296
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Novel Approaches in Fabrication and Integration of Nanowire for Micro/Nano Systems

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 1913-1929 | Published online: 13 Jul 2021

References

  • Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules 2019, 25, 112–115. DOI: 10.3390/molecules25010112.
  • Wang, G. Nanotechnology: The New Features. arXiv, 2018. https://arxiv.org/abs/1812.04939.
  • Jeevanandam, J.; Barhoum, A.; Chan, Y. S.; Dufresne, A.; Danquah, M. K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. DOI: 10.3762/bjnano.9.98.
  • Matteucci, F.; Giannantonio, R.; Calabi, F.; Agostiano, A.; Gigli, G.; Rossi, M. Deployment and Exploitation of Nanotechnology Nanomaterials and Nanomedicine. AIP Conf. Proc., 2018, 1990, 1–25. DOI: 10.1063/1.5047755.
  • Salhi, B.; Hossain, M. K.; Mukhaimer, A. W.; Al-Sulaiman, F. A. Nanowires : A New Pathway to Nanotechnology-Based Applications. J. Electroceram. 2016, 37, 34–49. DOI: 10.1007/s10832-016-00y.
  • Murad, R.; Xichun, H. Promising Lithography Techniques for Next-Generation Logic Devices. Nanomanufacturing Metrol. 2018, 1, 67–81. DOI: 10.1007/s41871-018-0016-9.
  • Garnett, E.; Mai, L.; Yang, P. Introduction: 1D Nanomaterials/Nanowires. Chem. Rev. 2019, 119, 8955–8957. DOI: 10.1021/acs.chemrev.9b00423.
  • Liu, Q.; Zou, R.; Bando, Y.; Golberg, D.; Hu, J. Nanowires Sheathed inside Nanotubes: Manipulation, Properties and Applications. Prog. Mater. Sci. 2015, 70, 1–49. DOI: 10.1016/j.pmatsci.2014.11.002.
  • Noah, N. M. Review Article Design and Synthesis of Nanostructured Materials for Sensor Applications. J Nanomater. 2020, 2020, 1–20.
  • Chen, D. Y. Overcoming the limitations of silver nanowire electrodes for light emitting applications, Dissertation, University of California, Los Angeles, United State.
  • Vitusevich, S.; Zadorozhnyi, I. Noise Spectroscopy of Nanowire Structures: Fundamental Limits and Application Aspects. Semiconduct. Sci. Technol. 2017, 32, 043002.
  • Kaur, J.; Kaur, H.; Singh, S.; Kanjilal, D.; Chakarvarti, S. K. Nano-/Micro Metallic Wire Synthesis on Si Substrate and Their Characterization. AIP Conf. Proc. 2014, 1591, 1364–1366. DOI: 10.1063/1.4872960.
  • Kong, Y. Y.; Pang, S. C.; Chin, S. F. Manganese Dioxide Nanowires of Tunable Dimensions Synthesized via a Facile Hydrothermal Route. J. Nanomater 2015, 2015, 1–5. DOI: 10.1155/2015/509479.
  • Ambhorkar, P.; Wang, Z.; Ko, H.; Lee, S.; Koo, K-i.; Kim, K.; Cho, D-i. Nanowire-Based Biosensors: From Growth to Applications. Micromachines 2018, 9, 679. DOI: 10.3390/mi9120679.
  • Stanford, M. G.; Rack, P. D.; Jariwala, D. Emerging Nanofabrication and Quantum Confinement Techniques for 2D Materials beyond Graphene. NPJ 2D Mater. Appl. 2018, 2, 1–15. DOI: 10.1038/s41699-018-0065-3.
  • Zhu, H. Semiconductor Nanowire MOSFETs and Applications. In Nanowires - New Insights. IntechOpen Limited: London, 2017. DOI: 10.5772/67446.
  • Peidong Yang, C. Z. N.; Dou, L.; Yang, P. Bandgap Engineering in Semiconductor Alloy Nanomaterials with Widely Tunable Compositions. Nat. Rev. Mater. 2017, 2, 1–15. DOI: 10.1038/natrevmats.2017.70.
