203
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Instrumental Techniques to Classify Olive Oils according to Their Quality

, , ORCID Icon & ORCID Icon
Pages 139-160 | Published online: 14 Jul 2021

References

  • Chanioti, S.; Tzia, C. Evaluation of Ultrasound Assisted and Conventional Methods for Production of Olive Pomace Oil Enriched in Sterols and Squalene. LWT-Food Sci. Technol 2019, 99, 209–216. DOI: 10.1016/j.lwt.2018.09.068.
  • Garrido-Delgado, R.; Arce, L.; Valcárcel, M. Multi-Capillary Column-Ion Mobility Spectrometry: A Potential Screening System to Differentiate Virgin Olive Oils. Anal. Bioanal. Chem. 2012, 402, 489–498. DOI: 10.1007/s00216-011-5328-1.
  • International olive council (IOC). COI/T.20/Doc. No 15/Rev. 9 2018. Sensory Analysis of Olive Oil: Method for the Organoleptic Assessment of Virgin Olive Oil.
  • Commission Regulation (EEC) No. 2568/91 On the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis. Official J. 1991, L248, 1–83.
  • Aparicio, R.; Harwood, J. Handbook of Olive Oil: Analysis and Properties, Springer Science + Business Media, New York, 2013.
  • Fernandes, G.; Ellis, A.; Gámbaro, A.; Barrera-Arellano, D. Sensory Evaluation of High-Quality Virgin Olive Oil: Panel Analysis versus Consumer Perception. Curr. Opin. Food Sci 2018, 21, 66–71. DOI: 10.1016/j.cofs.2018.06.001.
  • Moore, J. C.; Spink, J.; Lipp, M. Development and Application of a Database of Food Ingredient Fraud and Economically Motivated Adulteration from 1980 to 2010. J. Food Sci. 2012, 77, 118–126.
  • Morales, M. T.; Luna, G.; Aparicio, R. Comparative Study of Virgin Olive Oil Sensory Defects. Food Chem. 2005, 91, 293–301. DOI: 10.1016/j.foodchem.2004.06.011.
  • Lukić, I.; Carlin, S.; Horvat, I.; Vrhovsek, U. Combined Targeted and Untargeted Profiling of Volatile Aroma Compounds with Comprehensive Two-Dimensional Gas Chromatography for Differentiation of Virgin Olive Oils according to Variety and Geographical Origin. Food Chem. 2019, 270, 403–414. DOI: 10.1016/j.foodchem.2018.07.133.
  • Morales, M. T.; Tsimidou, M. The Role of Volatile Compounds and Polyphenols in Olive Oil Sensory Quality. in: J.L. Harwood, R. Aparicio (Eds.), Handbook of Olive Oil: Analysis and Properties. Eds., Aspen Publishers, Gaithersburg, USA, 2000, pp. 393–458
  • Jiménez, B.; Rivas, B.,A.; Lorenzo, M. L.; Sánchez-Ortiz, A. Chemosensory Characterization of Virgin Olive Oils Obtained from Organic and Conventional Practices during Fruit Ripening. Flavour Fragr. J. 2017, 32, 294–304. DOI: 10.1002/ffj.3387.
  • Aparicio, R.; Luna, G. Characterisation of Monovarietal Virgin Olive Oils. Eur. J. Lipid Sci. Technol. 2002, 104, 614–627. DOI: 10.1002/1438-9312(200210)104:9/10<614::AID-EJLT614>3.0.CO;2-L.
  • Gómez-Caravaca, A. M.; Maggio, R. M.; Cerretani, L. Chemometric Applications to Assess Quality and Critical Parameters of Virgin and Extra-Virgin Olive Oil. A Review. Anal. Chim. Acta. 2016, 913, 1–21. DOI: 10.1016/j.aca.2016.01.025.
  • Monasterio, R. P.; Fernández, M. d l Á.; Silva, M. F. Olive Oil by Capillary Electrophoresis: Characterization and Genuineness. J. Agric. Food Chem. 2013, 61, 4477–4496. DOI: 10.1021/jf400864q.
  • Guzmán, E.; Baeten, V.; Pierna, J. A. F.; García-Mesa, J. A. Evaluation of the Overall Quality of Olive Oil Using Fluorescence Spectroscopy. Food Chem. 2015, 173, 927–934. DOI: 10.1016/j.foodchem.2014.10.041.
  • Guimet, F.; Ferré, J.; Boqué, R.; Vidal, M.; García, J. Excitation-Emission Fluorescence Spectroscopy Combined with Three-Way Methods of Analysis as a Complementary Technique for Olive Oil Characterization. J. Agric. Food Chem. 2005, 53, 9319–9328. DOI: 10.1021/jf051237n.
  • Conte, L.; Bendini, A.; Valli, E.; Lucci, P.; Moret, S.; Maquet, A.; Lacoste, F.; Brereton, P.; García-González, D. L.; Moreda, W.; Gallina-Toschi, T. Olive Oil Quality and Authenticity: A Review of Current EU Legislation, Standards, Relevant Methods of Analyses, Their Drawbacks and Recommendations for the Future. Trends Food Sci. Technol. 2020, 105, 483–493. DOI: 10.1016/j.tifs.2019.02.025.
  • Vidal, A. M.; Alcalá, S.; Ocaña, M. T.; De Torres, A.; Espínola, F.; Moya, M. Modeling of Volatile and Phenolic Compounds and Optimization of the Process Conditions for Obtaining Balanced Extra Virgin Olive Oils. Grasas Aceites 2018, 69, 250–261. DOI: 10.3989/gya.1220172.
  • Guide for the selection, training and quality control of virgin olive oil tasters-qualifications of tasters, Panel leaders and trainers. COI/T.20/Doc. No 14/Rev. 6 2020.
