891
Views
15
CrossRef citations to date
0
Altmetric
Review Articles

Synergizing Functional Nanomaterials with Aptamers Based on Electrochemical Strategies for Pesticide Detection: Current Status and Perspectives

, ORCID Icon, , &
Pages 1818-1845 | Published online: 12 May 2021

References

  • van de Merwe, J. P.; Neale, P. A.; Melvin, S. D.; Leusch, F. D. In Vitro Bioassays Reveal That Additives Are Significant Contributors to the Toxicity of Commercial Household Pesticides. Aquat. Toxicol. 2018, 199, 263. DOI: 10.1016/j.aquatox.2018.03.033.
  • Wang, G.; Wang, Y.; Chen, L.; Choo, J. Nanomaterial-Assisted Aptamers for Optical Sensing. Biosens. Bioelectron. 2010, 25, 1859. DOI: 10.1016/j.bios.2009.11.012.
  • Zhang, J.; Fang, X.; Wu, J.; Hu, Z.; Jiang, Y.; Qi, H.; Zheng, L.; Xuan, X. An Interdigitated Microelectrode Based Aptasensor for Real-Time and Ultratrace Detection of Four Organophosphorus Pesticides. Biosens. Bioelectron. 2020, 150, 111879. DOI: 10.1016/j.bios.2019.111879.
  • Wu, J.; Fu, X.; Xie, C.; Yang, M.; Fang, W.; Gao, S. TiO2 Nanoparticles-Enhanced Luminol Chemiluminescence and Its Analytical Applications in Organophosphate Pesticide Imprinting. Sens. Actuators B Chem. 2011, 160, 511–516. DOI: 10.1016/j.snb.2011.08.019.
  • Bernat, A.; Samiwala, M.; Albo, J.; Jiang, X.; Rao, Q. Challenges in SERS-Based Pesticide Detection and Plausible Solutions. J. Agric. Food Chem. 2019, 67, 12341. DOI: 10.1021/acs.jafc.9b05077.
  • Wang, Q.; Yin, Q.; Fan, Y.; Zhang, L.; Xu, Y.; Hu, O.; Guo, X.; Shi, Q.; Fu, H.; She, Y. Double Quantum Dots-Nanoporphyrin Fluorescence-Visualized Paper-Based Sensors for Detecting Organophosphorus Pesticides. Talanta 2019, 199, 46. DOI: 10.1016/j.talanta.2019.02.023.
  • Mousavi, M. M.; Arefhosseini, S.; Alizadeh Nabili, A. A.; Mahmoudpour, M.; Nemati, M. Development of an Ultrasound‐Assisted Emulsification Microextraction Method for the Determination of Chlorpyrifos and Organochlorine Pesticide Residues in Honey Samples Using Gas Chromatography with Mass Spectrometry. J. Sep. Sci. 2016, 39, 2815–2822. DOI: 10.1002/jssc.201600197.
  • Kang, Y.; Wu, T.; Chen, W.; Li, L.; Du, Y. A Novel Metastable State Nanoparticle-Enhanced Raman Spectroscopy Coupled with Thin Layer Chromatography for Determination of Multiple Pesticides. Food Chem. 2019, 270, 494. DOI: 10.1016/j.foodchem.2018.07.070.
  • Weng, R.; Lou, S.; Pang, X.; Song, Y.; Su, X.; Xiao, Z.; Qiu, J. Multi-Residue Analysis of 126 Pesticides in Chicken Muscle by Ultra-High-Performance Liquid Chromatography Coupled to Quadrupole Time-of-Flight Mass Spectrometry. Food Chem. 2020, 309, 125503. DOI: 10.1016/j.foodchem.2019.125503.
  • Ma, J.; Hou, L.; Wu, G.; Wang, L.; Wang, X.; Chen, L. Multi-Walled Carbon Nanotubes for Magnetic Solid-Phase Extraction of Six Heterocyclic Pesticides in Environmental Water Samples Followed by HPLC-DAD Determination. Materials 2020, 13, 5729. DOI: 10.3390/ma13245729.
  • Vikrant, K.; Tsang, D. C.; Raza, N.; Giri, B. S.; Kukkar, D.; Kim, K.-H. Potential Utility of Metal–Organic Framework-Based Platform for Sensing Pesticides. ACS Appl. Mater. Interfaces 2018, 10, 8797. DOI: 10.1021/acsami.8b00664.
  • Ma, J.; Wu, G.; Li, S.; Tan, W.; Wang, X.; Li, J.; Chen, L. Magnetic Solid-Phase Extraction of Heterocyclic Pesticides in Environmental Water Samples Using Metal-Organic Frameworks Coupled to High Performance Liquid Chromatography Determination. J. Chromatogr. A. 2018, 1553, 57. DOI: 10.1016/j.chroma.2018.04.034.
  • Yu, Z.; Cai, G.; Liu, X.; Tang, D. Pressure-Based Biosensor Integrated with a Flexible Pressure Sensor and an Electrochromic Device for Visual Detection. Anal. Chem. 2021, 93, 2916. DOI: 10.1021/acs.analchem.0c04501.
  • Zhou, Q.; Tang, D. Recent Advances in Photoelectrochemical Biosensors for Analysis of Mycotoxins in Food. Trends Analyt. Chem. 2020, 124, 115814. DOI: 10.1016/j.trac.2020.115814.
  • Zhang, K.; Lv, S.; Zhou, Q.; Tang, D. CoOOH Nanosheets-Coated g-C3N4/CuInS2 Nanohybrids for Photoelectrochemical Biosensor of Carcinoembryonic Antigen Coupling Hybridization Chain Reaction with Etching Reaction. Sens Actuators B Chem. 2020, 307, 127631. DOI: 10.1016/j.snb.2019.127631.
  • Qiu, Z.; Shu, J.; Tang, D. NaYF4: Yb, Er Upconversion Nanotransducer with in Situ Fabrication of Ag2S for near-Infrared Light Responsive Photoelectrochemical Biosensor. Anal. Chem. 2018, 90, 12214. DOI: 10.1021/acs.analchem.8b03446.
  • Qiu, Z.; Shu, J.; Liu, J.; Tang, D. Dual-Channel Photoelectrochemical Ratiometric Aptasensor with up-Converting Nanocrystals Using Spatial-Resolved Technique on Homemade 3D Printed Device. Anal. Chem. 2018, 91, 1260. DOI: 10.1021/acs.analchem.8b05455.
  • Zeng, R.; Tang, Y.; Zhang, L.; Luo, Z.; Tang, D. Dual-Readout Aptasensing of Antibiotic Residues Based on Gold Nanocluster-Functionalized MnO 2 Nanosheets with Target-Induced Etching Reaction. J. Mater. Chem. B. 2018, 6, 8071. DOI: 10.1039/c8tb02642d.
  • Qiu, Z.; Shu, J.; Tang, D. Plasmonic Resonance Enhanced Photoelectrochemical Aptasensors Based on gC3N 4/Bi2 MoO6. Chem. Commun. 2018, 54, 7199. DOI: 10.1039/c8cc04211j.
  • Cai, G.; Yu, Z.; Ren, R.; Tang, D. Exciton–Plasmon Interaction between AuNPs/Graphene Nanohybrids and CdS Quantum Dots/TiO2 for Photoelectrochemical Aptasensing of Prostate-Specific Antigen. ACS Sens. 2018, 3, 632. DOI: 10.1021/acssensors.7b00899.
  • Qiu, Z.; Shu, J.; Tang, D. Near-Infrared-to-Ultraviolet Light-Mediated Photoelectrochemical Aptasensing Platform for Cancer Biomarker Based on Core–Shell NaYF4: Yb, Tm@ TiO2 Upconversion Microrods. Anal. Chem. 2018, 90, 1021. DOI: 10.1021/acs.analchem.7b04479.