  • Research and Markets. Nanowire-based Devices: Technologies and Global Markets, https://www.businesswire.com/news/home/20171115005946/en/Global-Nanowire-based-Devices-Technologies-and-Markets-2015-2016-2017-2022---Research-and-Markets, (Accessed Oct. 10, 2020).
  • Inshakova, E.; Inshakov, O. World Market for Nanomaterials: Structure and Trends. MATEC Web Conf. 2017, 129, 02013–02015. DOI: 10.1051/matecconf/201712902013.
  • Salhi, B.; Hossain, M. K.; Mukhaimer, A. W.; Al-Sulaiman, F. A. Nanowires: a new pathway to nanotechnology-based applications, Journal of Electroceramics. 2016, 37:34–49. DOI 10.1007/s10832-016-0037-y.
  • Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. DOI: 10.1016/j.arabjc.2017.05.011.
  • Puglisi, R. A.; Bongiorno, C.; Caccamo, S.; Fazio, E.; Mannino, G.; Neri, F.; Scalese, S.; Spucches, D.; La Magna, A. Chemical Vapor Deposition Growth of Silicon Nanowires with Diameter Smaller than 5 nm. ACS Omega 2019, 4, 7–11. DOI: 10.1021/acsomega.9b01488.
  • Akbari-Saatlu, M.; Procek, M.; Mattsson, C.; Thungström, G. Silicon Nanowires for Gas Sensing: A Review. Nanomaterials 2020, 10, 2215.
  • Liu, L.; Wang, Y.; Sun, F.; Dai, Y.; Wang, S.; Bai, Y.; Li, L.; Li, T.; Zhang, T.; Qin, S. Wafer-Scaled Miniaturized Gas Sensors Design and Fabrication. Microsystems  Nanoeng 2020, 6(31), 1–10. DOI: 10.1038/s41378-020-0144-4.
  • Array, V. S.; Kim, K.; Lee, J. K.; Han, S. J.; Lee, S. A Novel Top-Down Fabrication Process for Vertically-Stacked Silicon-Nanowire Array. Applied Sciences. 2020, 10(3):1146.
  • Zhou, W.; Dai, X.; Lieber, C.M. Advances in nanowire bioelectronics. Reports on Progress in physics. 2017, 80(1), 016701. DOI: 10.1088/0034-4885/80/1/016701.
  • Karageorgos, I. Impact of Interconnect Advanced Patterning Options on Circuit Design; KU Leuven: Belgium, 2017.
  • Zhang, C. Nanosphere Lithography and its Application in Rapid and Economic Fabrication of Plasmonic Hydrogenated Amorphous Silicon Photovoltaic Devices. Michigan Technological University: Michigan, 2016.
  • Strategic Research Agenda 2020. 2020.
  • Wang, C.; Zhang, W.; Zhao, Z.; Wang, Y.; Gao, P.; Luo, Y.; Luo, X. Plasmonic Structures, Materials and Lenses for Optical Lithography beyond the Diffraction Limit: A Review. Micromachines. 2016, 7(7), 118. .
  • Baek, S.; Kang, G.; Kang, M.; Lee, C.; Kim, K. Resolution Enhancement Using Plasmonic Metamask for Wafer-Scale Photolithography in the Far Field. Nat. Publ. Gr 2016, 6, 30476. DOI: 10.1038/srep30476.
  • Kwak, M. K.; Guo, L. J.; Korea, S.; Science, C.; Arbor, A. Phase-Shift Lithography. Springer: Boston, MA, 2014, 1–10. DOI: 10.1007/978-3-642-27758-0.
  • Levinson, H. J.; Brunner, T. A. Current challenges and opportunities for EUV lithography, Proc. SPIE 10809, International Conference on Extreme Ultraviolet Lithography 2018, Monterey, California, United States, 1080903 (24 October 2018);1-7. DOI: .
  • Ortenzi, L. D.; Monsù, R.; Cara, E.; Fretto, M.; Kara, S.; Rezvani, S. J.; Boarino, L. Electrical Contacts on Silicon Nanowires Produced by Metal-Assisted Etching : A Comparative Approach. Nanoscale Res. Lett. 2016, 11(468), 1–6. DOI: 10.1186/s11671-016-1689-x.