  • Majchrzak, T.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Electronic Noses in Classification and Quality Control of Edible Oils: A Review. Food Chem. 2018, 246, 192–201. DOI: 10.1016/j.foodchem.2017.11.013.
  • Dymerski, T. M.; Chmiel, T. M.; Wardencki, W. Invited Review Article: An Odor-Sensing System-Powerful Technique for Foodstuff Studies. Rev. Sci. Instrum. 2011, 82, 111101–111132. 111101, DOI: 10.1063/1.3660805.
  • Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Calvo, A.; Busto, O. Olive Oil Sensory Defects Classification with Data Fusion of Instrumental Techniques and Multivariate Analysis (PLS-DA). Food Chem. 2016, 203, 314–322. DOI: 10.1016/j.foodchem.2016.02.038.
  • Poulli, K. I.; Mousdis, G. A.; Georgiou, C. A. Classification of Edible and Lampante Virgin Olive Oil Based on Synchronous Fluorescence and Total Luminescence Spectroscopy. Anal. Chim. Acta. 2005, 542, 151–156. DOI: 10.1016/j.aca.2005.03.061.
  • Hirri, A.; Bassbasi, M.; Platikanov, S.; Tauler, R.; Oussama, A. FTIR Spectroscopy and PLS-DA Classification and Prediction of Four Commercial Grade Virgin Olive Oils from Morocco. Food Anal. Methods 2016, 9, 974–981. DOI: 10.1007/s12161-015-0255-y.
  • Guadarrama, A.; Rodrı́guez-Méndez, M. L.; Sanz, C.; Rı́os, J. L. de Saja, J. A. Electronic Nose Based on Conducting Polymers for the Quality Control of the Olive Oil aroma—Discrimination of Quality, Variety of Olive and Geographic Origin. Anal. Chim. Acta. 2001, 432, 283–292. DOI: 10.1016/S0003-2670(00)01383-0.
  • García-González, D. L.; Aparicio, R. Virgin Olive Oil Quality Classification Combining Neural Network and MOS Sensors. J. Agric. Food Chem. 2003, 51, 3515–3519. DOI: 10.1021/jf021217a.
  • García-González , D. L.; Aparicio, R. Classification of Different Quality Virgin Olive Oils by Metal-Oxide Sensors. Eur. Food Res. Technol. 2004, 218, 484–487. DOI: 10.1007/s00217-003-0855-4.
  • García-González, D. L.; Barie, N.; Rapp, M.; Aparicio, R. Analysis of Virgin Olive Oil Volatiles by a Novel Electronic Nose Based on a Miniaturized SAW Sensor Array Coupled with SPME Enhanced Headspace Enrichment. J. Agric. Food Chem. 2004, 52, 7475–7479. DOI: 10.1021/jf048833m.
  • Escuderos, M. E.; Sánchez, S.; Jiménez, A. Virgin Olive Oil Sensory Evaluation by an Artificial Olfactory System, Based on Quartz Crystal Microbalance (QCM) Sensors. Sensor Actuat. B-Chem 2010, 147, 159–164. DOI: 10.1016/j.snb.2010.01.071.
  • Escuderos, M. E.; Sánchez, S.; Jiménez, A. Quartz Crystal Microbalance (QCM) Sensor Arrays Selection for Olive Oil Sensory Evaluation. Food Chem. 2011, 124, 857–862. DOI: 10.1016/j.foodchem.2010.07.007.
  • Escuderos, M. E.; García, M.; Jiménez, A.; Horrillo, M. C. Edible and Non-Edible Olive Oils Discrimination by the Application of a Sensory Olfactory System Based on Tin Dioxide Sensors. Food Chem. 2013, 136, 1154–1159. DOI: 10.1016/j.foodchem.2012.09.051.
  • Del Carlo, M.; Fusella, G. C.; Pepe, A.; Sergi, M.; Di Martino, M.; Mascini, M.; Martino, G.; Cichelli, A.; Di Natale, C.; Compagnone, D. Novel Oligopeptides Based e-Nose for Food Quality Control: Application to Extra-Virgin Olive Samples. Qual. Assur. Saf. Crop 2014, 6, 309–317. DOI: 10.3920/QAS2013.0377.
  • Slim, S.; Rodrigues, N.; Dias, L. G.; Veloso, A. C. A.; Pereira, J. A.; Oueslati, S.; Peres, A. M. Application of an Electronic Tongue for Tunisian Olive Oils' Classification according to Olive Cultivar or Physicochemical Parameters. Eur. Food Res. Technol. 2017, 243, 1459–1470. DOI: 10.1007/s00217-017-2856-8.
  • Veloso, A. C. A.; Silva, L. M.; Rodrigues, N.; Rebello, L. P. G.; Dias, L. G.; Pereira, J. A.; Peres, A. M. Perception of Olive Oils Sensory Defects Using a Potentiometric Taste Device. Talanta 2018, 176, 610–618. DOI: 10.1016/j.talanta.2017.08.066.
  • Aparicio-Ruiz, R.; García-González, D. L.; Morales, M. T.; Lobo-Prieto, A.; Romero, I. Comparison of Two Analytical Methods Validated for the Determination of Volatile Compounds in Virgin Olive Oil: GC-FID vs GC-MS. Talanta 2018, 187, 133–141. DOI: 10.1016/j.talanta.2018.05.008.
  • Barbieri, S.; Cevoli, C.; Bendini, A.; Quintanilla-Casas, B.; García-González, D. L.; Gallina Toschi, T. Flash Gas Chromatography in Tandem with Chemometrics: A Rapid Screening Tool for Quality Grades of Virgin Olive Oils. Foods 2020, 9, 862. DOI: 10.3390/foods9070862.
  • Dierkes, G.; Bongartz, A.; Guth, H.; Hayen, H. Quality Evaluation of Olive Oil by Statistical Analysis of Multicomponent Stable Isotope Dilution Assay Data of Aroma Active Compounds. J. Agric. Food Chem. 2012, 60, 394–401. DOI: 10.1021/jf203406s.
