300
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

A Review of Characteristics, Properties, Application of Nanocarriers and Analytical Methods of Luliconazole

ORCID Icon, , &
Pages 1930-1937 | Published online: 19 May 2021

References

  • Gnat, S.; Łagowski, D.; Nowakiewicz, A. Major Challenges and Perspectives in the Diagnostics and Treatment of Dermatophyte Infections. J. Appl. Microbiol. 2020, 129, 212–232. DOI: 10.1111/jam.14611.
  • White, T. C.; Findley, K.; Dawson, T. L.; Scheynius, A.; Boekhout, T.; Cuomo, C. A.; Xu, J.; Saunders, C. W. Fungi on the Skin: Dermatophytes and Malassezia. Cold Spring Harb. Perspect. Med. 2014, 4, 1–16.
  • Havlickova, B.; Czaika, V. A.; Friedrich, M. Epidemiological Trends in Skin Mycoses Worldwide. Mycoses 2009, 52, 2–15.
  • Tainwala, R.; Sharma, Y. Pathogenesis of Dermatophytoses. Indian J. Dermatol. 2011, 56, 259–261. DOI: 10.4103/0019-5154.82476.
  • Martinez-Rossi, N. M.; Peres, N. T. A.; Rossi, A. Pathogenesis of Dermatophytosis: Sensing the Host Tissue. Mycopathologia 2017, 182, 215–227. DOI: 10.1007/s11046-016-0057-9.
  • Mercer, D. K.; Stewart, C. S. Keratin Hydrolysis by Dermatophytes. Med. Mycol. 2019, 57, 13–22. DOI: 10.1093/mmy/myx160.
  • Hube, B.; Hay, R.; Brasch, J.; Veraldi, S.; Schaller, M. Dermatomycoses and Inflammation: The Adaptive Balance between Growth, Damage, and Survival. J. Mycol. Med. 2015, 25, 44–58.
  • Mendez-Tovar, L. J. Pathogenesis of Dermatophytosis and Tinea Versicolor. Clin. Dermatol. 2010, 28, 185–189. DOI: 10.1016/j.clindermatol.2009.12.015.
  • De Aguiar Peres, N. T.; Maranhão, F. C. A.; Rossi, A.; Martinez-Rossi, N. M. Dermatophytes: Host-Pathogen Interaction and Antifungal Resistance. An. Bras. Dermatol. 2010, 85, 657–667.
  • Gnat, S.; Nowakiewicz, A.; Łagowski, D.; Zięba, P. Host- and Pathogen-Dependent Susceptibility and Predisposition to Dermatophytosis. J. Med. Microbiol. 2019, 68, 823–836. DOI: 10.1099/jmm.0.000982.
  • Deswal, D.; Shukla, P.; Azad, C. S.; Narula, A. K. Carbohydrate Hitched Imidazoles as Agents for the Disruption of Fungal Cell Membrane. J. Mycol. Med. 2020, 30, 1–13.
  • Odds, F. C.; Brown, A. J. P.; Gow, N. A. R. Antifungal Agents: Mechanisms of Action. Trends Microbiol. 2003, 11, 272–279.
  • Kathiravan, M. K.; Salake, A. B.; Chothe, A. S.; Dudhe, P. B.; Watode, R. P.; Mukta, M. S.; Gadhwe, S. The Biology and Chemistry of Antifungal Agents: A Review. Bioorg. Med. Chem. 2012, 20, 5678–5698.
  • Yang, H.; Tong, J.; Lee, C. W.; Ha, S.; Eom, S. H.; Im, Y. J. Structural Mechanism of Ergosterol Regulation by Fungal Sterol Transcription Factor Upc2. Nat. Commun. 2015, 6, 1–13.
  • Emami, S.; Tavangar, P.; Keighobadi, M. An Overview of Azoles Targeting Sterol 14α-Demethylase for Antileishmanial Therapy. Eur. J. Med. Chem. 2017, 135, 241–259. DOI: 10.1016/j.ejmech.2017.04.044.
  • Khanna, D.; Bharti, S. Luliconazole for the Treatment of Fungal Infections: An Evidence-Based Review. Core Evid. 2014, 9, 113–124. DOI: 10.2147/CE.S49629.