  • Vigneswaran, N.; Samsuri, F.; Ranganathan, B. Recent Advances in Nano Patterning and Nano Imprint Lithography for Biological Applications. Procedia Eng 2014, 97, 1387–1398. DOI: 10.1016/j.proeng.2014.12.420.
  • Title, “N. ”
  • Wu, D.; Rajput, N.; Luo, X. Nanoimprint Lithography - the Past, the Present and the Future. Current Nanoscience. 2016, 12 (6), 712–724. DOI: 10.2174/1573413712666160530120432.
  • Weichelt, T.; Bourgin, Y.; Zeitner, U. D. Mask Aligner Lithography Using Laser Illumination for Versatile Pattern Generation. Opt Express. 2017, 25, 20983–20992.
  • Peter, J.; Moinuddin, M. G.; Ghosh, S.; Sharma, S. K.; Gonsalves, K. E. Organotin in Nonchemically Amplified Polymeric Hybrid Resist Imparts Better Resolution with Sensitivity for Next-Generation Lithography. ACS Applied Polymer Materials. 2020, 2, 1790–1799. DOI: 10.1021/acsapm.0c00005.
  • Gangnaik, A. S.; Georgiev, Y. M.; Holmes, J. D. New Generation Electron Beam Resists: A Review. Chem. Mater. 2017, 29, 1898–1917. DOI: 10.1021/acs.chemmater.6b03483.
  • Liu, K.; Peng, F.; Peng, K.; Lin, H. The Effects of Channel Doping Concentration for n-Type Junction-Less Double-Gate poly-Si Nanostrip Transistors. Semiconduct. Sci. Technol. 2014, 29, 055001. DOI: 10.1088/0268-1242/29/5/055001.
  • Liu, D.; Syms, R. R. A. NEMS by Sidewall Transfer Lithography. Journal of Microelectromechanical Systems. 2014, 23(6), 1366–1373. doi:10.1109/jmems.2014.2313462.
  • Chaudhary, R.; Kim, G.; Yamamoto, H.; Watson, G. P. Sidewall Channel Fabrication Using Membrane Projection Lithography and Metal Assisted Chemical Etching. J. Vac. Sci. Technol. B. 2019, 37, 061813. DOI: 10.1116/1.5123622.
  • Jayakumar, G.; Legallais, M.; Hellström, P. Wafer-Scale HfO2 Encapsulated Silicon Nanowire Field Effect Transistor for Efficient Label-Free DNA Hybridization Detection in Dry Environment. Nanotechnol. 2019, 30, 184002.
  • Tamarov, K.; Kiviluoto, R.; Swanson, J. D.; Unger, B. A.; Ernst, A. T.; Aindow, M.; Riikonen, J.; Lehto, V.-P.; Kolasinski, K. W. Low-Load Metal-Assisted Catalytic Etching Produces Scalable Porosity in Si Powders. ACS Appl. Mater. Interfaces. 2020, 12, 48969–48981. DOI: 10.1021/acsami.0c13980.
  • Kim, T. K.; Bae, J.; Kim, J.; Kim, Y.; Jin, S.; Chun, D. W. Bulk Micromachining of Si by Annealing-Driven Magnetically Guided Metal-Assisted Chemical Etching. ACS Appl. Electr. Mater. Interfaces. 2020, 2, 260–267. DOI: 10.1021/acsaelm.9b00746.
  • Quiroga-Gonz, E. Silicon Conical Structures by Metal Assisted Chemical Etching. Micromach. 2020, 11, 402.
  • Tishkevich, D. I.; Vorobjova, A. I.; Vinnik, D. A. Template Assisted Ni Nanowires Fabrication D.I. Tishkevich. MSF. 2019, 946, 235–241.www.scientific.net/MSF.946.235. DOI: .
  • Schneider, L.; Feidenhans, N. A.; Telecka, A.; Taboryski, R. J. One-Step Maskless Fabrication and Optical Characterization of Silicon Surfaces with Antireflective Properties and a White Color Appearance. Nat. Publ. Gr 2016, 6, 35183. DOI: 10.1038/srep35183.