  • Romero, I.; García-González, D. L.; Aparicio-Ruiz, R.; Morales, M. T. Validation of SPME-GCMS Method for the Analysis of Virgin Olive Oil Volatiles Responsible for Sensory Defects. Talanta 2015, 134, 394–401. DOI: 10.1016/j.talanta.2014.11.032.
  • Purcaro, G.; Cordero, C.; Liberto, E.; Bicchi, C.; Conte, L. S. Toward a Definition of Blueprint of Virgin Olive Oil by Comprehensive Two-Dimensional Gas Chromatography. J. Chromatogr. A. 2014, 1334, 101–111. DOI: 10.1016/j.chroma.2014.01.067.
  • Sales, C.; Cervera, M. I.; Gil, R.; Portolés, T.; Pitarch, E.; Beltran, J. Quality Classification of Spanish Olive Oils by Untargeted Gas Chromatography Coupled to Hybrid Quadrupole-Time of Flight Mass Spectrometry with Atmospheric Pressure Chemical Ionization and Metabolomics-Based Statistical Approach. Food Chem. 2017, 216, 365–373. DOI: 10.1016/j.foodchem.2016.08.033.
  • Sales, C.; Portolés, T.; Johnsen, L. G.; Danielsen, M.; Beltran, J. Olive Oil Quality Classification and Measurement of Its Organoleptic Attributes by Untargeted GC-MS and Multivariate Statistical-Based Approach. Food Chem. 2019, 271, 488–496. DOI: 10.1016/j.foodchem.2018.07.200.
  • Cecchi, L.; Migliorini, M.; Giambanelli, E.; Rossetti, A.; Cane, A.; Melani, F.; Mulinacci, N. Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry Quantification of the Volatile Profile of More than 1200 Virgin Olive Oils for Supporting the Panel Test in Their Classification: Comparison of Different Chemometric Approaches. J. Agric. Food Chem. 2019, 67, 9112–9120. DOI: 10.1021/acs.jafc.9b03346.
  • Quintanilla-Casas, B.; Bustamante, J.; Guardiola, F.; García-González, D. L.; Barbieri, S.; Bendini, A.; Toschi, T. G.; Vichi, S.; Tres, A. Virgin Olive Oil Volatile Fingerprint and Chemometrics: Towards an Instrumental Screening Tool to Grade the Sensory Quality. LWT 2020, 121, 108936. DOI: 10.1016/j.lwt.2019.108936.
  • Garrido-Delgado, R.; Mercader-Trejo, F.; Arce, L.; Valcárcel, M. Enhancing Sensitivity and Selectivity in the Determination of Aldehydes in Olive Oil by Use of a Tenax TA Trap Coupled to a UV-Ion Mobility Spectrometer. J. Chromatogr. A. 2011, 1218, 7543–7549. DOI: 10.1016/j.chroma.2011.07.099.
  • Garrido-Delgado, R.; Dobao-Prieto, M. M.; Arce, L.; Valcárcel, M. Determination of Volatile Compounds by GC-IMS to Assign the Quality of Virgin Olive Oil. Food Chem. 2015, 187, 572–579. DOI: 10.1016/j.foodchem.2015.04.082.
  • Contreras, M. M.; Arroyo-Manzanares, N.; Arce, C.; Arce, L. HS-GC-IMS and Chemometric Data Treatment for Food Authenticity Assessment: Olive Oil Mapping and Classification through Two Different Devices as an Example. Food Control 2019, 98, 82–93. DOI: 10.1016/j.foodcont.2018.11.001.
  • Gerhardt, N.; Schwolow, S.; Rohn, S.; Pérez-Cacho, P. R.; Galán-Soldevilla, H.; Arce, L.; Weller, P. Quality Assessment of Olive Oils Based on Temperature-Ramped HS-GC-IMS and Sensory Evaluation: Comparison of Different Processing Approaches by LDA, kNN, and SVM. Food Chem. 2019, 278, 720–728. DOI: 10.1016/j.foodchem.2018.11.095.
  • Contreras, M. M.; Jurado-Campos, N.; Arce, L.; Arroyo-Manzanares, N. A Robustness Study of Calibration Models for Olive Oil Classification: Targeted and Non-Targeted Fingerprint Approaches Based on GC-IMS. Food Chem. 2019, 288, 315–324. DOI: 10.1016/j.foodchem.2019.02.104.
  • Valli, E.; Panni, F.; Casadei, E.; Barbieri, S.; Cevoli, C.; Bendini, A.; García-González, D. L.; Gallina Toschi, T. An HS-GC-IMS Method for the Quality Classification of Virgin Olive Oils as Screening Support for the Panel Test. Foods 2020, 9, 657. DOI: 10.3390/foods9050657.
  • García-Nicolás, M.; Arroyo-Manzanares, N.; Arce, L.; Hernández-Córdoba, M.; Viñas, P. Headspace Gas Chromatography Coupled to Mass Spectrometry and Ion Mobility Spectrometry: Classification of Virgin Olive Oils as a Study Case. Foods 2020, 9, 1288. DOI: 10.3390/foods9091288.
  • Aparicio-Ruiz, R.; García-González, D. L.; Oliver-Pozo, C.; Tena, N.; Morales, M. T.; Aparicio, R. Phenolic Profile of Virgin Olive Oils with and without Sensory Defects: Oils with Non-Oxidative Defects Exhibit a Considerable Concentration of Phenols. Eur. J. Lipid Sci. Technol. 2016, 118, 299–307. DOI: 10.1002/ejlt.201400337.
  • Arroyo-Manzanares, N.; Gabriel, F.; Carpio, A.; Arce, L. Use of Whole Electrophoretic Profile and Chemometric Tools for the Differentiation of Three Olive Oil Qualities. Talanta 2019, 197, 175–180. DOI: 10.1016/j.talanta.2019.01.031.