  • Koga, H.; Nanjoh, Y.; Kaneda, H.; Yamaguchi, H.; Tsuboi, R. Short-Term Therapy with Luliconazole, a Novel Topical Antifungal Imidazole, in guinea Pig Models of Tinea Corporis and Tinea Pedis. Antimicrob. Agents Chemother. 2012, 56, 3138–3143. DOI: 10.1128/AAC.05255-11.
  • Koga, H.; Munechika, Y.; Matsumoto, H.; Nanjoh, Y.; Harada, K.; Makimura, K.; Tsuboi, R. Guinea Pig Seborrheic Dermatitis Model of Malassezia Restricta and the Utility of Luliconazole. Med. Mycol. 2020, 58, 820–826. DOI: 10.1093/mmy/myz128.
  • Shafiei, M.; Peyton, L.; Hashemzadeh, M.; Foroumadi, A. History of the Development of Antifungal Azoles: A Review on Structures, SAR, and Mechanism of Action. Bioorg. Chem. 2020, 104, 1–21.
  • Gupta, A. K.; Versteeg, S. G.; Shear, N. H. Common Drug-Drug Interactions in Antifungal Treatments for Superficial Fungal Infections. Expert Opin. Drug Metab. Toxicol. 2018, 14, 387–398. DOI: 10.1080/17425255.2018.1461834.
  • Gonzalez-Lara, M. F.; Sifuentes-Osornio, J.; Ostrosky-Zeichner, L. Drugs in Clinical Development for Fungal Infections. Drugs 2017, 77, 1505–1518. DOI: 10.1007/s40265-017-0805-2.
  • Bae, S. H.; Park, J. H.; Choi, H. G.; Kim, H.; Kim, S. H. Imidazole Antifungal Drugs Inhibit the Cell Proliferation and Invasion of Human Breast Cancer Cells. Biomol. Ther. (Seoul). 2018, 26, 494–502. DOI: 10.4062/biomolther.2018.042.
  • Scher, R. K.; Nakamura, N.; Tavakkol, A. Luliconazole: A Review of a New Antifungal Agent for the Topical Treatment of Onychomycosis. Mycoses 2014, 57, 389–393. DOI: 10.1111/myc.12168.
  • Ghannoum, M. Azole Resistance in Dermatophytes: Prevalence and Mechanism of Action. J. Am. Podiatr. Med. Assoc. 2016, 106, 79–86. DOI: 10.7547/14-109.
  • Watanabe, S.; Kishida, H.; Okubo, A. Efficacy and Safety of Luliconazole 5% Nail Solution for the Treatment of Onychomycosis: A Multicenter, Double-Blind, Randomized Phase III Study. J. Dermatol. 2017, 44, 753–759. DOI: 10.1111/1346-8138.13816.
  • Niwano, Y.; Kuzuhara, N.; Kodama, H.; Yoshida, M.; Miyazaki, T.; Yamaguchi, H. In Vitro and in Vivo Antidermatophyte Activities of NND-502, a Novel Optically Active Imidazole Antimycotic Agent. Antimicrob. Agents Chemother. 1998, 42, 967–970. DOI: 10.1128/AAC.42.4.967.
  • Jones, T.; Tavakkol, A. Safety and Tolerability of Luliconazole Solution 10-Percent in Patients with Moderate to Severe Distal Subungual Onychomycosis. Antimicrob. Agents Chemother. 2013, 57, 2684–2689. DOI: 10.1128/AAC.02370-12.
  • Abastabar, M.; Rahimi, N.; Meis, J. F.; Aslani, N.; Khodavaisy, S.; Nabili, M. Potent Activities of Novel Imidazoles Lanoconazole and Luliconazole against a Collection of Azole-Resistant and -Susceptible Aspergillus fumigatus Strains. J. Mycol. Med. 2016, 60, 6916–6919.
  • Todokoro, D.; Suzuki, T.; Tamura, T.; Makimura, K.; Yamaguchi, H.; Inagaki, K.; Akiyama, H. Efficacy of Luliconazole against Broad-Range Filamentous Fungi Including Fusarium solani Species Complex Causing Fungal Keratitis. Cornea. J. Mycol. Med. 2019, 38, 238–242. DOI: 10.1097/ICO.0000000000001812.