  • Zhou, N.; Li , J.; Mao, H.; Liu, H.; Liu, J.; Gao, J.; Xiang, J.; Hu, Y.; Shi, M.; Ju, J.; Lei, Y.; Yang, T.; Li J.; Wang, W. The Study of Reactive Ion Etching of Heavily Doped Polysilicon Based on HBr/O2/He Plasmas for Thermopile Devices Materials. 2020, 13, 4278. DOI:10.3390/ma13194278.
  • Akbari-Saatlu, M.; Procek, M.; Mattsson, C.; Thungström, G. Silicon Nanowires for Gas Sensing: A Review. Naomater. 2020, 10, 2215. DOI: 10.3390/nano10112215.
  • Namdari, P.; Daraee, H.; Eatemadi, A. Recent Advances in Silicon Nanowire Biosensors: Synthesis Methods, Properties, and Applications. Nanoscale Res. Lett. 2016, 11, 1–16. DOI: 10.1186/s11671-016-1618-z.
  • Wendisch, F. J.; Rey, M.; Vogel, N.; Bourret, G. R. Large-Scale Synthesis of Highly Uniform Silicon Nanowire Arrays Using Metal-Assisted Chemical Etching. Chem. Mater. 2020, 32, 9425–9434. DOI: 10.1021/acs.chemmater.0c03593.
  • Zhao, X.; Dan, Y. A Silicon Nanowire Heater and Thermometer. Appl. Phys. Lett. 2017, 11, 043504. DOI: 10.1063/1.4985632.
  • Giubileo, F.; Bartolomeo, A. D. The Role of Contact Resistance in Graphene Field-Effect Devices. Progr. Surface Sci. 2017, 92, 143–175. DOI: 10.1016/j.progsurf.2017.05.002.
  • Kuchuk, A. V.; Borowicz, P.; Wzorek, M.; Borysiewicz, M.; Ratajczak, R.; Golaszewska, K.; Kaminska, E.; Kladko, V.; Piotrowska, A. Ni-Based Ohmic Contacts to n-Type 4H-SiC: The Formation Mechanism and Thermal Stability. Adv. Condens. Matter Phys. 2016, 2016, 1–26.
  • De-Sc, P. I. G. Magnesium and Manganese Silicides for Efficient and Low Cost Thermo-Electric Power Generation Final Report.
  • Hamaoui, G.; Horny, N.; Hua, Z.; Zhu, T.; Robillard, J-F.; Fleming, A.; Ban, H.; Chirtoc, M. Electronic Contribution in Heat Transfer at Metal-Semiconductor and Metal Silicide-Semiconductor Interfaces. Sci Rep. 2018, 8, 2–10. DOI: 10.1038/s41598-018-29505-4.
  • Sotthewes, K.; van Bremen, R.; Dollekamp, E.; Boulogne, T.; Nowakowski, K.; Kas, D.; Zandvliet, H. J. W.; Bampoulis, P. Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides. J. Phys. Chem. C. 2019, 123, 5411–5420. DOI: 10.1021/acs.jpcc.8b10971.
  • Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H-J.; Park, S.; and Yoo, W. J. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. ACS Nano. 2017, 11, 1588–1596. DOI: 10.1021/acsnano.6b07159..
  • Day, R. W.; Kwabena Bediako, D.; Rezaee, M.; Parent, L. R. Skorupskii, G.; Arguilla, M. Q.; Hendon, C. H.; Stassen, I.; Gianneschi, N. C.; Kim, P.; Dinca, M. Single Crystals of Electrically Conductive Two-Dimensional Metal − Organic Frameworks: Structural and Electrical Transport Properties. ACS Central Sci. 2019, 5, 1959–1964. DOI: 10.1021/acscentsci.9b01006.
  • Wang, J‐L.; Hassan, M.; Liu, J-W.; Yu, S-H. Nanowire Assemblies for Flexible Electronic Devices: Recent Advances and Perspectives. Advanced Materials. 2018, 30, 1803430. DOI: 10.1002/adma.201803430.