  • Jurado-Campos, N.; Arroyo-Manzanares, N.; Viñas, P.; Arce, L. Quality Authentication of Virgin Olive Oils Using Orthogonal Techniques and Chemometrics Based on Individual and High-Level Data Fusion Information. Talanta 2020, 219, 121260. DOI: 10.1016/j.talanta.2020.121260.
  • Cañizares-Macías, M. P.; García-Mesa, J. A.; Luque de Castro, M. D. Determination of the Oxidative Stability of Olive Oil, Using Focused-Microwave Energy to Accelerate the Oxidation Process. Anal. Bioanal. Chem. 2004, 378, 479–483. DOI: 10.1007/s00216-003-2280-8.
  • Valgimigli, L.; Sanjust, E.; Curreli, N.; Rinaldi, A.; Pedulli, G. F.; Rescigno, A. Photometric Assay for Polyphenol Oxidase Activity in Olives, Olive Pastes, and Virgin Olive Oils. J. Amer. Oil Chem. Soc. 2001, 78, 1245–1248. DOI: 10.1007/s11745-001-0420-y.
  • Kamvissis, V. N.; Barbounis, E. G.; Megoulas, N. C.; Koupparis, M. A. A Novel Photometric Method for Evaluation of the Oxidative Stability of Virgin Olive Oils. J. AOAC Int. 2008, 91, 794–801. DOI: 10.1093/jaoac/91.4.794.
  • Lara-Ortega, F. J.; Sainz-Gonzalo, F. J.; Gilbert-López, B.; García-Reyes, J. F.; Molina-Díaz, A. Multicommuted Flow Injection Method for Fast Photometric Determination of Phenolic Compounds in Commercial Virgin Olive Oil Samples. Talanta 2016, 147, 531–536. DOI: 10.1016/j.talanta.2015.10.015.
  • Kružlicová, D.; Mocák, J.; Katsoyannos, E.; Lankmayr, E. Classification and Characterization of Olive Oils by UV-Vis Absorption Spectrometry and Sensorial Analysis. J. Food Nutr. Res. 2008, 47, 181–188.
  • Gracian, J. The Chemistry and Analysis of Olive Oil. in: H.A. Boekenoogen (Ed), Analysis and Characterization of Oils, Fats and Fat Products, Wiley, London, 1968, pp 315–366
  • Guimet, F.; Ferré, J.; Boqué, R. Rapid Detection of Olive Pomace Oil Adulteration in Extra Virgin Olive Oils from the Protected Denomination of Origin “Siurana” Using Excitation–Emission Fluorescence Spectroscopy and Three-Way Methods of Analysis. Anal. Chim. Acta. 2005, 544, 143–152. DOI: 10.1016/j.aca.2005.02.013.
  • Poulli, K. I.; Mousdis, G. A.; Georgiou, C. A. Monitoring Olive Oil Oxidation under Thermal and UV Stress through Synchronous Fluorescence Spectroscopy and Classical Assays. Food Chem. 2009, 117, 499–503. DOI: 10.1016/j.foodchem.2009.04.024.
  • Kongbong, Y. M.; Ghalila, H.; Majdi, Y.; Feudjio, W. M.; Lakhdar, Z. B. Investigation of Heat‑Induced Degradation of Virgin Olive Oil Using Front Face Fluorescence Spectroscopy and Chemometric Analysis. J. Am. Oil Chem. Soc. 2015, 92, 1399–1404. DOI: 10.1007/s11746-015-2704-6.
  • Kassouf, A.; Rakwe, MEl.; Chebib, H.; Ducruet, V.; Rutledge, D. N.; Maalouly, J. Independent Components Analysis Coupled with 3D-Front-Face Fluorescence Spectroscopy to Study the Interaction between Plastic Food Packaging and Olive Oil. Anal. Chim. Acta. 2014, 839, 14–25. DOI: 10.1016/j.aca.2014.06.035.
  • Papoti, V. T.; Tsimidou, M. Z. Looking through the Qualities of a Fluorimetric Assay for the Total Phenol Content Estimation in Virgin Olive Oil, Olive Fruit or Leaf Polar Extract. Food Chem. 2009, 112, 246–252. DOI: 10.1016/j.foodchem.2008.05.081.
  • Zhang, X. F.; Zou, M. Q.; Qi, X. H.; Liu, F.; Zhang, C.; Yin, F. Quantitative Detection of Adulterated Olive Oil by Raman Spectroscopy and Chemometrics. J. Raman Spectrosc. 2011, 42, 1784–1788. DOI: 10.1002/jrs.2933.
  • Zhang, X. F.; Qi, X. H.; Zou, M. Q.; Liu, F. Rapid Authentication of Olive Oil by Raman Spectroscopy Using Principal Component Analysis. Anal. Lett. 2011, 44, 2209–2220. DOI: 10.1080/00032719.2010.546030.
  • Zou, M. Q.; Zhang, X. F.; Qi, X. H.; Ma, H. L.; Dong, Y.; Liu, C. W.; Guo, X.; Wang, H. Rapid Authentication of Olive Oil Adulteration by Raman Spectrometry. J. Agric. Food Chem. 2009, 57, 6001–6006. DOI: 10.1021/jf900217s.
  • Tiryaki, G. Y.; Ayvaz, H. Quantification of Soybean Oil Adulteration in Extra Virgin Olive Oil Using Portable Raman Spectroscopy. Food Measure. 2017, 11, 523–529. DOI: 10.1007/s11694-016-9419-8.
  • Ryoo, D.; Hwang, J.; Chung, H. Probing Temperature Able to Improve Raman Spectroscopic Discrimination of Adulterated Olive Oils. Microchem. J 2017, 134, 224–229. DOI: 10.1016/j.microc.2017.06.002.
