 2016, 131, 352–359. DOI: 10.1016/j.atmosenv.2016.02.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.