  • Wu, L.; Li, S.; He, W.; Teng, D.; Wang, K.; Ye, C. Automatic Release of Silicon Nanowire Arrays with a High Integrity for Flexible. Sci. Rep. 2014, 4, 1–7. DOI: 10.1038/srep03940.
  • Ren, X. Exploring Charge Transport Mechanisms and Conduction Limits in Rubrene Single Crystals, University Of Minnesota, United State.
  • Grover, S. Effect of Transmission Line Measurement (TLM) Geometry on Specific Contact Resistivity Determination Effect of Transmission Line Measurement (TLM) Geometry on Specific Contact Resistivity Determination. 2016.
  • Wang, Y.; Wang, X.; Chen, S. Laser spike annealing for n-type Ge junction & Ti silicide formation, 2014 International Workshop on Junction Technology (IWJT), Proceedings of a meeting held 18–20 May 2014, Shanghai, China, 2014, vol. 1, pp. 1–4, DOI: 10.1109/IWJT.2014.6842025.
  • Khan, M.B.; Deb, D.; Kerbusch, J.; Fuchs, F.; Löffler, M.; Banerjee, S.; Mühle, U.; Weber, W.M.; Gemming, S.; Schuster, J.; Erbe, A.; Georgiev Y.M. Towards Reconfigurable Electronics: Silicidation of Top-Down Fabricated Silicon Nanowires. Applied Sciences. 2019, 9, 3462. https://doi.org/10.3390/app9173462.
  • Park, J. Y.; Cho, J.; Jun, S. C. Review of Contact-Resistance Analysis in Nano-Material. J. Mech. Sci. Technol. 2018, 32, 539–547. DOI: 10.1007/s12206-018-0101-9.
  • Ni, L. Silicon Nanowires Synthesized by VLS Growth Mode for Gas Sensing. Micro and nanotechnologies/Microelectronics. Université de Rennes: Rennes, France, 2015.
  • Choi, S. C.; Lee, D. K.; Sohn, S. H. Effects of Experimental Configuration on the Morphology of Two-Dimensional ZnO Nanostructures Synthesized by Thermal Chemical-Vapor Deposition Crystals 2020, 10, 517. DOI:10.3390/cryst10060517.
  • Bhuyan, M. S. A.; Uddin, M. N.; Islam, M. M.; Bipasha, F. A.; Hossain, S. S. Synthesis of Graphene. Int. Nano Lett. 2016, 6, 65–83. DOI: 10.1007/s40089-015-0176-1.
  • Muedi, L. Environmental Contamination by Heavy Metals. In Heavy Metals. IntechOpen Limited Location: London, UK, 2018. DOI: 10.5772/intechopen.76082.
  • Lee, J.; Kim, S. W.; Kim, I.; Seo, D.; Choi, H. Growth of Silicon Nanosheets under Diffusion-Limited Aggregation Environments. Nanoscale Res. Lett 2015, 10, 429. DOI: 10.1186/s11671-015-1138-2.
  • Yuan, Z.; Wang, C.; Chen, K.; Ni, Z.; Chen, Y. Amorphous Silicon Nanowires Grown on Silicon Oxide Film by Annealing. 2017, 1–8. DOI: 10.1186/s11671-017-2251-1..
  • Hamad, A. H.; Khashan, K. S.; Hadi, A. A. Laser Ablation in Different Environments and Generation of Nanoparticles. In Applications of Laser Ablation - Thin Film Deposition, Nanomaterial Synthesis and Surface Modification. 2018, 178-196. IntechOpen Limited: London, UK. https://doi.org/10.5772/65241.
  • Reza, A.; Rashid, A. Laser Ablation Technique for Synthesis of Metal Nanoparticle Nanoparticle in Liquid. London: IntechOpen Limited, 2018. DOI: 10.5772/intechopen.80374..
  • Li, F.; Huang, Y.; Wang, S.; Zhang, S. Critical Review : Growth Mechanisms of the Self-Assembling of Silicon Wires. J. Vaccum Sci. Technol. 2020, 38, 010802. DOI: 10.1116/1.5132759.