  • Sánchez-López, E.; Sánchez-Rodríguez, M. I.; Marinas, A.; Marinas, J. M.; Urbano, F. J.; Caridad, J. M.; Moalem, M. Chemometric Study of Andalusian Extra Virgin Olive Oils Raman Spectra: Qualitative and Quantitative Information. Talanta 2016, 156-157, 180–190. DOI: 10.1016/j.talanta.2016.05.014.
  • Korifi, R.; Dréau, Y.; Molinet, L. J.; Artaud, J.; Dupuy, N. Composition and Authentication of Virgin Olive Oil from French PDO Regions by Chemometric Treatment of Raman Spectra. J. Raman Spectrosc. 2011, 42, 1540–1547. DOI: 10.1002/jrs.2891.
  • Muik, B.; Lendl, B.; Molina-Dıaz, A.; Ayora-Cañada, M. J. Direct, Reagent-Free Determination of Free Fatty Acid Content in Olive Oil and Olives by Fourier Transform Raman Spectrometry. Anal. Chim. Acta. 2003, 487, 211–220. DOI: 10.1016/S0003-2670(03)00560-9.
  • El-Abassy, R. M.; Donfack, P.; Materny, A. Rapid Determination of Free Fatty Acid in Extra Virgin Olive Oil by Raman Spectroscopy and Multivariate Analysis. J. Am. Oil Chem. Soc. 2009, 86, 507–511. DOI: 10.1007/s11746-009-1389-0.
  • Qiu, J.; Hou, H. Y.; Yang, I. S.; Chen, X. B. Raman Spectroscopy Analysis of Free Acid in Olive Oil. Appl. Sci-Basel 2019, 9, 4510. DOI: 10.3390/app9214510.
  • Guzmán, E.; Baeten, V.; Fernández Pierna, J. A.; García-Mesa, J. A. Application of Low-Resolution Raman Spectroscopy for the Analysis of Oxidized Olive Oil. Food Control 2011, 22, 2036–2040. DOI: 10.1016/j.foodcont.2011.05.025.
  • Laroussi-Mezghani, S.; Vanloot, P.; Molinet, J.; Dupuy, N.; Hammami, M.; Grati-Kamoun, N.; Artaud, J. Authentication of Tunisian Virgin Olive Oils by Chemometric Analysis of Fatty Acid Compositions and NIR Spectra. Comparison with Maghrebian and French Virgin Olive Oils. Food Chem. 2015, 173, 122–132. DOI: 10.1016/j.foodchem.2014.10.002.
  • Peršurić, Ž.; Saftić, L.; Mašek, T.; Pavelić, S. K. Comparison between Triacylglycerol Analysis by MALDI-TOF/MS, Fatty Acid Analysis by GC-MS and NIRS Combined with Chemometrics in Determination of Extra Virgin Olive Oil Geographical Origin. A Case Study. LWT-Food Sci. Technol 2018, 95, 326–332. DOI: 10.1016/j.lwt.2018.04.072.
  • Azizian, H.; Mossoba, M. M.; Fardin‑Kia, A. R.; Delmonte, P.; Karunathilaka, S. R.; Kramer, J. K. G. Novel, Rapid Identification, and Quantification of Adulterants in Extra Virgin Olive Oil Using Near-Infrared Spectroscopy and Chemometrics . Lipids 2015, 50, 705–718. DOI: 10.1007/s11745-015-4038-4.
  • Mossoba, M. M.; Azizian, H.; Fardin‑Kia, A. R.; Karunathilaka, S. R.; Kramer, J. K. G. First Application of Newly Developed FT-NIR Spectroscopic Methodology to Predict Authenticity of Extra Virgin Olive Oil Retail Products in the USA . Lipids 2017, 52, 443–455. DOI: 10.1007/s11745-017-4250-5.
  • Cayuela, J. A. Rapid NIR Determination of Alkyl Esters in Virgin Olive Oil. Grasas Aceites 2017, 68, 195–203. DOI: 10.3989/gya.1275162.
  • Garrido-Varo, A.; Sánchez, M. T.; De la Haba, M. J.; Torres, I.; Pérez-Marín, D. Fast, Low-Cost and Non-Destructive Physico-Chemical Analysis of Virgin Olive Oils Using near-Infrared Reflectance Spectroscopy. Sensors 2017, 17, 2642–2657. DOI: 10.3390/s17112642.
  • Inarejos-García, A. M.; Gómez-Alonso, S.; Fregapane, G.; Salvador, M. D. Evaluation of Minor Components, Sensory Characteristics and Quality of Virgin Olive Oil by near Infrared (NIR) Spectroscopy. Food Res. Int. 2013, 50, 250–258. DOI: 10.1016/j.foodres.2012.10.029.
  • Mora-Ruiz, M. E.; Reboredo-Rodríguez, P.; Salvador, M. D.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J.; Fregapane, G. Assessment of Polar Phenolic Compounds of Virgin Olive Oil by NIR and mid-IR Spectroscopy and Their Impact on Quality. Eur. J. Lipid Sci. Technol. 2017, 119, 1600099–1600106. DOI: 10.1002/ejlt.201600099.
  • Gila, D. M. M.; Marchal, P. C.; Ortega, J. G.; García, J. G. Non-Invasive Methodology to Estimate Polyphenol Content in Extra Virgin Olive Oil Based on Stepwise Multilinear Regression. Sensors 2018, 18, 975.
  • Sinelli, N.; Cerretani, L.; Egidio, V. D.; Bendini, A.; Casiraghi, E. Application of near (NIR) Infrared and Mid (MIR) Infrared Spectroscopy as a Rapid Tool to Classify Extra Virgin Olive Oil on the Basis of Fruity Attribute Intensity. Food Res. Int. 2010, 43, 369–375. DOI: 10.1016/j.foodres.2009.10.008.