  • Mao, K.; Zhang, H.; Wang, Z.; Cao, H.; Zhang, K.; Li, X.; Yang, Z. Nanomaterial-Based Aptamer Sensors for Arsenic Detection. Biosens. Bioelectron. 2020, 148, 111785. DOI: 10.1016/j.bios.2019.111785.
  • Wang, L.; Peng, X.; Fu, H.; Huang, C.; Li, Y.; Liu, Z. Recent Advances in the Development of Electrochemical Aptasensors for Detection of Heavy Metals in Food. Biosens. Bioelectron. 2020, 147, 111777. DOI: 10.1016/j.bios.2019.111777.
  • Wang, X.; Choi, N.; Cheng, Z.; Ko, J.; Chen, L.; Choo, J. Simultaneous Detection of Dual Nucleic Acids Using a SERS-Based Lateral Flow Assay Biosensor. Anal. Chem. 2017, 89, 1163. DOI: 10.1021/acs.analchem.6b03536.
  • Mahmoudpour, M.; Torbati, M.; Mousavi, M.-M.; de la Guardia, M.; Dolatabadi, J. E. N. Nanomaterial-Based Molecularly Imprinted Polymers for Pesticides Detection: Recent Trends and Future Prospects. Trends Analyt. Chem. 2020, 129, 115943. DOI: 10.1016/j.trac.2020.115943.
  • Mahmoudpour, M.; Dolatabadi, J. E. N.; Torbati, M.; Homayouni-Rad, A. Nanomaterials Based Surface Plasmon Resonance Signal Enhancement for Detection of Environmental Pollutions. Biosens. Bioelectron. 2019, 127, 72. DOI: 10.1016/j.bios.2018.12.023.
  • Mohammadzadeh-Asl, S.; Keshtkar, A.; Dolatabadi, J. E. N.; de la Guardia, M. Nanomaterials and Phase Sensitive Based Signal Enhancment in Surface Plasmon Resonance. Biosens. Bioelectron. 2018, 110, 118. DOI: 10.1016/j.bios.2018.03.051.
  • Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical Sensor and Biosensor Platforms Based on Advanced Nanomaterials for Biological and Biomedical Applications. Biosens. Bioelectron. 2018, 103, 113. DOI: 10.1016/j.bios.2017.12.031.
  • Li, W.; Rong, Y.; Wang, J.; Li, T.; Wang, Z. MnO2 Switch-Bridged DNA Walker for Ultrasensitive Sensing of Cholinesterase Activity and Organophosphorus Pesticides. Biosens. Bioelectron. 2020, 169, 112605. DOI: 10.1016/j.bios.2020.112605.
  • Chen, H.; Park, S.-G.; Choi, N.; Moon, J.-I.; Dang, H.; Das, A.; Lee, S.; Kim, D.-G.; Chen, L.; Choo, J. SERS Imaging-Based Aptasensor for Ultrasensitive and Reproducible Detection of Influenza Virus A. Biosens. Bioelectron. 2020, 167, 112496. DOI: 10.1016/j.bios.2020.112496.
  • Wang, W.; Xu, Y.; Cheng, N.; Xie, Y.; Huang, K.; Xu, W. Dual-Recognition Aptazyme-Driven DNA Nanomachine for Two-in-One Electrochemical Detection of Pesticides and Heavy Metal Ions. Sens. Actuators B. Chem. 2020, 321, 128598. DOI: 10.1016/j.snb.2020.128598.
  • Yin, K.; Zhang, W.; Chen, L. Pyoverdine Secreted by Pseudomonas Aeruginosa as a Biological Recognition Element for the Fluorescent Detection of Furazolidone. Biosens. Bioelectron. 2014, 51, 90. DOI: 10.1016/j.bios.2013.07.038.
  • Labib, M.; Sargent, E. H.; Kelley, S. O. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem. Rev. 2016, 116, 9001. DOI: 10.1021/acs.chemrev.6b00220.
  • Khanmohammadi, A.; Aghaie, A.; Vahedi, E.; Qazvini, A.; Ghanei, M.; Afkhami, A.; Hajian, A.; Bagheri, H. Electrochemical Biosensors for the Detection of Lung Cancer Biomarkers: A Review. Talanta 2020, 206, 120251. DOI: 10.1016/j.talanta.2019.120251.
  • Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors-Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. DOI: 10.3390/s8031400.
  • Khan, M. Nanoparticles Modified ITO Based Biosensor. J. Elec. Mater. 2017, 46, 2254–2268. DOI: 10.1007/s11664-016-5172-3.
  • Lydon, B. R.; Germann, A.; Yang, J. Y. Chemical Modification of Gold Electrodes via Non-Covalent Interactions. Inorg. Chem. Front. 2016, 3, 836–841. DOI: 10.1039/C6QI00010J.
  • Sharma, S.; Singh, N.; Tomar, V.; Chandra, R. A Review on Electrochemical Detection of Serotonin Based on Surface Modified Electrodes. Biosens. Bioelectron. 2018, 107, 76. DOI: 10.1016/j.bios.2018.02.013.
  • Wang, W.; Wang, X.; Cheng, N.; Luo, Y.; Lin, Y.; Xu, W.; Du, D. Recent Advances in Nanomaterials-Based Electrochemical (Bio) Sensors for Pesticides Detection. Trends Analyt. Chem. 2020, 132, 116041. DOI: 10.1016/j.trac.2020.116041.
  • Rhouati, A.; Catanante, G.; Nunes, G.; Hayat, A.; Marty, J.-L. Label-Free Aptasensors for the Detection of Mycotoxins. Sensors 2016, 16, 2178. DOI: 10.3390/s16122178.
  • Bo, X.; Zhou, M.; Guo, L. Electrochemical Sensors and Biosensors Based on Less Aggregated Graphene. Biosens. Bioelectron. 2017, 89, 167. DOI: 10.1016/j.bios.2016.05.002.
  • Huang, K.-J.; Zhang, J.-Z.; Xing, K. One-Step Synthesis of Layered CuS/Multi-Walled Carbon Nanotube Nanocomposites for Supercapacitor Electrode Material with Ultrahigh Specific Capacitance. Electrochim. Acta. 2014, 149, 28–33. DOI: 10.1016/j.electacta.2014.10.079.
  • Xu, G.; Huo, D.; Hou, C.; Zhao, Y.; Bao, J.; Yang, M.; Fa, H. A Regenerative and Selective Electrochemical Aptasensor Based on Copper Oxide Nanoflowers-Single Walled Carbon Nanotubes Nanocomposite for Chlorpyrifos Detection. Talanta 2018, 178, 1046. DOI: 10.1016/j.talanta.2017.08.086.
  • Jiao, Y.; Jia, H.; Guo, Y.; Zhang, H.; Wang, Z.; Sun, X.; Zhao, J. An Ultrasensitive Aptasensor for Chlorpyrifos Based on Ordered Mesoporous Carbon/Ferrocene Hybrid Multiwalled Carbon Nanotubes. RSC Adv. 2016, 6, 58541–58548. DOI: 10.1039/C6RA07735H.
  • Bagheri, B.; Abdouss, M.; Shoushtari, A. New Procedure for Preparation of Highly Stable and Well Separated Carbon Nanotubes in an Aqueous Modified Polyacrylonitrile. Mat-Wiss. u Werkstofftech. 2010, 41, 234–240. DOI: 10.1002/mawe.201000562.
  • Zhu, C.; Liu, D.; Chen, Z.; Li, L.; You, T. Superior Catalytic Activity of Pt/Carbon Nanohorns Nanocomposites toward Methanol and Formic Acid Oxidation Reactions. J. Colloid Interface Sci. 2018, 511, 77. DOI: 10.1016/j.jcis.2017.09.109.
  • Zhu, S.; Li, H.; Niu, W.; Xu, G. Simultaneous Electrochemical Determination of Uric Acid, Dopamine, and Ascorbic Acid at Single-Walled Carbon Nanohorn Modified Glassy Carbon Electrode. Biosens. Bioelectron. 2009, 25, 940. DOI: 10.1016/j.bios.2009.08.022.