  • Jia, C.; Lin, Z.; Huang, Y.; Duan, X. Nanowire Electronics: From Nanoscale to Macroscale. Chem. Rev. 2019, 119, 9074–9135. DOI: 10.1021/acs.chemrev.9b00164.
  • Core, C. Synthesis and Fabrication of Semiconductor Nanowires. In Nanowire Transistors: Physics of Devices and Materials in One Dimension (pp. 54-80). Cambridge: Cambridge University Press, 2017.
  • Pérez-Page, M.; Yu, E.; Li, J.; Rahman, M.; Dryden, D. M.; Vidu, R.; Stroeve, P. University of California Template-Based Syntheses for Shape Controlled Nanostructures. Advances in Colloid and Interface Science, 2016, 234, 51–79. DOI: 10.1016/j.cis.2016.04.001.
  • Lin, Y.; Lin, W.; Wong, J.; Hsu, W.; Peng, Y.; Chen, C. Bottom-up Assembly of Silicon Nanowire Conductometric Sensors for the Detection of Apolipoprotein A1, a Biomarker for Bladder Cancer. Microchim Acta 2017, 184, 2419–2428. DOI: 10.1007/s00604-017-2288-y.
  • Liu, Z.; Xu, J.; Chen, D.; Shen, G. Flexible electronics based on inorganic nanowires, Chemical Society Reviews, 2015, 44, 161–192, doi:10.1039/C4CS00116H.
  • Kang, W.; Merrill, M. In Situ Thermomechanical Testing Methods for Micro/Nano-Scale Materials. Nanoscale, 2017, 9, 2666-2688. DOI: 10.1039/c6nr07330a.
  • Habiba, K.; Bracho-Rincon, D. P.; Gonzalez-Feliciano, J. A.; Villalobos-Santos, J. C.; Makarov, V. I.; Ortiz, D.; Avalos, J. A.; Gonzalez, C. I.; Weiner, B. R.; Morell, G. Synergistic Antibacterial Activity of PEGylated Silver – Graphene Quantum Dots Nanocomposites Synergistic Antibacterial Activity of PEGylated Silver – Graphene Quantum Dots Nanocomposites. Appl. Mater. Today 2015, 1, 80–87. DOI: 10.1016/j.apmt.2015.10.001.
  • Wang, S.; Shan, Z.; Huang, H. The Mechanical Properties of Nanowires. Adv. Sci. 2017, 4, 1600332. DOI: 10.1002/advs.201600332.
  • Song, J. H.; Kim, Y. T.; Seol, J. B.; Park, C. G.; Myoung, J. M.; Jeong, U. Enhanced Chemical Stability of Ag Nanowires by Slight Surface Modification with Pd. Adv. Mater. Interfaces 2018, 5, 1800250–7. DOI: 10.1002/admi.201800250.
  • Meng, X.; Zhou, A.; Wang, B.; Chen, Y.; Tang, Y. H.; Yan, H. Stable Superwetting Surface Prepared with Tilted Silicon Nanowires. Nano-Micro Lett. 2016, 8, 388–393. DOI: 10.1007/s40820-016-0100-x.
  • Madeira, A.; Plissonneau, M.; Servant, L.; Goldthorpe, I. A.; Tréguer-Delapierre, M. Increasing Silver Nanowire Network Stability through Small Molecule Passivation. Nanomaterials 2019, 9, 899–816. DOI: 10.3390/nano9060899.
  • Generalov, V.; et al. Indication of the Coronavirus Model Using a Nanowire Biosensor. Proceedings 2020, 60, 50. DOI: 10.3390/iecb2020-07228.
  • Antiochia, R. Nanobiosensors as New Diagnostic Tools for SARS, MERS and COVID-19: From past to Perspectives. Microchim. Acta 2020, 187, 1–13. DOI: 10.1007/s00604-020-04615-x.
  • Saiz-Rubio, V.; Rovira-Más, F. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy 2020, 10, 207. DOI: 10.3390/agronomy10020.