  • Commission Regulation (EEC) No. 640/2008 Amending Regulation No. 2568/91/EEC. Official J. 1991, L178, 11–16.
  • Apetrei, I. M.; Apetrei, C. Detection of Olive Oil Adulteration Using a Voltammetric e-Tongue. Comput. Electron. Agr 2014, 108, 148–154. DOI: 10.1016/j.compag.2014.08.002.
  • Tsopelas, F.; Konstantopoulos, D.; Kakoulidou, A. T. Voltammetric Fingerprinting of Oils and Its Combination with Chemometrics for the Detection of Extra Virgin Olive Oil Adulteration. Anal. Chim. Acta. 2018, 1015, 8–19. DOI: 10.1016/j.aca.2018.02.042.
  • Harzalli, U.; Rodrigues, N.; Veloso, A. C. A.; Dias, L. G.; Pereira, J. A.; Oueslati, S.; Peres, A. M. A Taste Sensor Device for Unmasking Admixing of Rancid or Winey-Vinegary Olive Oil to Extra Virgin Olive Oil. Comput. Electron. Agr 2018, 144, 222–231. DOI: 10.1016/j.compag.2017.12.016.
  • Skládal, P. Smart Bioelectronic Tongues for Food and Drinks Control. Trends Anal. Chem. 2020, 127, 115887. DOI: 10.1016/j.trac.2020.115887.
  • Zappi, D.; Sadun, C.; Gontrani, L.; Dini, D.; Antonelli, M. L. A New Electrochemical Sensor for Extra-Virgin Olive Oils Classification. Food Control 2020, 109, 106903. DOI: 10.1016/j.foodcont.2019.106903.
  • Grossi, M.; Lecce, G. D.; Toschi, T. G.; Riccò, B. A Novel Electrochemical Method for Olive Oil Acidity Determination. Microelectr. J 2014, 45, 1701–1707. DOI: 10.1016/j.mejo.2014.07.006.
  • Morales, M. T.; Aparicio, R. Effect of Extraction Conditions on Sensory Quality of Virgin Olive Oil. J. Amer. Oil Chem. Soc. 1999, 76, 295–300. DOI: 10.1007/s11746-999-0234-9.
  • Baldo, M. A.; Oliveri, P.; Simonetti, R.; Daniele, S. A Novel Electroanalytical Approach Based on the Use of a Room Temperature Ionic Liquid for the Determination of Olive Oil Acidity. Talanta 2016, 161, 881–887. DOI: 10.1016/j.talanta.2016.09.045.
  • Fernández, E.; Vidal, L.; Canals, A. Rapid Determination of Hydrophilic Phenols in Olive Oil by Vortex-Assisted Reversed-Phase Dispersive Liquid-Liquid Microextraction and Screen-Printed Carbon Electrodes. Talanta 2018, 181, 44–51. DOI: 10.1016/j.talanta.2017.12.075.
  • Rodrigues, N.; Dias, L. G.; Veloso, A. C. A.; Pereira, J. A.; Peres, A. M. Monitoring Olive Oils Quality and Oxidative Resistance during Storage Using an Electronic Tongue. LWT-Food Sci. Technol 2016, 73, 683–692. DOI: 10.1016/j.lwt.2016.07.002.
  • Marx, I. M. G.; Casal, S.; Rodrigues, N.; Veloso, A. C. A.; Pereira, J. A.; Peres, A. M. Estimating Hydroxytyrosol-Tyrosol Derivatives Amounts in cv. Cobrançosa Olive Oils Based on the Electronic Tongue Analysis of Olive Paste Extracts. LWT 2021, 147, 111542. DOI: 10.1016/j.lwt.2021.111542.
  • Rodrigues, N.; Dias, L. G.; Veloso, A. C. A.; Pereira, J. A.; Peres, A. M. Evaluation of Extra‑Virgin Olive Oils Shelf Life Using an Electronic Tongue-Chemometric Approach. Eur. Food Res. Technol. 2017, 243, 597–607. DOI: 10.1007/s00217-016-2773-2.
  • Rodrigues, N.; Marx, Í. M. G.; Casal, S.; Dias, L. G.; Veloso, A. C. A.; Pereira, J. A.; Peres, A. M. Application of an Electronic Tongue as a Single-Run Tool for Olive Oils' Physicochemical and Sensory Simultaneous Assessment . Talanta 2019, 197, 363–373. DOI: 10.1016/j.talanta.2019.01.055.
  • Tahri, K.; Duarte, A. A.; Carvalho, G.; Ribeiro, P. A.; Gomes da Silva, M.; Mendes, D.; Bari, N. E.; Raposo, M.; Bouchikhia, B. Distinguishment, Identification and Aroma Compound Quantification of Portuguese Olive Oils Based on Physicochemical Attributes, HS-GC/MS Analysis and Voltammetric Electronic Tongue. J. Sci. Food Agric. 2018, 98, 681–690. DOI: 10.1002/jsfa.8515.
  • Buratti, S.; Malegori, C.; Benedetti, S.; Oliveri, P.; Giovanelli, G. E-nose, e-Tongue and e-Eye for Edible Olive Oil Characterization and Shelf Life Assessment: A Powerful Data Fusion Approach. Talanta 2018, 182, 131–141. DOI: 10.1016/j.talanta.2018.01.096.
  • Marx, I. M. G.; Rodrigues, N.; Veloso, A. C. A.; Casal, S.; Pereira, J. A.; Peres, A. M. Effect of Malaxation Temperature on the Physicochemical and Sensory Quality of cv. Cobrançosa Olive Oil and Its Evaluation Using an Electronic Tongue. LWT 2021, 137, 110426. DOI: 10.1016/j.lwt.2020.110426.
  • Martínez- Gila, D. A.; Gámez-García, J.; Bellincontro, A.; Mencarelli, F.; Gómez-Ortega, J. Fast Tool Based on Electronic Nose to Predict Olive Fruit Quality after Harvest. Postharvest Biol. Technol. 2020, 160, 111058. DOI: 10.1016/j.postharvbio.2019.111058.
