1,015
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Black Phosphorus Nanostructure Based Highly Sensitive and Selective Surface Plasmon Resonance Sensor for Biological and Chemical Sensing: A Review

&
Pages 1-26 | Published online: 30 May 2021

References

  • Nangare, S.; Patil, P. Nanoarchitectured Bioconjugates and Bioreceptors Mediated Surface Plasmon Resonance Biosensor for in Vitro Diagnosis of Alzheimer’s Disease: Development and Future Prospects. Crit. Rev. Anal. Chem. 2020. 1 DOI: 10.1080/10408347.2020.1864716
  • Gumilar, G.; Kaneti, Y. V.; Henzie, J.; Chatterjee, S.; Na, J.; Yuliarto, B.; Nugraha, N.; Patah, A.; Bhaumik, A.; Yamauchi, Y. General Synthesis of Hierarchical Sheet/Plate-like M-BDC (M = Cu, Mn, Ni, and Zr) Metal–Organic Frameworks for Electrochemical Non-Enzymatic Glucose Sensing. Chem. Sci. 2020, 11, 3644–3655. DOI: 10.1039/C9SC05636J.
  • Karunakaran, C.; Rajkumar, R.; Bhargava, K. Introduction to Biosensors. In Biosensors and Bioelectronics, Elsevier: Netherlands, 2015; pp 1–68.
  • Šípová, H.; Piliarik, M.; Vala, M.; Chadt, K.; Adam, P.; Bocková, M.; Hegnerová, K.; Homola, J. Portable Surface Plasmon Resonance Biosensor for Detection of Nucleic Acids. Procedia Eng. 2011, 25, 148–151. DOI: 10.1016/j.proeng.2011.12.037.
  • Rezabakhsh, A.; Rahbarghazi, R.; Fathi, F. Surface Plasmon Resonance Biosensors for Detection of Alzheimer's Biomarkers; an Effective Step in Early and Accurate Diagnosis. Biosens. Bioelectron. 2020, 167, 112511. DOI: 10.1016/j.bios.2020.112511.
  • Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493. DOI: 10.1021/cr068107d.
  • Homola, J.; Piliarik, M. Surface Plasmon Resonance (SPR) Sensors. In Surface Plasmon Resonance Based Sensors; Springer: Berlin, 2006; pp 45–67.
  • Ferhan, A. R.; Jackman, J. A.; Park, J. H.; Cho, N.-J.; Kim, D.-H. Nanoplasmonic Sensors for Detecting Circulating Cancer Biomarkers. Adv. Drug Deliv. Rev. 2018, 125, 48–77. DOI: 10.1016/j.addr.2017.12.004.
  • Nangare, S. N.; Patil, P. O. Affinity-Based Nanoarchitectured Biotransducer for Sensitivity Enhancement of Surface Plasmon Resonance Sensors for in Vitro Diagnosis: A Review. ACS Biomater. Sci. Eng. 2021, 7, 2–30. DOI: 10.1021/acsbiomaterials.0c01203.
  • Patil, P. O.; Pandey, G. R.; Patil, A. G.; Borse, V. B.; Deshmukh, P. K.; Patil, D. R.; Tade, R. S.; Nangare, S. N.; Khan, Z. G.; Patil, A. M.; et al. Graphene-Based Nanocomposites for Sensitivity Enhancement of Surface Plasmon Resonance Sensor for Biological and Chemical Sensing: A Review. Biosens. Bioelectron. 2019, 139, 111324. DOI: 10.1016/j.bios.2019.111324.
  • Huang, C.; Hu, S.; Zhang, X.; Cui, H.; Wu, L.; Yang, N.; Zhou, W.; Chu, P. K.; Yu, X.-F. Sensitive and Selective ctDNA Detection Based on Functionalized Black Phosphorus Nanosheets. Biosens. Bioelectron. 2020, 165, 112384. DOI: 10.1016/j.bios.2020.112384.
  • Bae, S.-W.; Kim, H.-M.; Park, J.-H.; Lee, S.-K. Improvement of Fiber Optic Based Localized Surface Plasmon Resonance Sensor by Optical Fiber Surface Etching and Au Capping. Micro and Nano Syst. Lett. 2019, 7, 1–7. DOI: 10.1186/s40486-019-0096-3.
  • Csáki, A.; Stranik, O.; Fritzsche, W. Localized Surface Plasmon Resonance Based Biosensing. Expert Rev Mol Diagn. 2018, 18, 279–296. DOI: 10.1080/14737159.2018.1440208.
  • Jebelli, A.; Oroojalian, F.; Fathi, F.; Mokhtarzadeh, A.; de la Guardia, M. Recent Advances in Surface Plasmon Resonance Biosensors for microRNAs Detection. Biosens. Bioelectron. 2020, 169, 112599. DOI: 10.1016/j.bios.2020.112599.
  • Yesudasu, V.; Pradhan, H. S.; Pandya, R. J. Recent Progress in Surface Plasmon Resonance Based Sensors: A Comprehensive Review. Heliyon 2021, 7, e06321. DOI: 10.1016/j.heliyon.2021.e06321.
  • PubMed. National library of medicine, National center for biotechnology information. https://pubmed.ncbi.nlm.nih.gov. 2021, PubMed.gov.