  • Liu, Z.; Zhang, W.; Qi, W.; Gao, W.; Hanif, S.; Saqib, M.; Xu, G. Label-Free Signal-on ATP Aptasensor Based on the Remarkable Quenching of Tris (2, 2′-Bipyridine) Ruthenium (II) Electrochemiluminescence by Single-Walled Carbon Nanohorn. Chem. Commun. 2015, 51, 4256. DOI: 10.1039/C5CC00037H.
  • Jiang, C.; Yao, Y.; Cai, Y.; Ping, J. All-Solid-State Potentiometric Sensor Using Single-Walled Carbon Nanohorns as Transducer. Sens. Actuators B Chem. 2019, 283, 284–289. DOI: 10.1016/j.snb.2018.12.040.
  • Zhu, S.; Xu, G. Single-Walled Carbon Nanohorns and Their Applications. Nanoscale 2010, 2, 2538. DOI: 10.1039/c0nr00387e.
  • Itkes, M. P.; de Oliveira, G. G.; Silva, T. A.; Fatibello-Filho, O.; Janegitz, B. C. Voltammetric Sensing of Fenitrothion in Natural Water and Orange Juice Samples Using a Single-Walled Carbon Nanohorns and Zein Modified Sensor. J. Electroanal. Chem. 2019, 840, 21–26. DOI: 10.1016/j.jelechem.2019.03.055.
  • Zhu, C.; Liu, D.; Chen, Z.; Li, L.; You, T. An Ultra-Sensitive Aptasensor Based on Carbon Nanohorns/Gold Nanoparticles Composites for Impedimetric Detection of Carbendazim at Picogram Levels. J. Colloid Interface Sci. 2019, 546, 92. DOI: 10.1016/j.jcis.2019.03.035.
  • Hongxia, C.; Ji, H.; Zaijun, L.; Ruiyi, L.; Yongqiang, Y.; Xiulan, S. Electrochemical Aptasensor for Detection of Acetamiprid in Vegetables with Graphene Aerogel-Glutamic Acid Functionalized Graphene Quantum Dot/Gold Nanostars as Redox Probe with Catalyst. Sens. Actuators B. Chem. 2019, 298, 126866. DOI: 10.1016/j.snb.2019.126866.
  • Wang, H.; Pan, L.; Liu, Y.; Ye, Y.; Yao, S. Electrochemical Sensing of Nitenpyram Based on the Binary Nanohybrid of Hydroxylated Multiwall Carbon Nanotubes/Single-Wall Carbon Nanohorns. J. Electroanal. Chem. 2020, 862, 113955. DOI: 10.1016/j.jelechem.2020.113955.
  • Xue, R.; Kang, T.-F.; Lu, L.-P.; Cheng, S.-Y. Electrochemical Sensor Based on the Graphene-Nafion Matrix for Sensitive Determination of Organophosphorus Pesticides. Anal Lett. 2013, 46, 131–141. DOI: 10.1080/00032719.2012.706852.
  • Huang, K.-J.; Liu, Y.-J.; Wang, H.-B.; Gan, T.; Liu, Y.-M.; Wang, L.-L. Signal Amplification for Electrochemical DNA Biosensor Based on Two-Dimensional Graphene Analogue Tungsten Sulfide–Graphene Composites and Gold Nanoparticles. Sens. Actuators B Chem. 2014, 191, 828–836. DOI: 10.1016/j.snb.2013.10.072.
  • Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-Based Composite Materials. Nature 2006, 442, 282. DOI: 10.1038/nature04969.
  • Jiao, Y.; Hou, W.; Fu, J.; Guo, Y.; Sun, X.; Wang, X.; Zhao, J. A Nanostructured Electrochemical Aptasensor for Highly Sensitive Detection of Chlorpyrifos. Sens. Actuators B. Chem. 2017, 243, 1164–1170. DOI: 10.1016/j.snb.2016.12.106.
  • Ping, J.; Zhou, Y.; Wu, Y.; Papper, V.; Boujday, S.; Marks, R. S.; Steele, T. W. Recent Advances in Aptasensors Based on Graphene and Graphene-like Nanomaterials. Biosens. Bioelectron. 2015, 64, 373. DOI: 10.1016/j.bios.2014.08.090.
  • Akhavan, O.; Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls against Bacteria. ACS Na. 2010, 4, 5731. DOI: 10.1021/nn101390x.
  • Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Graphene/Elastomer Nanocomposites. Carbon 2015, 95, 460–484. DOI: 10.1016/j.carbon.2015.08.055.
  • Nag, A.; Mitra, A.; Mukhopadhyay, S. C. Graphene and Its Sensor-Based Applications: A Review. Sens. Actuators A. Phys. 2018, 270, 177–194. DOI: 10.1016/j.sna.2017.12.028.
  • Karimzadeh, A.; Hasanzadeh, M.; Shadjou, N.; de la Guardia, M. Electrochemical Biosensing Using N-GQDs: Recent Advances in Analytical Approach. Trends Analyt Chem. 2018, 105, 484–491. DOI: 10.1016/j.trac.2018.06.009.
  • Jin, X.; Feng, C.; Ponnamma, D.; Yi, Z.; Parameswaranpillai, J.; Thomas, S.; Salim, N. Review on Exploration of Graphene in the Design and Engineering of Smart Sensors, Actuators and Soft Robotics. Adv. Chem. Eng. 2020, 4, 100034. DOI: 10.1016/j.ceja.2020.100034.
  • Xiaoyan, Z.; Ruiyi, L.; Zaijun, L.; Zhiguo, G.; Guangli, W. Ultrafast Synthesis of Gold/Proline-Functionalized Graphene Quantum Dots and Its Use for Ultrasensitive Electrochemical Detection of p-Acetamidophenol. RSC Adv. 2016, 6, 42751–42755. DOI: 10.1039/C6RA04602A.
  • Ruiyi, L.; Haiyan, Z.; Zaijun, L.; Junkang, L. Electrochemical Determination of Acetaminophen Using a Glassy Carbon Electrode Modified with a Hybrid Material Consisting of Graphene Aerogel and Octadecylamine-Functionalized Carbon Quantum Dots. Mikrochim. Acta. 2018, 185, 145.
  • Li, R.; Liu, L.; Zhu, H.; Li, Z. Synthesis of Gold-Palladium Nanowaxberries/Dodecylamine-Functionalized Graphene Quantum Dots-Graphene Micro-Aerogel for Voltammetric Determination of Peanut Allergen Ara h 1. Anal. Chim. Acta. 2018, 1008, 38. DOI: 10.1016/j.aca.2018.01.031.
  • Huang, H.; Shi, H.; Das, P.; Qin, J.; Li, Y.; Wang, X.; Su, F.; Wen, P.; Li, S.; Lu, P.; et al. The Chemistry and Promising Applications of Graphene and Porous Graphene Materials. Adv. Funct. Mater. 2020, 30, 1909035. DOI: 10.1002/adfm.201909035.
  • Khosropour, H.; Rezaei, B.; Rezaei, P.; Ensafi, A. A. Ultrasensitive Voltammetric and Impedimetric Aptasensor for Diazinon Pesticide Detection by VS2 Quantum Dots-Graphene Nanoplatelets/Carboxylated Multiwalled Carbon Nanotubes as a New Group Nanocomposite for Signal Enrichment. Anal. Chim. Acta. 2020, 1111, 92.
  • Fei, A.; Liu, Q.; Huan, J.; Qian, J.; Dong, X.; Qiu, B.; Mao, H.; Wang, K. Label-Free Impedimetric Aptasensor for Detection of Femtomole Level Acetamiprid Using Gold Nanoparticles Decorated Multiwalled Carbon Nanotube-Reduced Graphene Oxide Nanoribbon Composites. Biosens. Bioelectron. 2015, 70, 122. DOI: 10.1016/j.bios.2015.03.028.
  • Rapini, R.; Cincinelli, A.; Marrazza, G. Acetamiprid Multidetection by Disposable Electrochemical DNA Aptasensor. Talanta 2016, 161, 15. DOI: 10.1016/j.talanta.2016.08.026.