  • Baghi, N.; Shokohi, T.; Badali, H.; Makimura, K.; Rezaei-Matehkolaei, A.; Abdollahi, M.; Didehdar, M.; Haghani, I.; Abastabar, M. In Vitro Activity of New Azoles Luliconazole and Lanoconazole Compared with Ten Other Antifungal Drugs against Clinical Dermatophyte Isolates. Med. Mycol. 2016, 54, 757–763. DOI: 10.1093/mmy/myw016.
  • Rode, A.; Sharma, S.; Mishra, D. K. Nanocarriers: A Novel Approach for Enhanced Drug Delivery through Skin. Asian J. Pharm. Sci. 2018, 12, 9–12.
  • Rajput, R.; Narkhede, J.; Naik, J. Nanogels as Nanocarriers for Drug Delivery: A Review. ADMET DMPK 2020, 8, 1–15.
  • Kumar, M.; Shanthi, N.; Mahato, A. K.; Soni, S.; Rajnikanth, P. S. Preparation of Luliconazole Nanocrystals Loaded Hydrogel for Improvement of Dissolution and Antifungal Activity. Heliyon 2019, 5, 1–10.
  • Shaikh, M. S.; Kale, M. A. Formulation and Molecular Docking Simulation Study of Luliconazole Nanosuspension–Based Nanogel for Transdermal Drug Delivery Using Modified Polymer. Mater. Today Chem. 2020, 18, 1–18.
  • Kapileshwari, G. R.; Barve, A. R.; Kumar, L.; Bhide, P. J.; Joshi, M.; Shirodkar, R. K. Novel Drug Delivery System of luliconazole - Formulation and Characterisation. J. Drug Deliv. Sci. Technol. 2020, 55, 101302.
  • Shaikh, A. N.; Pawar, A. Y. Formulation and Evaluation Nanosponges Loaded Hydrogel of Luliconazole. IJSDR 2020, 5, 215–227.
  • Firdaus, S.; Hassan, N.; Mirza, M. A.; Ara, T.; El-Serehy, H. A.; Al-Misned, F. A.; Iqbal, Z. FbD Directed Fabrication and Investigation of Luliconazole Based SLN Gel for the Amelioration of Candidal Vulvovaginitis: A 2 T (Thermosensitive & Transvaginal) Approach. Saudi J. Biol. Sci. 2021, 28, 317–326.
  • Sharma, M.; Mundlia, J.; Kumar, T.; Ahuja, M. A Novel Microwave-Assisted Synthesis, Characterization and Evaluation of Luliconazole-Loaded Solid Lipid Nanoparticles. Polym. Bull. 2020, 2553–2567.
  • Dandagi, P. M.; Pandey, P.; Gadad, A. P.; Mastiholimath, V. S. Formulation and Evaluation of Microemulsion Based Luliconazole Gel for Topical Delivery. Indian J. Pharm. Educ. Res. 2020, 54, 293–301.
  • Baghel, S.; Nair, V. S.; Pirani, A.; Sravani, A. B.; Bhemisetty, B.; Ananthamurthy, K.; Aranjani, J. M.; Lewis, S. A. Luliconazole-Loaded Nanostructured Lipid Carriers for Topical Treatment of Superficial Tinea Infections. Vol. 33, Dermatol. Ther. 2020, 33, e13959. DOI: 10.1111/dth.13959.
  • Kaur, M.; Singh, K.; Jain, S. K. Luliconazole Vesicular Based Gel Formulations for Its Enhanced Topical Delivery. J. Liposome Res. 2020, 30, 388–406. DOI: 10.1080/08982104.2019.1682602.
  • Dave, V.; Bhardwaj, N.; Gupta, N.; Tak, K. Herbal Ethosomal Gel Containing Luliconazole for Productive Relevance in the Field of Biomedicine. 3 Biotech 2020, 10, 97–111. DOI: 10.1007/s13205-020-2083-z.
  • Dhamoon, R. K.; Goyal, R. K.; Popli, H.; Gupta, M. Luliconazole-Loaded Thermosensitive Hydrogel as Aqueous Based Nail Lacquer for the Treatment of Onychomycosis. Drug Deliv. Lett. 2019, 9, 321–329.
  • Rajput, R. L.; Narkhede, J. S.; Mujumdar, A.; Naik, J. B. Synthesis and Evaluation of Luliconazole Loaded Biodegradable Nanogels Prepared by pH-Responsive Poly (Acrylic Acid) Grafted Sodium Carboxymethyl Cellulose Using Amine Based Cross Linker for Topical Targeting: In Vitro and Ex Vivo Assessment. Polym. Technol. Mater. 2020, 59, 1654–1666.