  • Aminah, N. S.; Liani, P. H.; Hidayat, R.; Djamal, M. In Fabrication and Characterization of Surface Plasmon Resonance Sensor with Tapered Optical Fiber Structure. Mater. Sci. Forum, 2017, 886, 86–90. DOI: 10.4028/www.scientific.net/MSF.886.86.
  • Yoo, H.; Shin, J.; Sim, J.; Cho, H.; Hong, S. Reusable Surface Plasmon Resonance Biosensor Chip for the Detection of H1N1 Influenza Virus. Biosens. Bioelectron. 2020, 168, 112561. DOI: 10.1016/j.bios.2020.112561.
  • Nivedha, S.; Babu, P. R.; Senthilnathan, K. Surface Plasmon Resonance: physics and Technology. Current Science (00113891) 2018, 115, 56. DOI: 10.18520/cs/v115/i1/56-63.
  • Dolci, M.; Bryche, J.-F.; Moreau, J.; Leuvrey, C.; Begin-Colin, S.; Barbillon, G.; Pichon, B. P. Investigation of the structure of iron Oxide Nanoparticle Assemblies in Order to Optimize the Sensitivity of Surface Plasmon Resonance-Based Sensors. Appl. Surf. Sci. 2020, 527, 146773. DOI: 10.1016/j.apsusc.2020.146773.
  • Otto, A. Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection. Z Physik 1968, 216, 398–410. DOI: 10.1007/BF01391532.
  • Falkowski, P.; Lukaszewski, Z.; Gorodkiewicz, E. Potential of Surface Plasmon Resonance Biosensors in Cancer Detection. J. Pharm. Biomed. Anal. 2021, 194, 113802. DOI: 10.1016/j.jpba.2020.113802.
  • Zhou, J.; Qi, Q.; Wang, C.; Qian, Y.; Liu, G.; Wang, Y.; Fu, L. Surface Plasmon Resonance (SPR) Biosensors for Food Allergen Detection in Food Matrices. Biosens. Bioelectron. 2019, 142, 111449. DOI: 10.1016/j.bios.2019.111449.
  • El Barghouti, M.; Akjouj, A.; Mir, A. MoS2–Graphene Hybrid Nanostructures Enhanced Localized Surface Plasmon Resonance Biosensors. Opt. Laser Technol. 2020, 130, 106306. DOI: 10.1016/j.optlastec.2020.106306.
  • Mahmoudpour, M.; Dolatabadi, J. E. N.; Torbati, M.; Tazehkand, A. P.; Homayouni-Rad, A.; de la Guardia, M. Nanomaterials and New Biorecognition Molecules Based Surface Plasmon Resonance Biosensors for Mycotoxin Detection. Biosens. Bioelectron. 2019, 143, 111603. DOI: 10.1016/j.bios.2019.111603.
  • Kausaite, A.; van Dijk, M.; Castrop, J.; Ramanaviciene, A.; Baltrus, J. P.; Acaite, J.; Ramanavicius, A. Surface Plasmon Resonance Label‐Free Monitoring of Antibody Antigen Interactions in Real Time. Biochem. Mol. Biol. Educ. 2007, 35, 57–63. DOI: 10.1002/bmb.22.
  • Fan, S.-Y.; Chiu, N.-F.; Chen, C.-P.; Chang, C.-C.; Chen, C.-Y. Simultaneous Real-Time Detection of Pregnancy-Associated Plasma Protein-a and-a2 Using a Graphene Oxide-Based Surface Plasmon Resonance Biosensor. IJN. 2020, 15, 2085–2094. DOI: 10.2147/IJN.S237938.
  • Chiu, N.-F.; Yang, H.-T. High-Sensitivity Detection of the Lung Cancer Biomarker CYFRA21-1 in Serum Samples Using a Carboxyl-MoS2 Functional Film for SPR-Based Immunosensors. Front. Bioeng. Biotechnol. 2020, 8, 234. DOI: 10.3389/fbioe.2020.00234.
  • Chen, F.; Wu, Q.; Song, D.; Wang, X.; Ma, P.; Sun, Y. Fe3O4@ PDA Immune Probe-Based Signal Amplification in Surface Plasmon Resonance (SPR) Biosensing of Human Cardiac Troponin I. Colloids Surf. B. Biointerfaces 2019, 177, 105–111. DOI: 10.1016/j.colsurfb.2019.01.053.
  • Pal, S.; Verma, A.; Prajapati, Y.; Saini, J. Influence of Black Phosphorous on Performance of Surface Plasmon Resonance Biosensor. Opt. Quant. Electron. 2017, 49, 403. DOI: 10.1007/s11082-017-1237-7.
  • Zhou, L.; Liu, C.; Sun, Z.; Mao, H.; Zhang, L.; Yu, X.; Zhao, J.; Chen, X. Black Phosphorus Based Fiber Optic Biosensor for Ultrasensitive Cancer Diagnosis. Biosens. Bioelectron. 2019, 137, 140–147. DOI: 10.1016/j.bios.2019.04.044.
  • Pandey, A.; Nikam, A. N.; Padya, B. S.; Kulkarni, S.; Fernandes, G.; Shreya, A. B.; García, M. C.; Caro, C.; Páez-Muñoz, J. M.; Dhas, N.; et al. Surface Architectured Black Phosphorous Nanoconstructs Based Smart and Versatile Platform for Cancer Theranostics. Coord. Chem. Rev. 2021, 435, 213826. DOI: 10.1016/j.ccr.2021.213826.