  • Jiang, D.; Du, X.; Liu, Q.; Zhou, L.; Dai, L.; Qian, J.; Wang, K. Silver Nanoparticles Anchored on Nitrogen-Doped Graphene as a Novel Electrochemical Biosensing Platform with Enhanced Sensitivity for Aptamer-Based Pesticide Assay. Analyst 2015, 140, 6404. DOI: 10.1039/c5an01084e.
  • Pérez-López, B.; Merkoçi, A. Nanoparticles for the Development of Improved (Bio) Sensing Systems. Anal. Bioanal. Chem. 399, 2011, 1577. DOI: 10.1007/s00216-010-4566-y.
  • Saei, A. A.; Dolatabadi, J. E. N.; Najafi-Marandi, P.; Abhari, A.; de la Guardia, M. Electrochemical Biosensors for Glucose Based on Metal Nanoparticles. Trends Analyt. Chem. 2013, 42, 216–227. DOI: 10.1016/j.trac.2012.09.011.
  • Jamali, A. A.; Pourhassan-Moghaddam, M.; Dolatabadi, J. E. N.; Omidi, Y. Nanomaterials on the Road to microRNA Detection with Optical and Electrochemical Nanobiosensors. Trends Analyt. Chem. 2014, 55, 24–42. DOI: 10.1016/j.trac.2013.10.008.
  • Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Gold Nanomaterials at Work in Biomedicine. Chem. Rev. 2015, 115, 10410. DOI: 10.1021/acs.chemrev.5b00193.
  • Koh, E. H.; Moon, J.-Y.; Kim, S.-Y.; Lee, W.-C.; Park, S.-G.; Kim, D.-H.; Jung, H. S. A Cyclodextrin-Decorated Plasmonic Gold Nanosatellite Substrate for Selective Detection of Bipyridylium Pesticides. Analyst 2021, 146, 305. DOI: 10.1039/d0an01703e.
  • Fan, L.; Zhao, G.; Shi, H.; Liu, M.; Li, Z. A Highly Selective Electrochemical Impedance Spectroscopy-Based Aptasensor for Sensitive Detection of Acetamiprid. Biosens. Bioelectron. 2013, 43, 12. DOI: 10.1016/j.bios.2012.11.033.
  • Zheng, D.; Seferos, D. S.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Aptamer Nano-Flares for Molecular Detection in Living Cells. Nano Lett. 2009, 9, 3258. DOI: 10.1021/nl901517b.
  • Li, X.; Wen, H.; Fu, Q.; Peng, D.; Yu, J.; Zhang, Q.; Huang, X. Morphology-Dependent NiO Modified Glassy Carbon Electrode Surface for Lead (II) and Cadmium (II) Detection. Appl. Surf. Sci. 2016, 363, 7–12. DOI: 10.1016/j.apsusc.2015.12.011.
  • Yusoff, N.; Rameshkumar, P.; Mehmood, M. S.; Pandikumar, A.; Lee, H. W.; Huang, N. M. Ternary Nanohybrid of Reduced Graphene Oxide-Nafion@ Silver Nanoparticles for Boosting the Sensor Performance in Non-Enzymatic Amperometric Detection of Hydrogen Peroxide. Biosens. Bioelectron. 87, 2017, 1020. DOI: 10.1016/j.bios.2016.09.045.
  • Weerathunge, P.; Behera, B. K.; Zihara, S.; Singh, M.; Prasad, S. N.; Hashmi, S.; Mariathomas, P. R. D.; Bansal, V.; Ramanathan, R. Dynamic Interactions between Peroxidase-Mimic Silver NanoZymes and Chlorpyrifos-Specific Aptamers Enable Highly-Specific Pesticide Sensing in River Water. Anal. Chim. Acta. 2019, 1083, 157. DOI: 10.1016/j.aca.2019.07.066.
  • Madianos, L.; Tsekenis, G.; Skotadis, E.; Patsiouras, L.; Tsoukalas, D. A Highly Sensitive Impedimetric Aptasensor for the Selective Detection of Acetamiprid and Atrazine Based on Microwires Formed by Platinum Nanoparticles. Biosens. Bioelectron. 2018, 101, 268. DOI: 10.1016/j.bios.2017.10.034.
  • Han, Z.; Shu, J.; Liang, X.; Cui, H. Label-Free Ratiometric Electrochemiluminescence Aptasensor Based on Nanographene Oxide Wrapped Titanium Dioxide Nanoparticles with Potential-Resolved Electrochemiluminescence. Anal. Chem. 2019, 91, 12260. DOI: 10.1021/acs.analchem.9b02318.
  • Yan, Y.; Li, H.; Liu, Q.; Hao, N.; Mao, H.; Wang, K. A Facile Strategy to Construct Pure Thiophene-Sulfur-Doped Graphene/ZnO Nanoplates Sensitized Structure for Fabricating a Novel “on-off-on” Switch Photoelectrochemical Aptasensor. Sens. Actuators B. Chem. 2017, 251, 99–107. DOI: 10.1016/j.snb.2017.05.034.
  • Puja, P.; Kumar, P. A Perspective on Biogenic Synthesis of Platinum Nanoparticles and Their Biomedical Applications. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2019, 211, 94. DOI: 10.1016/j.saa.2018.11.047.
  • Guo, S.; Wen, D.; Zhai, Y.; Dong, S.; Wang, E. Platinum Nanoparticle Ensemble-on-Graphene Hybrid Nanosheet: one-Pot, Rapid Synthesis, and Used as New Electrode Material for Electrochemical Sensing. ACS Na. 2010, 4, 3959. DOI: 10.1021/nn100852h.
  • Lebègue, E.; Anderson, C. M.; Dick, J. E.; Webb, L. J.; and Bard, A. J. Electrochemical Detection of Single Phospholipid Vesicle Collisions at a Pt Ultramicroelectrode. Langmuir 2015, 31, 11734. DOI: 10.1021/acs.langmuir.5b03123.
  • Mahmoudian, M.; Basirun, W.; Alias, Y. A Sensitive Electrochemical Hg 2+ Ions Sensor Based on Polypyrrole Coated Nanospherical Platinum. RSC Adv. 2016, 6, 36459–36466. DOI: 10.1039/C6RA03878F.
  • Madianos, L.; Skotadis, E.; Tsekenis, G.; Patsiouras, L.; Tsigkourakos, M.; Tsoukalas, D. Ιmpedimetric Nanoparticle Aptasensor for Selective and Label Free Pesticide Detection. Microelectron. Eng. 2018, 189, 39–45. DOI: 10.1016/j.mee.2017.12.016.
  • Zhang, R.; Sun, C.-L.; Lu, Y.-J.; Chen, W. Graphene Nanoribbon-Supported PtPd Concave Nanocubes for Electrochemical Detection of TNT with High Sensitivity and Selectivity. Anal. Chem. 2015, 87, 12262. DOI: 10.1021/acs.analchem.5b03390.
  • Yu, X.-Y.; Liu, Z.-G.; Huang, X.-J. Nanostructured Metal Oxides/Hydroxides-Based Electrochemical Sensor for Monitoring Environmental Micropollutants. Trends Environ. Anal. Chem. 2014, 3–4, 28–35. DOI: 10.1016/j.teac.2014.07.001.
  • George, J. M.; Antony, A.; Mathew, B. Metal Oxide Nanoparticles in Electrochemical Sensing and Biosensing: A Review. Mikrochim. Acta. 2018, 185, 358.
  • Wang, M.; Huang, J.; Wang, M.; Zhang, D.; Chen, J. Electrochemical Nonenzymatic Sensor Based on CoO Decorated Reduced Graphene Oxide for the Simultaneous Determination of Carbofuran and Carbaryl in Fruits and Vegetables. Food Chem. 2014, 151, 191. DOI: 10.1016/j.foodchem.2013.11.046.