  • Kirk, A. T.; Bohnhorst, A.; Raddatz, C. R.; Allers, M.; Zimmermann, S. Ultra-High-Resolution Ion Mobility Spectrometry-Current Instrumentation, Limitations, and Future Developments. Anal. Bioanal. Chem. 2019, 411, 6229–6246. DOI: 10.1007/s00216-019-01807-0.
  • Hernández-Mesa, M.; Ropartz, D.; García-Campaña, A. M.; Rogniaux, H.; Dervilly-Pinel, G.; Bizec, B. L. Ion Mobility Spectrometry in Food Analysis: Principles, Current Applications and Future Trends. Molecules 2019, 24, 2706. DOI: 10.3390/molecules24152706.
  • Liu, L.; Hu, C.; Liu, L.; Zhang, S.; Chen, K.; He, D. Rapid Detection and Separation of Olive Oil and Camellia Oil Based on Ion Mobility Spectrometry Fingerprints and Chemometric Models. Eur. J. Lipid Sci. Technol. 2017, 119, 1500463. DOI: 10.1002/ejlt.201500463.
  • Garrido-Delgado, R.; Muñoz-Pérez, M. E.; Arce, L. Detection of Adulteration in Extra Virgin Olive Oils by Using UV-IMS and Chemometric Analysis. Food Control 2018, 85, 292–299. DOI: 10.1016/j.foodcont.2017.10.012.
  • Garrido-Delgado, R.; Mercader-Trejo, F.; Sielemann, S.; De Bruyn, W.; Arce, L.; Valcárcel, M. Direct Classification of Olive Oils by Using Two Types of Ion Mobility Spectrometers. Anal. Chim. Acta. 2011, 696, 108–115. DOI: 10.1016/j.aca.2011.03.007.
  • Zellner, B. A.; Dugo, P.; Dugo, G.; Mondello, L. Gas Chromatography-Olfactometry in Food Flavour Analysis. J. Chromatogr. A. 2008, 1186, 123–143. DOI: 10.1016/j.chroma.2007.09.006.
  • Grossi, M.; Lecce, G. D.; Toschi, T. G.; Riccò, B. Fast and Accurate Determination of Olive Oil Acidity by Electrochemical Impedance Spectroscopy. IEEE Sensors J. 2014, 14, 2947–2954. DOI: 10.1109/JSEN.2014.2321323.
  • Reiners, J.; Grosch, W. Odorants of Virgin Olive Oils with Different Flavor Profiles. J. Agric. Food Chem. 1998, 46, 2754–2763. DOI: 10.1021/jf970940b.
  • Amanpour, A.; Kelebek, H.; Kesen, S.; Selli, S. Characterization of Aroma-Active Compounds in Iranian cv. Mari Olive Oil by Aroma Extract Dilution Analysis and GC-MS-Olfactometry. J. Am. Oil Chem. Soc. 2016, 93, 1595–1603. DOI: 10.1007/s11746-016-2906-6.
  • Kesen, S.; Kelebek, H.; Sen, K.; Ulas, M.; Selli, S. GC-MS-Olfactometric Characterization of the Key Aroma Compounds in Turkish Olive Oils by Application of the Aroma Extract Dilution Analysis. Food Res. Int. 2013, 54, 1987–1994. DOI: 10.1016/j.foodres.2013.09.005.
  • Kesen, S.; Kelebek, H.; Selli, S. Characterization of the Key Aroma Compounds in Turkish Olive Oils from Different Geographic Origins by Application of Aroma Extract Dilution Analysis (AEDA). J. Agric. Food Chem. 2014, 62, 391–401. DOI: 10.1021/jf4045167.
  • Pérez-Castaño, E.; Medina-Rodríguez, S.; Bagur-González, M. G. Discrimination and Classification of Extra Virgin Olive Oil Using a Chemometric Approach Based on TMS-4,4'-desmetylsterols GC(FID) fingerprints of edible vegetable oils . Food Chem. 2019, 274, 518–525. DOI: 10.1016/j.foodchem.2018.08.128.
  • Gázquez-Evangelista, D.; Pérez-Castaño, E.; Sánchez-Viñas, M.; Bagur-González, M. G. Using Offline HPLC-GC-FID 4-Desmethylsterols Concentration Profiles, Combined with Chemometric Tools, to Discriminate Different Vegetable Oils. Food Anal. Methods 2014, 7, 912–925. DOI: 10.1007/s12161-013-9773-7.
  • Gorassini, A.; Verardo, G.; Bortolomeazzi, R. Polymeric Reversed Phase and Small Particle Size Silica Gel Solid Phase Extractions for Rapid Analysis of Sterols and Triterpene Dialcohols in Olive Oils by GC-FID. Food Chem. 2019, 283, 177–182. DOI: 10.1016/j.foodchem.2018.12.120.
  • Melucci, D.; Bendini, A.; Tesini, F.; Barbieri, S.; Zappi, A.; Vichi, S.; Conte, L.; Toschi, T. G. Rapid Direct Analysis to Discriminate Geographic Origin of Extra Virgin Olive Oils by Flash Gas Chromatography Electronic Nose and Chemometrics. Food Chem. 2016, 204, 263–273. DOI: 10.1016/j.foodchem.2016.02.131.
  • Monfreda, M.; Gobbi, L.; Grippa, A. Blends of Olive Oil and Sunflower Oil: Characterisation and Olive Oil Quantification Using Fatty Acid Composition and Chemometric Tools. Food Chem. 2012, 134, 2283–2290. DOI: 10.1016/j.foodchem.2012.03.122.