  • Qiao, H.; Li, Z.; Huang, Z.; Ren, X.; Kang, J.; Qiu, M.; Liu, Y.; Qi, X.; Zhong, J.; Zhang, H. Self-Powered Photodetectors Based on 0D/2D Mixed Dimensional Heterojunction with Black Phosphorus Quantum Dots as Hole Accepters. Appl. Mater. Today 2020, 20, 100765. DOI: 10.1016/j.apmt.2020.100765.
  • Castellanos-Gomez, A. Black Phosphorus: narrow Gap, Wide Applications. J. Phys. Chem. Lett. 2015, 6, 4280–4291. DOI: 10.1021/acs.jpclett.5b01686.
  • Kumar, R.; Pal, S.; Verma, A.; Prajapati, Y.; Saini, J. Effect of Silicon on Sensitivity of SPR Biosensor Using Hybrid Nanostructure of Black Phosphorus and MXene. Superlattices Microstruct. 2020, 145, 106591. DOI: 10.1016/j.spmi.2020.106591.
  • Nur, J. N.; Shushama, K. N.; Asrafy, F.; Hasib, M. H. H.; Khan, M. A. G. Sensitivity Enhancement of Surface Plasmon Resonance Biosensor Using Black Phosphorus and WSe 2. 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), IEEE; pp 576–580.
  • Jia, G. Y.; Huang, Z. X.; Zhang, Y. L.; Hao, Z. Q.; Tian, Y. L. Ultrasensitive Plasmonic Biosensors Based on Halloysite Nanotubes/MoS 2/Black Phosphorus Hybrid Architectures. J. Mater. Chem. C. 2019, 7, 3843–3851. DOI: 10.1039/C9TC00271E.
  • Li, S.; Zhang, Y.; Wen, W.; Sheng, W.; Wang, J.; Wang, S.; Wang, J. A High-Sensitivity Thermal Analysis Immunochromatographic Sensor Based on au Nanoparticle-Enhanced Two-Dimensional Black Phosphorus Photothermal-Sensing Materials. Biosens. Bioelectron. 2019, 133, 223–229. DOI: 10.1016/j.bios.2019.03.039.
  • Masud, M. K.; Kim, J.; Billah, M. M.; Wood, K.; Shiddiky, M. J.; Nguyen, N.-T.; Parsapur, R. K.; Kaneti, Y. V.; Alshehri, A. A.; Alghamidi, Y. G. Nanoarchitectured Peroxidase-Mimetic Nanozymes: Mesoporous Nanocrystalline a-or c-iron oxide? J. Mater. Chem. B. 2019, 7, 5412–5422. DOI:10.1039/C9TB00989B.
  • Sakthivel, T.; Huang, X.; Wu, Y.; Rtimi, S. Recent Progress in Black Phosphorus Nanostructures as Environmental Photocatalysts. Chem. Eng. J. 2020, 379, 122297. DOI: 10.1016/j.cej.2019.122297.
  • Yu, H.; Yang, H.; Shi, E.; Tang, W. Development and Clinical Application of Phosphorus-Containing Drugs. Med. Drug Discovery 2020, 8, 100063. DOI: 10.1016/j.medidd.2020.100063.
  • Nilges, T.; Schmidt, P.; Weihrich, R. Phosphorus: The Allotropes, Stability, Synthesis, and Selected Applications. Encyclopedia Inorganic Bioinorg. Chem. 2011, 1–18.
  • Gilmaour, R. Phosphorus. Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: Hoboken, New Jersey, 2019. DOI: 10.1002/0471238961.1908151902182113.a01.pub3.
  • Webeck, E.; Matsubae, K.; Nakajima, K.; Nansai, K.; Nagasaka, T. Analysis of Phosphorus Dependency in Asia. Sociotechnica 2014, 11, 119–126. DOI: 10.3392/sociotechnica.11.119.
  • Yang, H.; Liu, Y.; Liu, J.; Meng, J.; Hu, X.; Tao, S. Improving the Imbalanced Global Supply Chain of Phosphorus Fertilizers. Earth's Future 2019, 7, 638–651. DOI: 10.1029/2018EF001005.
  • Qiao, P.; Wang, X.-H.; Gao, S.; Yin, X.; Wang, Y.; Wang, P. Integration of Black Phosphorus and Hollow-Core anti-Resonant Fiber Enables Two-Order Magnitude Enhancement of Sensitivity for Bisphenol a Detection. Biosens. Bioelectron. 2020, 149, 111821. DOI: 10.1016/j.bios.2019.111821.
  • Sun, Y.; Jin, H.; Jiang, X.; Gui, R. Black Phosphorus Nanosheets Adhering to Thionine-Doped 2D MOF as a Smart Aptasensor Enabling Accurate Capture and Ratiometric Electrochemical Detection of Target microRNA. Sens. Actuators, B. 2020, 309, 127777. DOI: 10.1016/j.snb.2020.127777.
  • Patwardhan, B.; Nagarkar, S. UGC-CARE List. Curr. Sci. 2020, 118, 9–10.