  • Qu, Y.; Min, H.; Wei, Y.; Xiao, F.; Shi, G.; Li, X.; Jin, L. Au–TiO2/Chit Modified Sensor for Electrochemical Detection of Trace Organophosphates Insecticides. Talanta 2008, 76, 758. DOI: 10.1016/j.talanta.2008.04.045.
  • Tian, X.; Liu, L.; Li, Y.; Yang, C.; Zhou, Z.; Nie, Y.; Wang, Y. Nonenzymatic Electrochemical Sensor Based on CuO-TiO2 for Sensitive and Selective Detection of Methyl Parathion Pesticide in Ground Water. Sens. Actuators B. Chem. 2018, 256, 135–142. DOI: 10.1016/j.snb.2017.10.066.
  • Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X. a.; Huang, S. Sulfur-Doped Graphene as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction. ACS Na. 2012, 6, 205. DOI: 10.1021/nn203393d.
  • Poh, H. L.; Simek, P.; Sofer, Z.; Pumera, M. Sulfur-Doped Graphene via Thermal Exfoliation of Graphite Oxide in H2S, SO2, or CS2 Gas. ACS Nano. 2013, 7, 5262. DOI: 10.1021/nn401296b.
  • Li, M.; Liu, C.; Zhao, H.; An, H.; Cao, H.; Zhang, Y.; Fan, Z. Tuning Sulfur Doping in Graphene for Highly Sensitive Dopamine Biosensors. Carbon 2015, 86, 197–206. DOI: 10.1016/j.carbon.2015.01.029.
  • Hu, H.; Zavabeti, A.; Quan, H.; Zhu, W.; Wei, H.; Chen, D.; Ou, J. Z. Recent Advances in Two-Dimensional Transition Metal Dichalcogenides for Biological Sensing. Biosens. Bioelectron. 2019, 142, 111573. DOI: 10.1016/j.bios.2019.111573.
  • Arshad, M. M.; Gopinath, S. C.; Norhaimi, W.; Fathil, M. Current and Future Envision on Developing Biosensors Aided by 2D Molybdenum Disulfide (MoS2) Productions. Biosens. Bioelectron. 2019, 132, 248. DOI: 10.1016/j.bios.2019.03.005.
  • Feng, P.; Cao, W. Properties, Application and Synthesis Methods of Nano-Molybdenum Powder. MSCE. 2016, 4, 36–44. DOI: 10.4236/msce.2016.49004.
  • Yan, L.; Shi, H.; Sui, X.; Deng, Z.; Gao, L. MoS 2-DNA and MoS 2 Based Sensors. RSC Adv. 2017, 7, 23573–23582. DOI: 10.1039/C7RA02649H.
  • Zhang, J.-R.; Zhao, Y.-Q.; Chen, L.; Yin, S.-F.; Cai, M.-Q. Density Functional Theory Calculation on Facet-Dependent Photocatalytic Activity of MoS2/CdS Heterostructures. Appl. Surf. Sci. 2019, 469, 27–33. DOI: 10.1016/j.apsusc.2018.11.004.
  • Peng, K.; Wang, H.; Li, X.; Wang, J.; Xu, L.; Gao, H.; Niu, M.; Ma, M.; Yang, J. One-Step Hydrothermal Growth of MoS2 Nanosheets/CdS Nanoparticles Heterostructures on Montmorillonite for Enhanced Visible Light Photocatalytic Activity. Appl. Clay Sci. 2019, 175, 86–93. DOI: 10.1016/j.clay.2019.04.007.
  • Liu, J.; Chen, P.; Xia, F.; Liu, Z.; Liu, H.; Yi, J.; Zhou, C. Sensitive Electrochemiluminescence Aptasensor for Chlorpyrifos Detection Based on Resonance Energy Transfer between MoS2/CdS Nanospheres and Ag/CQDs. Sens. Actuators B. Chem. 2020, 315, 128098. DOI: 10.1016/j.snb.2020.128098.
  • Ding, L.; Wei, J.; Qiu, Y.; Wang, Y.; Wen, Z.; Qian, J.; Hao, N.; Ding, C.; Li, Y.; Wang, K. One-Step Hydrothermal Synthesis of Telluride Molybdenum/Reduced Graphene Oxide with Schottky Barrier for Fabricating Label-Free Photoelectrochemical Profenofos Aptasensor. Chem. Eng. J. 2021, 407, 127213. DOI: 10.1016/j.cej.2020.127213.
  • Ma, N.; Jiang, X. Y.; Zhang, L.; Wang, X. S.; Cao, Y. L.; Zhang, X. Z. Novel 2D Layered Molybdenum Ditelluride Encapsulated in Few‐Layer Graphene as High‐Performance Anode for Lithium‐Ion Batteries. Small 2018, 14, 1703680. DOI: 10.1002/smll.201703680.
  • Ding, M.; Flaig, R. W.; Jiang, H.-L.; Yaghi, O. M. Carbon Capture and Conversion Using Metal–Organic Frameworks and MOF-Based Materials. Chem. Soc. Rev. 2019, 48, 2783. DOI: 10.1039/c8cs00829a.
  • Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; et al. Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Adv. Mater. 2018, 30, 1704303. DOI: 10.1002/adma.201704303.
  • Qiu, Q.; Chen, H.; Wang, Y.; Ying, Y. Recent Advances in the Rational Synthesis and Sensing Applications of Metal-Organic Framework Biocomposites. Coord. Chem. Rev. 2019, 387, 60–78. DOI: 10.1016/j.ccr.2019.02.009.
  • Wang, P.-L.; Xie, L.-H.; Joseph, E. A.; Li, J.-R.; Su, X.-O.; Zhou, H.-C. Metal–Organic Frameworks for Food Safety. Chem. Rev. 2019, 119, 10638. DOI: 10.1021/acs.chemrev.9b00257.
  • Luan, F.; Wang, Y.; Zhang, S.; Zhuang, X.; Tian, C.; Fu, X.; Chen, L. Facile Synthesis of a Cyclodextrin-Metal Organic Framework Decorated with Ketjen Black and Platinum Nanoparticles and Its Application in the Electrochemical Detection of Ofloxacin. Analyst 2020, 145, 1943. DOI: 10.1039/C9AN02575H.
  • Lu, K.; Aung, T.; Guo, N.; Weichselbaum, R.; Lin, W. Nanoscale Metal–Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Adv. Mater. 2018, 30, 1707634. DOI: 10.1002/adma.201707634.
  • An, H.; Li, M.; Gao, J.; Zhang, Z.; Ma, S.; Chen, Y. Incorporation of Biomolecules in Metal-Organic Frameworks for Advanced Applications. Coord. Chem. Rev. 2019, 384, 90–106. DOI: 10.1016/j.ccr.2019.01.001.
  • Ren, R.; Cai, G.; Yu, Z.; Zeng, Y.; Tang, D. Metal-Polydopamine Framework: An Innovative Signal-Generation Tag for Colorimetric Immunoassay. Anal. Chem. 2018, 90, 11099. DOI: 10.1021/acs.analchem.8b03538.
  • Lv, S.; Zhang, K.; Zhou, Q.; Tang, D. Plasmonic Enhanced Photoelectrochemical Aptasensor with DA F8BT/g-C3N4 Heterojunction and AuNPs on a 3D-Printed Device. Sens. Actuators B. Chem. 2020, 310, 127874. DOI: 10.1016/j.snb.2020.127874.
  • Sun, D.; Luo, Z.; Lu, J.; Zhang, S.; Che, T.; Chen, Z.; Zhang, L. Electrochemical Dual-Aptamer-Based Biosensor for Nonenzymatic Detection of Cardiac Troponin I by Nanohybrid Electrocatalysts Labeling Combined with DNA Nanotetrahedron Structure. Biosens. Bioelectron. 2019, 134, 49. DOI: 10.1016/j.bios.2019.03.049.