  • Sanjay, K. D.; Kumar, H. D. Importance of RP-HPLC in Analytical Method Development: A Review. Int. J. Pharm. Sci. Res. 2012, 3, 4626–4633.
  • Görög, S. Critical Review of Reports on Impurity and Degradation Product Profiling in the Last Decade. TrAC - Trends Anal. Chem. 2018, 101, 2–16.
  • Sonawane, S.; Gide, P. Application of Experimental Design for the Optimization of Forced Degradation and Development of a Validated Stability-Indicating LC Method for Luliconazole in Bulk and Cream Formulation. Arab. J. Chem. 2016, 9, 1428–1434.
  • Malasiya, A.; Goyal, A. Method Development and Validation of RP HPLC Method for Assay and Related Substances of Luliconazole in Topical Dosage Form. Int. J. Pharm. Chem. Anal. 2017, 4, 46–50.
  • Ramya, T. S.; Padmavathi, Y.; Sama, V.; Alvala, M.; Alvala, R. Development of New RP-HPLC Method for Simultaneous Estimation of Luliconazole and Naproxen Sodium in the Formulated Gel. Asian J. Pharm. Hea. Sci. 2020, 10, 2364–2372.
  • Pandya, P. A.; Shah, P. A.; Shrivastav, P. S. Analytical Separation of Four Stereoisomers of Luliconazole Using Supercritical Fluid Chromatography: Thermodynamic Aspects and Simulation Study with Chiral Stationary Phase. J. Chromatogr. A. 2020, 1625, 1–9.
  • He, Y.; Peiwu, G.; Wang, C.; Lian, Y.; Liu, Z.; Yang, S. Pharmacokinetic Study of Luliconazole in Rat by UPLC-MS/MS. Lat. Am. J. Pharm. 2015, 34, 810–815.
  • Sultan, M.; El-Alamin, M. A.; Atia, M.; Aboul-Enein, H. Stability-Indicating Methods for the Determination of Luliconazole by TLC and HPTLC—Densitometry in Bulk Powder and Cream Dosage Form. JPC - J Planar Chromatogr - Mod TLC 2017, 30, 68–74.
  • Tambe, S. R.; Sawant, S. D.; Bhosale, A. P. Estimation of Luliconazole in Formulation and Biofluid. J. Anal. Pharm. Res. 2017, 6, 1–7.
  • Desai, N. J.; Maheshwari, D. G. UV Spectrophotometric Method for the Estimation of Luliconazole in Marketed Formulation (Lotion). Pharma Sci. Monit. 2014, 5, 48–54.
  • Shaikh, M. S.; Kale, M. A.; Mahaparle, P. R.; Rajput, H.; Karkhele, S. M. Development and Validation of UV Spectrophotometric Method for the Estimation of Luliconazole in Bulk, Marketed Formulations. Curr Pharma Res 2020, 10, 3759–3770.
  • Gummadi, S.; Kommoju, M. Quantification and Stability Aspects of Luliconazole in Bulk and Pharmaceutical Dosage Forms by UV Spectroscopy. J. Drug Deliv. Ther. 2019, 9, 300–306.
  • Keriwala, T. M.; Sanghani, G.; Dedania, Z.; Jain, V. C. Development and Validation of Simultaneous UV Spectroscopy Method for Luliconazole and Beclomethasone Dipropionate in Combined Pharmaceutical Dosage Form. Pharma Sci. Monit. 2019, 10, 93–107.
  • Chaudhari, M. J.; Chaudhari, S. R.; Chalikwar, S. S.; Shirkhedkar, A. A. Application of Area under Curve Technique for UV-Spectrophotometric Determination of Luliconazole in Bulk and Pharmaceutical Formulation. Asian J. Pharm. Anal. 2018, 8, 45–48.
  • Busaranon, K.; Suntornsuk, W.; Suntornsuk, L. Comparison of UV Spectrophotometric Method and High-Performance Liquid Chromatography for the Analysis of Flunarizine and Its Application for the Dissolution Test. J. Pharm. Biomed. Anal. 2006, 41, 158–164.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.