  • Liu, H.; Song, H.; Su, Y.; Lv, Y. Recent Advances in Black Phosphorus-Based Optical Sensors. Appl. Spectrosc. Rev. 2019, 54, 275–284. DOI: 10.1080/05704928.2018.1558406.
  • Hultgren, R.; Gingrich, N.; Warren, B. The Atomic Distribution in Red and Black Phosphorus and the Crystal Structure of Black Phosphorus. J. Chem. Phys. 1935, 3, 351–355. DOI: 10.1063/1.1749671.
  • Eswaraiah, V.; Zeng, Q.; Long, Y.; Liu, Z. Black Phosphorus Nanosheets: synthesis, Characterization and Applications. Small 2016, 12, 3480–3502. DOI: 10.1002/smll.201600032.
  • Qing, Y.; Li, R.; Li, S.; Li, Y.; Wang, X.; Qin, Y. Advanced Black Phosphorus Nanomaterials for Bone Regeneration. IJN. 2020, 15, 2045–2058. DOI: 10.2147/IJN.S246336.
  • Wang, J.; Zhang, H.; Xiao, X.; Liang, D.; Liang, X.; Mi, L.; Wang, J.; Liu, J. Gold Nanobipyramid-Loaded Black Phosphorus Nanosheets for Plasmon-Enhanced Photodynamic and Photothermal Therapy of Deep-Seated Orthotopic Lung Tumors. Acta Biomater. 2020, 107, 260–271. DOI: 10.1016/j.actbio.2020.03.001.
  • Wei, Q.; Peng, X. Superior Mechanical Flexibility of Phosphorene and Few-Layer Black Phosphorus. Appl. Phys. Lett. 2014, 104, 251915. DOI: 10.1063/1.4885215.
  • Hu, Z.; Li, Y.; Hussain, E.; Huang, X.; Zhang, Y.; Niu, N.; Shahzad, S. A.; Yu, C. Black Phosphorus Nanosheets Based Sensitive Protease Detection and Inhibitor Screening. Talanta 2019, 197, 270–276. DOI: 10.1016/j.talanta.2019.01.023.
  • Yi, J.; Chen, X.; Weng, Q.; Zhou, Y.; Han, Z.; Chen, J.; Li, C. A Simple Electrochemical pH Sensor Based on Black Phosphorus Nanosheets. Electrochem. Commun. 2020, 118, 106796. DOI: 10.1016/j.elecom.2020.106796.
  • Ezawa, M. Topological Origin of Quasi-Flat Edge Band in Phosphorene. New J. Phys. 2014, 16, 115004. DOI: 10.1088/1367-2630/16/11/115004.
  • Fei, R.; Faghaninia, A.; Soklaski, R.; Yan, J.-A.; Lo, C.; Yang, L. Enhanced Thermoelectric Efficiency via Orthogonal Electrical and Thermal Conductances in Phosphorene. Nano Lett. 2014, 14, 6393–6399. DOI: 10.1021/nl502865s.
  • Pandey, A.; Nikam, A. N.; Fernandes, G.; Kulkarni, S.; Padya, B. S.; Prassl, R.; Das, S.; Joseph, A.; Deshmukh, P. K.; Patil, P. O.; Mutalik, S. Black Phosphorus as Multifaceted Advanced Material Nanoplatforms for Potential Biomedical Applications. Nanomaterials 2020, 11, 13. DOI: 10.3390/nano11010013.
  • Tatullo, M.; Genovese, F.; Aiello, E.; Amantea, M.; Makeeva, I.; Zavan, B.; Rengo, S.; Fortunato, L. Phosphorene is the New Graphene in Biomedical Applications. Materials 2019, 12, 2301. DOI: 10.3390/ma12142301.
  • Li, H.; Xie, R.; Huang, C.; He, J.; Yang, P.; Tao, J.; Lin, B.; Zhao, P. Black Phosphorus Quantum Dots Nanocomposites Based Activatable Bimodal Imaging and Determination of Intracellular Glutathione. Sens. Actuators, B. 2020, 321, 128518. DOI: 10.1016/j.snb.2020.128518.
  • Gui, R.; Jin, H.; Wang, Z.; Li, J. Black Phosphorus Quantum Dots: synthesis, Properties, Functionalized Modification and Applications. Chem. Soc. Rev. 2018, 47, 6795–6823. DOI: 10.1039/C8CS00387D.
  • Ge, X.; Xia, Z.; Guo, S. Recent Advances on Black Phosphorus for Biomedicine and Biosensing. Adv. Funct. Mater. 2019, 29, 1900318. DOI: 10.1002/adfm.201900318.
  • Choi, J. R.; Yong, K. W.; Choi, J. Y.; Nilghaz, A.; Lin, Y.; Xu, J.; Lu, X. Black Phosphorus and Its Biomedical Applications. Theranostics 2018, 8, 1005–1026. DOI: 10.7150/thno.22573.
  • Meshginqalam, B.; Barvestani, J. Performance Enhancement of SPR Biosensor Based on Phosphorene and Transition Metal Dichalcogenides for Sensing DNA Hybridization. IEEE Sensors J. 2018, 18, 7537–7543. DOI: 10.1109/JSEN.2018.2861829.
  • Pandey, A. K. Plasmonic Sensor Utilizing Ti3C2Tx MXene Layer and Fluoride Glass Substrate for Bio-and Gas-Sensing Applications: performance Evaluation. Photonics Nanostruct. Fundamentals and Appl. 2020, 42, 100863. DOI: 10.1016/j.photonics.2020.100863.