  • Yu, H.; Han, J.; An, S.; Xie, G.; Chen, S. Ce (III, IV)-MOF Electrocatalyst as Signal-Amplifying Tag for Sensitive Electrochemical Aptasensing. Biosens. Bioelectron. 2018, 109, 63. DOI: 10.1016/j.bios.2018.03.005.
  • Zhou, Y.; Li, F.; Wu, H.; Chen, Y.; Yin, H.; Ai, S.; Wang, J. Electrochemical Aptasensing Strategy for Kanamycin Detection Based on Target-Triggered Single-Strand DNA Adsorption on MoS2 Nanosheets and Enzymatic Signal Amplification. Sens. Actuators B. Chem. 2019, 296, 126664. DOI: 10.1016/j.snb.2019.126664.
  • Qiao, X.; Xia, F.; Tian, D.; Chen, P.; Liu, J.; Gu, J.; Zhou, C. Ultrasensitive “Signal-on” Electrochemical Aptasensor for Assay of Acetamiprid Residues Based on Copper-Centered Metal-Organic Frameworks. Anal. Chim. Acta. 2019, 1050, 51. DOI: 10.1016/j.aca.2018.11.004.
  • Li, X.; Gao, X.; Gai, P.; Liu, X.; Li, F. Degradable Metal-Organic Framework/Methylene Blue Composites-Based Homogeneous Electrochemical Strategy for Pesticide Assay. Sens. Actuators B. Chem. 2020, 323, 128701. DOI: 10.1016/j.snb.2020.128701.
  • Lv, S.; Zhang, K.; Zhu, L.; Tang, D. ZIF-8-Assisted NaYF4: Yb, Tm@ ZnO Converter with Exonuclease III-Powered DNA Walker for near-Infrared Light Responsive Biosensor. Anal. Chem. 2019, 92, 1470. DOI: 10.1021/acs.analchem.9b04710.
  • Lv, S.; Zhang, K.; Zhu, L.; Tang, D.; Niessner, R.; Knopp, D. H2-Based Electrochemical Biosensor with pd Nanowires@ Zif-67 Molecular Sieve Bilayered Sensing Interface for Immunoassay. Anal. Chem. 2019, 91, 12055. DOI: 10.1021/acs.analchem.9b03177.
  • Lv, S.; Tang, Y.; Zhang, K.; Tang, D. Wet NH3-Triggered NH2-MIL-125 (Ti) Structural Switch for Visible Fluorescence Immunoassay Impregnated on Paper. Anal. Chem. 2018, 90, 14121. DOI: 10.1021/acs.analchem.8b04981.
  • Liu, C.-S.; Zhang, Z.-H.; Chen, M.; Zhao, H.; Duan, F.-H.; Chen, D.-M.; Wang, M.-H.; Zhang, S.; Du, M. Pore Modulation of Zirconium–Organic Frameworks for High-Efficiency Detection of Trace Proteins. Chem. Commun. 2017, 53, 3941. DOI: 10.1039/c7cc00029d.
  • Yan, X.; Song, Y.; Liu, J.; Zhou, N.; Zhang, C.; He, L.; Zhang, Z.; Liu, Z. Two-Dimensional Porphyrin-Based Covalent Organic Framework: A Novel Platform for Sensitive Epidermal Growth Factor Receptor and Living Cancer Cell Detection. Biosens. Bioelectron. 2019, 126, 734. DOI: 10.1016/j.bios.2018.11.047.
  • Fang, Z.; DüRholt, J. P.; Kauer, M.; Zhang, W.; Lochenie, C.; Jee, B.; Albada, B.; Metzler-Nolte, N.; PöPpl, A.; Weber, B. Structural Complexity in Metal–Organic Frameworks: Simultaneous Modification of Open Metal Sites and Hierarchical Porosity by Systematic Doping with Defective Linkers. J. Am. Chem. Soc. 2014, 136, 9627. DOI: 10.1021/ja503218j.
  • Rodríguez-San-Miguel, D.; Montoro, C.; Zamora, F. Covalent Organic Framework Nanosheets: preparation, Properties and Applications. Chem. Soc. Rev. 2020, 49, 2291. DOI: 10.1039/c9cs00890j.
  • Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Wang, H.; Yi, H.; Li, B.; Liu, S.; Zhang, M. Recent Advances in Covalent Organic Frameworks (COFs) as a Smart Sensing Material. Chem. Soc. Rev. 2019, 48, 5266. DOI: 10.1039/c9cs00299e.
  • Li, W.; Yang, C.-X.; Yan, X.-P. A Versatile Covalent Organic Framework-Based Platform for Sensing Biomolecules. Chem. Commun. 2017, 53, 11469. DOI: 10.1039/C7CC06244C.
  • Peng, Y.; Huang, Y.; Zhu, Y.; Chen, B.; Wang, L.; Lai, Z.; Zhang, Z.; Zhao, M.; Tan, C.; Yang, N. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: preparation and Application in Highly Sensitive and Selective DNA Detection. J. Am. Chem. Soc. 2017, 139, 8698. DOI: 10.1021/jacs.7b04096.
  • Sun, J.; Klechikov, A.; Moise, C.; Prodana, M.; Enachescu, M.; Talyzin, A. V. A Molecular Pillar Approach to Grow Vertical Covalent Organic Framework Nanosheets on Graphene: hybrid Materials for Energy Storage. Angew. Chem. 2018, 130, 1046–1050. DOI: 10.1002/ange.201710502.
  • Das, P.; Chakraborty, G.; Mandal, S. K. Comprehensive Structural and Microscopic Characterization of an Azine–Triazine-Functionalized Highly Crystalline Covalent Organic Framework and Its Selective Detection of Dichloran and 4-Nitroaniline. ACS Appl. Mater. Interfaces 2020, 12, 10224. DOI: 10.1021/acsami.9b17452.
  • Medina, D. D.; Sick, T.; Bein, T. Photoactive and Conducting Covalent Organic Frameworks. Adv. Energy Mater. 2017, 7, 1700387. DOI: 10.1002/aenm.201700387.
  • Radovic, M.; Barsoum, M. W. MAX Phases: Bridging the Gap between Metals and Ceramics. Am. Ceram. Soc. Bull. 2013, 92, 20.
  • Dillon, A. D.; Ghidiu, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Fafarman, A. T. Highly Conductive Optical Quality Solution‐Processed Films of 2D Titanium Carbide. Adv. Funct. Mater. 2016, 26, 4162–4168. DOI: 10.1002/adfm.201600357.
  • Sang, X.; Xie, Y.; Lin, M.-W.; Alhabeb, M.; Van Aken, K. L.; Gogotsi, Y.; Kent, P. R.; Xiao, K.; Unocic, R. R. Atomic Defects in Monolayer Titanium Carbide (Ti3C2T x) MXene. ACS Nano 2016, 10, 9193. DOI: 10.1021/acsnano.6b05240.
  • Zeng, R.; Wang, W.; Chen, M.; Wan, Q.; Wang, C.; Knopp, D.; Tang, D. CRISPR-Cas12a-Driven MXene-PEDOT: PSS Piezoresistive Wireless Biosensor. Nano Energy 2021, 82, 105711. DOI: 10.1016/j.nanoen.2020.105711.
  • Cai, G.; Yu, Z.; Tong, P.; Tang, D. Ti 3 C 2 MXene Quantum Dot-Encapsulated Liposomes for Photothermal Immunoassays Using a Portable near-Infrared Imaging Camera on a Smartphone. Nanoscale 2019, 11, 15659. DOI: 10.1039/c9nr05797h.
  • Chen, J.; Tong, P.; Huang, L.; Yu, Z.; Tang, D. Ti3C2 MXene Nanosheet-Based Capacitance Immunoassay with Tyramine-Enzyme Repeats to Detect Prostate-Specific Antigen on Interdigitated Micro-Comb Electrode. Electrochim Acta 2019, 319, 375–381. DOI: 10.1016/j.electacta.2019.07.010.