  • Generalov, V.; et al. Indication of the Coronavirus Model Particles Using a Nanowire Biosensor. In Proceedings of The 1st International Electronic Conference on Biosensors, 2020, 7228. DOI: 10.3390/iecb2020-07228.
  • Sengupta, J.; Hussain, C. M. Graphene-Based Field-Effect Transistor Biosensors for the Rapid Detection and Analysis of Viruses: A Perspective in View of COVID-19. Carbon Trend. 2021, 2, 100011. DOI: 10.1016/j.cartre.2020.100011.
  • Jindal, S.; Gopinath, P. Nanotechnology Based Approaches for Combatting COVID-19 Viral Infection. Nano Express 2020, 1, 022003. DOI: 10.1088/2632-959X/abb714.
  • Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19, Journal of Pharmaceutical Analysis, 2020, 10(2): 102–108, doi:10.1016/j.jpha.2020.03.001.
  • Huseen, H. M.; Mohammed, A. J. Heavy Metals Causing Toxicity in Fishes. J. Phys: Conf. Ser. 2019, 1294, 062028. DOI: 10.1088/1742-6596/1294/6/062028.
  • Ehfaed, N. A. K.; Adam, T.; Mohammed, M.; Dahham, O. S.; Hashim, U.; Noriman, N. Z.; Rabia, A. R. Design, Fabrication and Characterization of Silicon Nanostructures for Lead (Pb+) Ion Detection. IOP Conf. Ser: Mater. Sci. Eng. 2018, 454, 012181. DOI: 10.1088/1757-899X/454/1/012181.
  • Ehfaed, N. A. K.; Adam, T.; Mohammed, M.; Dahham, O. S.; Hashim, U.; Noriman, N. Z.; Rabia, A. R. Functionalization of Si Nanowire Surfaces to Create Interactive Mechanism for Heavy Metals Detection Application. IOP Conf. Ser: Mater. Sci. Eng. 2018, 454, 012180. DOI: 10.1088/1757-899X/454/1/012180.
  • Ehfaed, N. A. K.; Bathmanathan, S.; Adam, T.; Mohammed, M.; Mohammed, A. M.; Dahham, O. S.; Hashim, U.; Noriman, N. Z. Amino-Propyltriethoxysilane Modified Heavy Metal Sensor Based on Silicon Nanowire Arrays. IOP Conf. Ser: Mater. Sci. Eng. 2018, 454, 012080. DOI: 10.1088/1757-899X/454/1/012080.
  • Ehfaed, N. A. K. H.; Bathmanathan, S. A. L.; Dhahi, T. S.; Adam, T.; Hashim, U.; Noriman, N. Z. Optimization and Validation of Highly Selective Microfluidic Integrated Silicon Nanowire Chemical Sensor. AIP Conf. Proc. 2017, 1885, 1–5. DOI: 10.1063/1.5002410.
  • Liang, J.; Zheng, Y.; Liu, Z. Nanowire-Based Cu Electrode as Electrochemical Sensor for Detection of Nitrate in Water. Sensors Actuators, B Chem. 2016, 232, 336–344. DOI: 10.1016/j.snb.2016.03.145.
  • Wasiak, T.; Hannula, P. M.; Lundström, M.; Janas, D. Transformation of Industrial Wastewater into Copper–Nickel Nanowire Composites: straightforward Recycling of Heavy Metals to Obtain Products of High Added Value. Sci. Rep. 2020, 10, 1–10. DOI: 10.1038/s41598-020-76374-x.
  • Yang, J.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials 2019, 9, 424. DOI: 10.3390/nano9030424.
  • Wołowiec, M.; Komorowska-Kaufman, M.; Pruss, A.; Rzepa, G.; Bajda, T. Removal of Heavy Metals and Metalloids from Water Using Drinking Water Treatment. Minerals 2019, 9, 487–417. DOI: 10.3390/min9080487.
  • Salunke, R. S.; Kasar, C. K.; Bangar, M. A.; Chavan, P. G.; Shirale, D. J. Electrodeposition of Gold Nanoparticles Decorated Single Polypyrrole Nanowire for Arsenic Detection in Potable Water: A Chemiresistive Sensor Device. J. Mater. Sci: Mater. Electron. 2017, 28, 14672–14677. DOI: 10.1007/s10854-017-7332-5.