  • Singh, Y.; Raghuwanshi, S. K. Sensitivity Enhancement of the Surface Plasmon Resonance Gas Sensor with Black Phosphorus. IEEE Sens. Lett. 2019, 3, 1–4. DOI: 10.1109/LSENS.2019.2954052.
  • Ling, X.; Wang, H.; Huang, S.; Xia, F.; Dresselhaus, M. S. The Renaissance of Black Phosphorus. Proc. Natl. Acad. Sci. USA. 2015, 112, 4523–4530. DOI: 10.1073/pnas.1416581112.
  • David, D. G.; Godet, C.; Johansson, F. O.; Lindblad, A. Quantitative Analysis of Plasmon Excitations in Hard x-Ray Photoelectron Spectra of Bulk Black Phosphorus. Appl. Surf. Sci. 2020, 505, 144385. DOI: 10.1016/j.apsusc.2019.144385.
  • Mohammadpour, Z.; Majidzadeh-A, K. Applications of Two-Dimensional Nanomaterials in Breast Cancer Theranostics. ACS Biomater. Sci. Eng. 2020, 6, 1852–1873. DOI: 10.1021/acsbiomaterials.9b01894.
  • Liu, W.; Zhu, Y.; Ban, X.; Wang, S.; Zhu, H. Ag/Black Phosphorus Composite Based on Multilayer Black Phosphorus: Its Preparation and Photocatalytic Methyl Orange Degradation Performance. Mater. Sci. Semicond. Process. 2021, 121, 105309. DOI: 10.1016/j.mssp.2020.105309.
  • Jakóbczyk, P.; Kowalski, M.; Brodowski, M.; Dettlaff, A.; Dec, B.; Nidzworski, D.; Ryl, J.; Ossowski, T.; Bogdanowicz, R. Low-Power Microwave-Induced Fabrication of Functionalised Few-Layer Black Phosphorus Electrodes: A Novel Route towards Haemophilus Influenzae Pathogen Biosensing Devices. Appl. Surf. Sci. 2021, 539, 148286. DOI: 10.1016/j.apsusc.2020.148286.
  • Liu, H.; Du, Y.; Deng, Y.; Peide, D. Y. Semiconducting Black Phosphorus: synthesis, Transport Properties and Electronic Applications. Chem. Soc. Rev. 2015, 44, 2732–2743. DOI: 10.1039/C4CS00257A.
  • Batmunkh, M.; Bat‐Erdene, M.; Shapter, J. G. Phosphorene and Phosphorene‐Based Materials–Prospects for Future Applications. Adv. Mater. 2016, 28, 8586–8617. DOI: 10.1002/adma.201602254.
  • Lee, G.; Kim, S.; Jung, S.; Jang, S.; Kim, J. Suspended Black Phosphorus Nanosheet Gas Sensors. Sens. Actuators, B. 2017, 250, 569–573. DOI: 10.1016/j.snb.2017.04.176.
  • Zou, B.; Qiu, S.; Ren, X.; Zhou, Y.; Zhou, F.; Xu, Z.; Zhao, Z.; Song, L.; Hu, Y.; Gong, X. Combination of Black Phosphorus Nanosheets and MCNTs via Phosphoruscarbon Bonds for Reducing the Flammability of Air Stable Epoxy Resin Nanocomposites. J. Hazard Mater. 2020, 383, 121069. DOI: 10.1016/j.jhazmat.2019.121069.
  • Xia, F.; Wang, H.; Jia, Y. Rediscovering Black Phosphorus as an Anisotropic Layered Material for Optoelectronics and Electronics. Nat. Commun. 2014, 5, 1–6. DOI: 10.1038/ncomms5458.
  • Zhao, Y.; Zhuge, Z.; Tang, Y.-H.; Tao, J.-W. Synthesis of a CuNP/Chitosan/Black Phosphorus Nanocomposite for Non-Enzymatic Hydrogen Peroxide Sensing. Analyst 2020, 145, 7260–7266. DOI: 10.1039/D0AN01441A.
  • Li, S.; Zhang, F.; Wang, J.; Wen, W.; Wang, S. Black phosphorus-Au Nanocomposite-Based Fluorescence Immunochromatographic Sensor for High-Sensitive Detection of Zearalenone in Cereals. Nanophotonics 2020, 9, 2397–2406. DOI: 10.1515/nanoph-2019-0434.
  • Vanni, M.; Caporali, M.; Serrano-Ruiz, M.; Peruzzini, M. Catalysis Mediated by 2D Black Phosphorus Either Pristine or Decorated with Transition Metals Species. Surfaces 2020, 3, 132–164. DOI: 10.3390/surfaces3020012.
  • Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O. M.; Iatì, M. A. Surface Plasmon Resonance in Gold Nanoparticles: A Review. J. Phys. Condens. Matter 2017, 29, 203002. DOI: 10.1088/1361-648X/aa60f3.
  • Tan, P.; Li, H.; Wang, J.; Gopinath, S. C. Silver Nanoparticle in Biosensor and Bioimaging: Clinical Perspectives. Biotechnol. Appl. Biochem. 2020. DOI:10.1002/bab.2045.