  • Lorencova, L.; Bertok, T.; Dosekova, E.; Holazova, A.; Paprckova, D.; Vikartovska, A.; Sasinkova, V.; Filip, J.; Kasak, P.; Jerigova, M. Electrochemical Performance of Ti3C2Tx MXene in Aqueous Media: Towards Ultrasensitive H2O2 Sensing. Electrochim. Acta. 2017, 235, 471. DOI: 10.1016/j.electacta.2017.03.073.
  • Kumar, S.; Lei, Y.; Alshareef, N. H.; Quevedo-Lopez, M.; Salama, K. N. Biofunctionalized Two-Dimensional Ti3C2 MXenes for Ultrasensitive Detection of Cancer Biomarker. Biosens. Bioelectron. 2018, 121, 243. DOI: 10.1016/j.bios.2018.08.076.
  • Wu, Q.; Li, N.; Wang, Y.; Xu, Y.; Wei, S.; Wu, J.; Jia, G.; Fang, X.; Chen, F.; Cui, X. A 2D Transition Metal Carbide MXene-Based SPR Biosensor for Ultrasensitive Carcinoembryonic Antigen Detection. Biosens. Bioelectron. 2019, 144, 111697. DOI: 10.1016/j.bios.2019.111697.
  • Tan, J.; Peng, B.; Tang, L.; Feng, C.; Wang, J.; Yu, J.; Ouyang, X.; Zhu, X. Enhanced Photoelectric Conversion Efficiency: A Novel h-BN Based Self-Powered Photoelectrochemical Aptasensor for Ultrasensitive Detection of Diazinon. Biosens. Bioelectron. 2019, 142, 111546. DOI: 10.1016/j.bios.2019.111546.
  • Jastrzębska, A.; Szuplewska, A.; Wojciechowski, T.; Chudy, M.; Ziemkowska, W.; Chlubny, L.; Rozmysłowska, A.; Olszyna, A. In Vitro Studies on Cytotoxicity of Delaminated Ti3C2 MXene. J. Hazard Mater. 2017, 339, 1. DOI: 10.1016/j.jhazmat.2017.06.004.
  • Pakdel, A.; Bando, Y.; Golberg, D. Nano Boron Nitride Flatland. Chem. Soc. Rev. 2014, 43, 934. DOI: 10.1039/C3CS60260E.
  • Khan, A. F.; Brownson, D. A.; Randviir, E. P.; Smith, G. C.; Banks, C. E. 2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine. Anal. Chem. 2016, 88, 9729. DOI: 10.1021/acs.analchem.6b02638.
  • Li, Q.; Huo, C.; Yi, K.; Zhou, L.; Su, L.; Hou, X. Preparation of Flake Hexagonal BN and Its Application in Electrochemical Detection of Ascorbic Acid, Dopamine and Uric Acid. Sens. Actuators B. Chem. 2018, 260, 346–356. DOI: 10.1016/j.snb.2017.12.208.
  • Chen, A.; Ostrom, C. Palladium-Based Nanomaterials: synthesis and Electrochemical Applications. Chem. Rev. 2015, 115, 11999. DOI: 10.1021/acs.chemrev.5b00324.
  • Weber, M.; Tuleushova, N.; Zgheib, J.; Lamboux, C.; Iatsunskyi, I.; Coy, E.; Flaud, V.; Tingry, S.; Cornu, D.; Miele, P.; et al. Enhanced Electrocatalytic Performance Triggered by Atomically Bridged Boron Nitride between Palladium Nanoparticles and Carbon Fibers in Gas-Diffusion Electrodes. Appl. Catal. B. 2019, 257, 117917. DOI: 10.1016/j.apcatb.2019.117917.
  • Weber, M.; Lamboux, C.; Navarra, B.; Miele, P.; Zanna, S.; Dufond, M. E.; Santinacci, L.; Bechelany, M. Boron Nitride as a Novel Support for Highly Stable Palladium Nanocatalysts by Atomic Layer Deposition. Nanomaterials 2018, 8, 849. DOI: 10.3390/nano8100849.
  • Renganathan, V.; Balaji, R.; Chen, S.-M.; Kokulnathan, T. Coherent Design of Palladium Nanostructures Adorned on the Boron Nitride Heterojunctions for the Unparalleled Electrochemical Determination of Fatal Organophosphorus Pesticides. Sens. Actuators B. Chem. 2020, 307, 127586. DOI: 10.1016/j.snb.2019.127586.
  • Mou, Z.; Lu, C.; Yu, K.; Wu, H.; Zhang, H.; Sun, J.; Zhu, M.; Goh, M. C. Chemical Interaction in Nitrogen‐Doped Graphene Quantum Dots/Graphitic Carbon Nitride Heterostructures with Enhanced Photocatalytic H2 Evolution. Energy Technol. 2019, 7, 1800589. DOI: 10.1002/ente.201800589.
  • Lv, J.; Dai, K.; Zhang, J.; Liu, Q.; Liang, C.; Zhu, G. Facile Constructing Novel 2D Porous g-C3N4/BiOBr Hybrid with Enhanced Visible-Light-Driven Photocatalytic Activity. Sep. Purif. Technol. 2017, 178, 6–17. DOI: 10.1016/j.seppur.2017.01.019.
  • Yin, J.; Li, J.; Hang, Y.; Yu, J.; Tai, G.; Li, X.; Zhang, Z.; Guo, W. Boron Nitride Nanostructures: fabrication, Functionalization and Applications. Small 2016, 12, 2942. DOI: 10.1002/smll.201600053.
  • Qian, C.-g.; Chen, Y.-l.; Feng, P.-j.; Xiao, X.-z.; Dong, M.; Yu, J.-c.; Hu, Q.-y.; Shen, Q.-d.; Gu, Z. Conjugated Polymer Nanomaterials for Theranostics. Acta Pharmacol. Sin. 2017, 38, 764. DOI: 10.1038/aps.2017.42.
  • Haupt, K.; Mosbach, K. Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chem. Rev. 2000, 100, 2495. DOI: 10.1021/cr990099w.
  • Huang, W.; Zhou, X.; Luan, Y.; Cao, Y.; Wang, N.; Lu, Y.; Liu, T.; Xu, W. A Sensitive Electrochemical Sensor Modified with Multi-Walled Carbon Nanotubes Doped Molecularly Imprinted Silica Nanospheres for Detecting Chlorpyrifos. J. Sep. Sci. 2020, 43, 954. DOI: 10.1002/jssc.201901036.
  • Roh, Y. H.; Ruiz, R. C. H.; Peng, S.; Lee, J. B.; Luo, D. Engineering DNA-Based Functional Materials. Chem. Soc. Rev. 2011, 40, 5730. DOI: 10.1039/c1cs15162b.
  • Sinha, A.; Huang, Y.; Zhao, H. Preparation of 3D Assembly of Mono Layered Molybdenum Disulfide Nanotubules for Rapid Screening of Carbamate Pesticide Diethofencarb. Talanta 2019, 204, 455. DOI: 10.1016/j.talanta.2019.06.040.
  • Nagahara, S.; Matsuda, T. Hydrogel Formation via Hybridization of Oligonucleotides Derivatized in Water-Soluble Vinyl Polymers. Pol. Gel. Net. 1996, 4, 111–127. DOI: 10.1016/0966-7822(96)00001-9.
  • Costa, D.; Queiroz, J.; Miguel, M. G.; Lindman, B. Swelling Behavior of a New Biocompatible Plasmid DNA Hydrogel. Colloids Surf. B. Biointerfaces 2012, 92, 106. DOI: 10.1016/j.colsurfb.2011.11.038.
  • Shu, J.; Qiu, Z.; Tang, D. Self-Referenced Smartphone Imaging for Visual Screening of H2S Using Cu x O-Polypyrrole Conductive Aerogel Doped with Graphene Oxide Framework. Anal. Chem. 2018, 90, 9691. DOI: 10.1021/acs.analchem.8b03011.