  • Matos, L. M.; Anholon, R.; Filho, W. L. Technological Innovation for Sustainability. Encycl. Sustain. High. Educ 2019, 2, 1–8. DOI: 10.1007/978-3-319-63951-2_78-1.
  • Shimada, T.; Yasui, T.; Yokoyama, A.; Goda, T.; Hara, M.; Yanagida, T.; Kaji, N.; Kanai, M.; Nagashima, K.; Miyahara, Y.; et al. Biomolecular Recognition on Nanowire Surfaces Modified by the Self-Assembled Monolayer. Lab Chip 2018, 18, 3225–3229. DOI: 10.1039/C8LC00438B.
  • Guo, K. W. Silicon Nanowires (SiNWs) Surface Engineering Potential for Bioenergy. MOJABB. 2018, 2, 303–308. DOI: 10.15406/mojabb.2018.02.00085.
  • Lakhiar, I. A.; Jianmin, G.; Syed, T. N.; Chandio, F. A.; Buttar, N. A.; Qureshi, W. A. Monitoring and Control Systems in Agriculture Using Intelligent Sensor Techniques: A Review of the Aeroponic System. J. Sensors 2018, 2018, 1–18. DOI: 10.1155/2018/8672769.
  • Thakur, D.; Kumar, Y.; Kumar, A.; Singh, P. K. Applicability of Wireless Sensor Networks in Precision Agriculture: A Review. Wireless Pers Commun., 2019, 107, 471–512.
  • Geetha, S.; Gouthami, S. Internet of Things Enabled Real Time Water Quality Monitoring System. Smart Water 2016, 2, 1–19. DOI: 10.1186/s40713-017-0005-y.
  • Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M. J. Big Data in Smart Farming – a Review. Agric. Syst. 2017, 153, 69–80. DOI: 10.1016/j.agsy.2017.01.023.
  • Navarro, E.; Costa, N.; Pereira, A. A Systematic Review of Iot Solutions for Smart Farming. Sensors (Switzerland) 2020, 20, 4231–4229. DOI: 10.3390/s20154231.
  • Balan, T.; Dumitru, C.; Dudnik, G.; Alessi, E.; Lesecq, S.; Correvon, M.; Passaniti, F.; Licciardello, A. Smart Multi-Sensor Platform for Analytics and Social Decision Support in Agriculture. Sensors (Switzerland) 2020, 20, 4127–4128. DOI: 10.3390/s20154127.
  • Lew, T. T. S.; Park, M.; Cui, J.; Strano, M. S. Plant Nanobionic Sensors for Arsenic Detection. Adv. Mater. 2021, 33, 2005683–2005611. DOI: 10.1002/adma.202005683.
  • Alhalaili, B.; Popescu, I. N.; Kamoun, O.; Alzubi, F.; Alawadhia, S.; Vidu, R. Nanobiosensors for the Detection of Novel Coronavirus 2019-Ncov and Other Pandemic/Epidemic Respiratory Viruses: A Review. Sensors (Switzerland) 2020, 20, 6591–6545. DOI: 10.3390/s20226591.
  • Samson, R.; Navale, G. R.; Dharne, M. S. Biosensors: frontiers in Rapid Detection of COVID-19. 3 Biotech 2020, 10, 1–9. DOI: 10.1007/s13205-020-02369-0.
  • Seo, G.; Lee, G.; Kim, M. J.; Baek, S.-H.; Choi, M.; Ku, K. B.; Lee, C.-S.; Jun, S.; Park, D.; Kim, H. G.; et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano 2020, 14, 5135–5142. DOI: 10.1021/acsnano.0c02823.
  • Alvarado, K.; Bolaños, M.; Camacho, C.; Quesada, E.; Vega-Baudrit, J. Nanobiotechnology in Agricultural Sector: Overview and Novel Applications. JBNB. 2019, 10, 120–141. DOI: 10.4236/jbnb.2019.102007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.