  • Prosposito, P.; Mochi, F.; Ciotta, E.; Casalboni, M.; De Matteis, F.; Venditti, I.; Fontana, L.; Testa, G.; Fratoddi, I. Hydrophilic Silver Nanoparticles with Tunable Optical Properties: Application for the Detection of Heavy Metals in Water. Beilstein J. Nanotechnol. 2016, 7, 1654–1661. DOI: 10.3762/bjnano.7.157.
  • Navya, P.; Daima, H. K. Rational Engineering of Physicochemical Properties of Nanomaterials for Biomedical Applications with Nanotoxicological Perspectives. Nano Converg. 2016, 3, 1–14. DOI: 10.1186/s40580-016-0064-z.
  • Lin, S.; Li, Y.; Qian, J.; Lau, S. P. Emerging Opportunities for Black Phosphorus in Energy Applications. Mater. Today Energy 2019, 12, 1–25. DOI: 10.1016/j.mtener.2018.12.004.
  • Chen, X.; Ponraj, J. S.; Fan, D.; Zhang, H. An Overview of the Optical Properties and Applications of Black Phosphorus. Nanoscale 2020, 12, 3513–3534. DOI: 10.1039/C9NR09122J.
  • Zhang, Y.; Jiang, Q.; Lang, P.; Yuan, N.; Tang, J. Fabrication and Applications of 2D Black Phosphorus in Catalyst, Sensing and Electrochemical Energy Storage. J. Alloys Compd. 2021, 850, 156580. DOI: 10.1016/j.jallcom.2020.156580.
  • Xu, Y.; Shi, Z.; Shi, X.; Zhang, K.; Zhang, H. Recent Progress in Black Phosphorus and Black-Phosphorus-Analogue Materials: properties, Synthesis and Applications. Nanoscale 2019, 11, 14491–14527. DOI: 10.1039/C9NR04348A.
  • Wang, Z.; Liu, Z.; Su, C.; Yang, B.; Fei, X.; Li, Y.; Hou, Y.; Zhao, H.; Guo, Y.; Zhuang, Z.; et al. Biodegradable Black Phosphorus-Based Nanomaterials in Biomedicine: theranostic Applications. CMC. 2019, 26, 1788–1805. DOI: 10.2174/0929867324666170920152529.
  • Khandelwal, A.; Mani, K.; Karigerasi, M. H.; Lahiri, I. Phosphorene–the Two-Dimensional Black Phosphorous: Properties, Synthesis and Applications. Mater. Sci. Eng. B. 2017, 221, 17–34. DOI: 10.1016/j.mseb.2017.03.011.
  • Ambrosi, A.; Sofer, Z.; Pumera, M. Electrochemical Exfoliation of Layered Black Phosphorus into Phosphorene. Angew. Chem. 2017, 129, 10579–10581. DOI: 10.1002/ange.201705071.
  • Pei, J.; Gai, X.; Yang, J.; Wang, X.; Yu, Z.; Choi, D.-Y.; Luther-Davies, B.; Lu, Y. Producing Air-Stable Monolayers of Phosphorene and Their Defect Engineering. Nat. Commun. 2016, 7, 1–8. DOI: 10.1038/ncomms10450.
  • Smith, J. B.; Hagaman, D.; Ji, H.-F. Growth of 2D Black Phosphorus Film from Chemical Vapor Deposition. Nanotechnology 2016, 27, 215602. DOI: 10.1088/0957-4484/27/21/215602.
  • Anju, S.; Ashtami, J.; Mohanan, P. Black Phosphorus, a Prospective Graphene Substitute for Biomedical Applications. Mater. Sci. Eng. C 2019, 97, 978–993. DOI: 10.1016/j.msec.2018.12.146.
  • Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P. D. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8, 4033–4041. DOI: 10.1021/nn501226z.
  • Xiong, S.; Chen, X.; Liu, Y.; Fan, T.; Wang, Q.; Zhang, H.; Chen, T. Black Phosphorus as a Versatile Nanoplatform: From Unique Properties to Biomedical Applications. 2020, J. Innov. Opt. Health Sci. 2020, 13, 2030008. DOI:10.1142/S1793545820020010.
  • Sun, C.; Wen, L.; Zeng, J.; Wang, Y.; Sun, Q.; Deng, L.; Zhao, C.; Li, Z. One-Pot Solventless Preparation of PEGylated Black Phosphorus Nanoparticles for Photoacoustic Imaging and Photothermal Therapy of Cancer. Biomaterials 2016, 91, 81–89. DOI: 10.1016/j.biomaterials.2016.03.022.
  • Guan, L.; Xing, B.; Niu, X.; Wang, D.; Yu, Y.; Zhang, S.; Yan, X.; Wang, Y.; Sha, J. Metal-Assisted Exfoliation of Few-Layer Black Phosphorus with High Yield. Chem. Commun. 2018, 54, 595–598. DOI: 10.1039/C7CC08488A.
  • Kang, J.; Wood, J. D.; Wells, S. A.; Lee, J.-H.; Liu, X.; Chen, K.-S.; Hersam, M. C. Solvent Exfoliation of Electronic-Grade, Two-Dimensional Black Phosphorus. ACS Nano 2015, 9, 3596–3604. DOI: 10.1021/acsnano.5b01143.