  • Shu, J.; Qiu, Z.; Lv, S.; Zhang, K.; Tang, D. Cu2+-Doped SnO2 Nanograin/Polypyrrole Nanospheres with Synergic Enhanced Properties for Ultrasensitive Room-Temperature H2S Gas Sensing. Anal. Chem. 2017, 89, 11135. DOI: 10.1021/acs.analchem.7b03491.
  • Luo, Z.; Qi, Q.; Zhang, L.; Zeng, R.; Su, L.; Tang, D. Branched Polyethylenimine-Modified Upconversion Nanohybrid-Mediated Photoelectrochemical Immunoassay with Synergistic Effect of Dual-Purpose Copper Ions. Anal. Chem. 2019, 91, 4149. DOI: 10.1021/acs.analchem.8b05959.
  • Zeng, R.; Luo, Z.; Zhang, L.; Tang, D. Platinum Nanozyme-Catalyzed Gas Generation for Pressure-Based Bioassay Using Polyaniline Nanowires-Functionalized Graphene Oxide Framework. Anal. Chem. 2018, 90, 12299. DOI: 10.1021/acs.analchem.8b03889.
  • Chen, J.; Xue, F.; Yu, Z.; Huang, L.; Tang, D. A Polypyrrole-Polydimethylsiloxane Sponge-Based Compressible Capacitance Sensor with Molecular Recognition for Point-of-Care Immunoassay. Analyst 2020, 145, 7186. DOI: 10.1039/d0an01653e.
  • Cai, G.; Yu, Z.; Tang, D. Actuating Photoelectrochemical Sensing Sensitivity Coupling Core-Core-Shell Fe3O4@C@TiO2 with Molecularly Imprinted Polypyrrole. Talanta 2020, 219, 121341. DOI: 10.1016/j.talanta.2020.121341.
  • Yu, Z.; Cai, G.; Liu, X.; Tang, D. Platinum Nanozyme-Triggered Pressure-Based Immunoassay Using a Three-Dimensional Polypyrrole Foam-Based Flexible Pressure Sensor. ACS Appl. Mater. Interfaces 2020, 12, 40133. DOI: 10.1021/acsami.0c12074.
  • Chauhan, N.; Narang, J.; Jain, U. Amperometric Acetylcholinesterase Biosensor for Pesticides Monitoring Utilising Iron Oxide Nanoparticles and Poly(Indole-5-Carboxylic Acid). J. Exp. Nanosci. 2016, 11, 111–122. DOI: 10.1080/17458080.2015.1030712.
  • Ghislandi, M.; Tkalya, E.; Alekseev, A.; Koning, C.; de With, G. Electrical Conductive Behavior of Polymer Composites Prepared with Aqueous Graphene Dispersions. Appl. Mater. Today 2015, 1, 88–94. DOI: 10.1016/j.apmt.2015.11.001.
  • Wang, J.; Dai, J.; Yarlagadda, T. Carbon Nanotube − Conducting-Polymer Composite Nanowires. Langmuir 2005, 21, 9. DOI: 10.1021/la0475977.
  • Emran, M. Y.; Shenashen, M. A.; Mekawy, M.; Azzam, A. M.; Akhtar, N.; Gomaa, H.; Selim, M. M.; Faheem, A.; El-Safty, S. A. Ultrasensitive in-Vitro Monitoring of Monoamine Neurotransmitters from Dopaminergic Cells. Sens. Actuators B. Chem. 2018, 259, 114–124. DOI: 10.1016/j.snb.2017.11.156.
  • Li, J.; Liu, Y.; Lin, H.; Chen, Y.; Liu, Z.; Zhuang, X.; Tian, C.; Fu, X.; Chen, L. Label-Free Exonuclease I-Assisted Signal Amplification Colorimetric Sensor for Highly Sensitive Detection of Kanamycin. Food Chem. 2021, 347, 128988. DOI: 10.1016/j.foodchem.2020.128988.
  • Xu, G.; Hou, J.; Zhao, Y.; Bao, J.; Yang, M.; Fa, H.; Yang, Y.; Li, L.; Huo, D.; Hou, C. Dual-Signal Aptamer Sensor Based on Polydopamine-Gold Nanoparticles and Exonuclease I for Ultrasensitive Malathion Detection. Sens. Actuators B. Chem. 2019, 287, 428–436. DOI: 10.1016/j.snb.2019.01.113.
  • Selvolini, G.; Băjan, I.; Hosu, O.; Cristea, C.; Săndulescu, R.; Marrazza, G. DNA-Based Sensor for the Detection of an Organophosphorus Pesticide. Profenofos. Sensors 2018, 18, 2035. DOI: 10.3390/s18072035.
  • Gülce, H.; Eskizeybek, V.; Haspulat, B.; Sarı, F.; Gülce, A.; Avcı, A. Preparation of a New Polyaniline/CdO Nanocomposite and Investigation of Its Photocatalytic Activity: Comparative Study under UV Light and Natural Sunlight Irradiation. Ind. Eng. Chem. Res. 2013, 52, 10924–10934. DOI: 10.1021/ie401389e.
  • Bolat, G.; Abaci, S. Non-Enzymatic Electrochemical Sensing of Malathion Pesticide in Tomato and Apple Samples Based on Gold Nanoparticles-Chitosan-Ionic Liquid Hybrid Nanocomposite. Sensors 2018, 18, 773.
  • Wei, W.; Dong, S.; Huang, G.; Xie, Q.; Huang, T. MOF-Derived Fe2O3 Nanoparticle Embedded in Porous Carbon as Electrode Materials for Two Enzyme-Based Biosensors. Sens. Actuators B. Chem. 2018, 260, 189–197. DOI: 10.1016/j.snb.2017.12.207.
  • Whitesides, G. M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368. DOI: 10.1038/nature05058.
  • Yang, Y.; Chen, Y.; Tang, H.; Zong, N.; Jiang, X. Microfluidics for Biomedical Analysis. Small Methods 2020, 4, 1900451. DOI: 10.1002/smtd.201900451.
  • Fraser, L. A.; Cheung, Y.‐W.; Kinghorn, A. B.; Guo, W.; Shiu, S. C.‐C.; Jinata, C.; Liu, M.; Bhuyan, S.; Nan, L.; Shum, H. C.; Tanner, J. A. Microfluidic Technology for Nucleic Acid Aptamer Evolution and Application. Adv. Biosys. 2019, 3, 1900012. DOI: 10.1002/adbi.201900012.
  • Xue, J.; Chen, F.; Bai, M.; Cao, X.; Fu, W.; Zhang, J.; Zhao, Y. Aptamer-Functionalized Microdevices for Bioanalysis. ACS Appl. Mater. Interfaces 2020.
  • Ramalingam, S.; Chand, R.; Singh, C. B.; Singh, A. Phosphorene-Gold Nanocomposite Based Microfluidic Aptasensor for the Detection of Okadaic Acid. Biosens. Bioelectron. 2019, 135, 14. DOI: 10.1016/j.bios.2019.03.056.
  • Weng, X.; Neethirajan, S. A Microfluidic Biosensor Using Graphene Oxide and Aptamer-Functionalized Quantum Dots for Peanut Allergen Detection. Biosens. Bioelectron. 2016, 85, 649. DOI: 10.1016/j.bios.2016.05.072.
  • Farokhzad, O. C.; Khademhosseini, A.; Jon, S.; Hermmann, A.; Cheng, J.; Chin, C.; Kiselyuk, A.; Teply, B.; Eng, G.; Langer, R. Microfluidic System for Studying the Interaction of Nanoparticles and Microparticles with Cells. Anal. Chem. 2005, 77, 5453–5459. DOI: 10.1021/ac050312q.
  • Sanghavi, B. J.; Moore, J. A.; Chávez, J. L.; Hagen, J. A.; Kelley-Loughnane, N.; Chou, C.-F.; Swami, N. S. Aptamer-Functionalized Nanoparticles for Surface Immobilization-Free Electrochemical Detection of Cortisol in a Microfluidic Device. Biosens. Bioelectron. 2016, 78, 244–252. DOI: 10.1016/j.bios.2015.11.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.