  • Xu, J.-Y.; Gao, L.-F.; Hu, C.-X.; Zhu, Z.-Y.; Zhao, M.; Wang, Q.; Zhang, H.-L. Preparation of Large Size, Few-Layer Black Phosphorus Nanosheets via Phytic Acid-Assisted Liquid Exfoliation. Chem. Commun. 2016, 52, 8107–8110. DOI: 10.1039/C6CC03206K.
  • Gao, L.-F.; Xu, J.-Y.; Zhu, Z.-Y.; Hu, C.-X.; Zhang, L.; Wang, Q.; Zhang, H.-L. Small Molecule-Assisted Fabrication of Black Phosphorus Quantum Dots with a Broadband Nonlinear Optical Response. Nanoscale 2016, 8, 15132–15136. DOI: 10.1039/C6NR04773D.
  • Erande, M. B.; Pawar, M. S.; Late, D. J. Humidity Sensing and Photodetection Behavior of Electrochemically Exfoliated Atomically Thin-Layered Black Phosphorus Nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 11548–11556. DOI: 10.1021/acsami.5b10247.
  • Erande, M. B.; Suryawanshi, S. R.; More, M. A.; Late, D. J. Electrochemically Exfoliated Black Phosphorus Nanosheets–Prospective Field Emitters. Eur. J. Inorg. Chem. 2015, 2015, 3102–3107. DOI: 10.1002/ejic.201500145.
  • Xu, Y.; Wang, Z.; Guo, Z.; Huang, H.; Xiao, Q.; Zhang, H.; Yu, X. F. Solvothermal Synthesis and Ultrafast Photonics of Black Phosphorus Quantum Dots. Adv. Opt. Mater. 2016, 4, 1223–1229. DOI: 10.1002/adom.201600214.
  • Ozawa, A.; Yamamoto, M.; Tanabe, T.; Hosokawa, S.; Yoshida, T. Black Phosphorus Synthesized by Solvothermal Reaction from Red Phosphorus and Its Catalytic Activity for Water Splitting. J. Mater. Chem. A. 2020, 8, 7368–7376. DOI: 10.1039/C9TA13441G.
  • Martín, C.; Kostarelos, K.; Prato, M.; Bianco, A. Biocompatibility and Biodegradability of 2D Materials: graphene and beyond. Chem. Commun. 2019, 55, 5540–5546. DOI: 10.1039/C9CC01205B.
  • Cheng, L.; Cai, Z.; Zhao, J.; Wang, F.; Lu, M.; Deng, L.; Cui, W. Black Phosphorus-Based 2D Materials for Bone Therapy. Bioact. Mater. 2020, 5, 1026–1043. DOI: 10.1016/j.bioactmat.2020.06.007.
  • Song, S.-J.; Shin, Y. C.; Lee, H. U.; Kim, B.; Han, D.-W.; Lim, D. Dose-and Time-Dependent Cytotoxicity of Layered Black Phosphorus in Fibroblastic Cells. Nanomaterials 2018, 8, 408. DOI: 10.3390/nano8060408.
  • Song, S.-J.; Raja, I. S.; Lee, Y. B.; Kang, M. S.; Seo, H. J.; Lee, H. U.; Han, D.-W. Comparison of Cytotoxicity of Black Phosphorus Nanosheets in Different Types of Fibroblasts. Biomater. Res. 2019, 23, 1–7. DOI: 10.1186/s40824-019-0174-x.
  • Shin, Y. C.; Song, S.-J.; Lee, Y. B.; Kang, M. S.; Lee, H. U.; Oh, J.-W.; Han, D.-W. Application of Black Phosphorus Nanodots to Live Cell Imaging. Biomater. Res. 2018, 22, 1–8. DOI: 10.1186/s40824-018-0142-x.
  • Fu, H.; Li, Z.; Xie, H.; Sun, Z.; Wang, B.; Huang, H.; Han, G.; Wang, H.; Chu, P. K.; Yu, X.-F. Different-Sized Black Phosphorus Nanosheets with Good Cytocompatibility and High Photothermal Performance. RSC Adv. 2017, 7, 14618–14624. DOI: 10.1039/C7RA00160F.
  • Li, Z.; Wu, L.; Wang, H.; Zhou, W.; Liu, H.; Cui, H.; Li, P.; Chu, P. K.; Yu, X.-F. Synergistic Antibacterial Activity of Black Phosphorus Nanosheets Modified with Titanium Aminobenzenesulfanato Complexes. ACS Appl. Nano Mater. 2019, 2, 1202–1209. DOI: 10.1021/acsanm.8b02065.
  • Naskar, A.; Kim, S.; Kim, K-s. A Nontoxic Biocompatible Nanocomposite Comprising Black Phosphorus with Au–γ-Fe 2 O 3 Nanoparticles. RSC Adv. 2020, 10, 16162–16167. DOI: 10.1039/D0RA02476G.
  • Chen, Y.; Zhou, S.; Li, L.; Zhu, J-j. Nanomaterials-Based Sensitive Electrochemiluminescence Biosensing. Nano Today 2017, 12, 98–115. DOI: 10.1016/j.nantod.2016.12.013.
  • Abbas, A. N.; Liu, B.; Chen, L.; Ma, Y.; Cong, S.; Aroonyadet, N.; Köpf, M.; Nilges, T.; Zhou, C. Black Phosphorus Gas Sensors. ACS Nano 2015, 9, 5618–5624. DOI: 10.1021/acsnano.5b01961.
  • Wu, L.; Guo, J.; Wang, Q.; Lu, S.; Dai, X.; Xiang, Y.; Fan, D. Sensitivity Enhancement by Using Few-Layer Black Phosphorus-Graphene/TMDCs Heterostructure in Surface Plasmon Resonance Biochemical Sensor. Sens. Actuators, B. 2017, 249, 542–548. DOI: 10.1016/j.snb.2017.04.110.
  • Cai, Y.; Li, S.; Zhou, Y.; Wang, X.; Xu, K.-D.; Guo, R.; Joines, W. T. Tunable and Anisotropic Dual-Band Metamaterial Absorber Using Elliptical Graphene-Black Phosphorus Pairs. Nanoscale Res. Lett. 2019, 14, 1–7. DOI: 10.1186/s11671-019-3182-9.
  • Park, H.; Masud, M. K.; Na, J.; Lim, H.; Phan, H.-P.; Kaneti, Y. V.; Alothman, A. A.; Salomon, C.; Nguyen, N.-T.; Hossain, M. S. A.; Yamauchi, Y. Mesoporous Gold–Silver Alloy Films towards Amplification-Free Ultra-Sensitive microRNA Detection. J. Mater. Chem. B. 2020, 8, 9512–9523. DOI: 10.1039/D0TB02003F.
  • Guo, Q.; Yu, Y.; Zhang, H.; Cai, C.; Shen, Q. Electrochemical Sensing of Exosomal microRNA Based on Hybridization Chain Reaction Signal Amplification with Reduced False-Positive Signals. Anal. Chem. 2020, 92, 5302–5310. DOI: 10.1021/acs.analchem.9b05849.
  • Sheng, Y.; Zhang, T.; Zhang, S.; Johnston, M.; Zheng, X.; Shan, Y.; Liu, T.; Huang, Z.; Qian, F.; Xie, Z.; et al. A CRISPR/Cas13a-Powered Catalytic Electrochemical Biosensor for Successive and Highly Sensitive RNA Diagnostics. Biosens. Bioelectron. 2021, 178, 113027. DOI: 10.1016/j.bios.2021.113027.
  • Tripathy, S.; Singh, S. G. Label-Free Electrochemical Detection of DNA Hybridization: A Method for COVID-19 Diagnosis. Trans. Indian Natl. Acad. Eng. 2020, 5, 205–209. DOI: 10.1007/s41403-020-00103-z.
  • Hossain, M.; Rana, M. DNA Hybridization Detection Based on Resonance Frequency Readout in Graphene on Au SPR Biosensor. J. Sens. 2016, 2016, 1–7. DOI: 10.1155/2016/6070742.
  • Kaye, S.; Zeng, Z.; Sanders, M.; Chittur, K.; Koelle, P. M.; Lindquist, R.; Manne, U.; Lin, Y.; Wei, J. Label-Free Detection of DNA Hybridization with a Compact LSPR-Based Fiber-Optic Sensor. Analyst 2017, 142, 1974–1981. DOI: 10.1039/C7AN00249A.
  • Cismaru, A.; Dragoman, M.; Radoi, A.; Dinescu, A.; Dragoman, D. The Microwave Sensing of DNA Hybridization Using Carbon Nanotubes Decorated with Gold Nanoislands. J. Appl. Phys. 111, 076106. DOI: 10.1063/1.4704369
  • Fu, D.; Li, L.-J. Label-Free Electrical Detection of DNA Hybridization Using Carbon Nanotubes and Graphene. Nano Rev. 2010, 1, 5354. DOI: 10.3402/nano.v1i0.5354.
  • Pal, S.; Verma, A.; Raikwar, S.; Prajapati, Y.; Saini, J. Detection of DNA Hybridization Using Graphene-Coated Black Phosphorus Surface Plasmon Resonance Sensor. Appl. Phys. A. 2018, 124, 1–11. DOI: 10.1007/s00339-018-1804-1.
  • Pal, S.; Verma, A.; Saini, J. P.; Prajapati, Y. K. Sensitivity Enhancement Using Silicon-Black phosphorus-TDMC Coated Surface Plasmon Resonance Biosensor. IET Optoelectron. 2019, 13, 196–201. DOI: 10.1049/iet-opt.2018.5023.
  • Su, M.; Chen, X.; Tang, L.; Yang, B.; Zou, H.; Liu, J.; Li, Y.; Chen, S.; Fan, D. Black Phosphorus (BP)–Graphene Guided-Wave Surface Plasmon Resonance (GWSPR) Biosensor. Nanophotonics 2020, 9, 4265–4272. (ahead-of-print). DOI: 10.1515/nanoph-2020-0251.
  • Maurya, J.; Prajapati, Y.; Raikwar, S.; Saini, J. A Silicon-Black Phosphorous Based Surface Plasmon Resonance Sensor for the Detection of NO2 Gas. Optik 2018, 160, 428–433. DOI: 10.1016/j.ijleo.2018.02.002.
  • Srivastava, T.; Jha, R. Black Phosphorus: A New Platform for Gaseous Sensing Based on Surface Plasmon Resonance. IEEE Photon. Technol. Lett. 2018, 30, 319–322. DOI: 10.1109/LPT.2017.2787057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.