  • Monfreda, M.; Gobbi, L.; Grippa, A. Blends of Olive Oil and Seeds Oils: Characterisation and Olive Oil Quantification Using Fatty Acids Composition and Chemometric Tools. Part II. Food Chem. 2014, 145, 584–592. DOI: 10.1016/j.foodchem.2013.07.141.
  • Berlioz, B.; Cordella, C.; Cavalli, J.-F.; Lizzani-Cuvelier, L.; Loiseau, A.-M.; Fernandez, X. Comparison of the Amounts of Volatile Compounds in French Protected Designation of Origin Virgin Olive Oils. J. Agric. Food Chem. 2006, 54, 10092–10101. DOI: 10.1021/jf061796+.
  • Ben Mansour, A.; Gargouri, B.; Flamini, G.; Bouaziz, M. Effect of Agricultural Sites on Differentiation between Chemlali and Neb Jmel Olive Oils. J. Oleo Sci. 2015, 64, 381–392. DOI: 10.5650/jos.ess14204.
  • Vichi, S.; Pizzale, L.; Conte, L. S.; Buxaderas, S.; López-Tamames, E. Solid-Phase Microextraction in the Analysis of Virgin Olive Oil Volatile Fraction: Characterization of Virgin Olive Oils from Two Distinct Geographical Areas of Northern Italy. J. Agric. Food Chem. 2003, 51, 6572–6577. DOI: 10.1021/jf030269c.
  • Bajoub, A.; Sánchez-Ortiz, A.; Ajal, E. A.; Ouazzani, N.; Fernández-Gutiérrez, A.; Beltrán, G.; Carrasco-Pancorbo, A, others First Comprehensive Characterization of Volatile Profile of North Moroccan Olive Oils: A Geographic Discriminant Approach. Food Res. Int. 2015, 76, 410–417., DOI: 10.1016/j.foodres.2015.05.043.
  • Dorota, D.; Rupert, M.; Wołosiak, R.; Bzducha-Wróbel, A.; Ścibisz, I.; Matuszewska-Janica, A. Volatiles as Markers of Bioactive Components Found in Croatian Extra Virgin Olive Oils. LWT 2021, 139, 110532. DOI: 10.1016/j.lwt.2020.110532.
  • Kritioti, A.; Menexes, G.; Drouza, C. Chemometric Characterization of Virgin Olive Oils of the Two Major Cypriot Cultivars Based on Their Fatty Acid Composition. Food Res. Int. 2018, 103, 426–437. DOI: 10.1016/j.foodres.2017.10.064.
  • Uluata, S.; Altuntaş, Ü.; Özçelik, B. Biochemical Characterization of Arbequina Extra Virgin Olive Oil Produced in Turkey. J. Am. Oil Chem. Soc. 2016, 93, 617–626. DOI: 10.1007/s11746-016-2811-z.
  • Kosma, I.; Vavoura, M.; Kontakos, S.; Karabagias, I.; Kontominas, M.; Apostolos, K.; Badeka, A. Characterization and Classification of Extra Virgin Olive Oil from Five Less Well-Known Greek Olive Cultivars. J. Am. Oil Chem. Soc. 2016, 93, 837–848. DOI: 10.1007/s11746-016-2822-9.
  • Kosma, I.; Badeka, A.; Vatavali, K.; Kontakos, S.; Kontominas, M. Differentiation of Greek Extra Virgin Olive Oils according to Cultivar Based on Volatile Compound Analysis and Fatty Acid Composition. Eur. J. Lipid Sci. Technol. 2016, 118, 849–861. DOI: 10.1002/ejlt.201500293.
  • Quintanilla-Casas, B.; Bertin, S.; Leik, K.; Bustamante, J.; Guardiola, F.; Valli, E.; Bendini, A.; Toschi, T. G.; Tres, A.; Vichi, S. Profiling versus Fingerprinting Analysis of Sesquiterpene Hydrocarbons for the Geographical Authentication of Extra Virgin Olive Oils. Food Chem. 2020, 307, 125556. DOI: 10.1016/j.foodchem.2019.125556.
  • Abbatangelo, M.; Núñez-Carmona, E.; Duina, G.; Sberveglieri, V. Multidisciplinary Approach to Characterizing the Fingerprint of Italian EVOO. Molecules 2019, 24, 1457. DOI: 10.3390/molecules24081457.
  • Crews, C.; Pye, C.; Macarthur, R. An Improved Rapid Stigmastadiene Test to Detect Addition of Refined Oil to Extra Virgin Olive Oil. Food Res. Int. 2014, 60, 117–122. DOI: 10.1016/j.foodres.2013.11.023.
  • Arslan, D.; Karabekir, Y.; Schreiner, M. Variations of Phenolic Compounds, Fatty Acids and Some Qualitative Characteristics of Sarıulak Olive Oil as Induced by Growing Area. Food Res. Int. 2013, 54, 1897–1906. DOI: 10.1016/j.foodres.2013.06.016.
  • Pizarro, C.; Rodríguez-Tecedor, S.; Pérez-del-Notario, N.; González-Sáiz, J. M. Recognition of Volatile Compounds as Markers in Geographical Discrimination of Spanish Extra Virgin Olive Oils by Chemometric Analysis of Non-Specific Chromatography Volatile Profiles. J. Chromatogr. A. 2011, 1218, 518–523. DOI: 10.1016/j.chroma.2010.11.045.
  • Olmo-García, L.; Polari, J. J.; Li, X.; Bajoub, A.; Fernández-Gutiérrez, A.; Wang, S. C.; Carrasco-Pancorbo, A. Study of the Minor Fraction of Virgin Olive Oil by a Multi-Class GC-MS Approach: Comprehensive Quantitative Characterization and Varietal Discrimination Potential. Food Res. Int. 2019, 125, 108649. DOI: 10.1016/j.foodres.2019.108649.
  • Ruiz-Samblás, C.; Cuadros-Rodríguez, L.; González-Casado, A.; de, F.; García, P. R.; de la Mata-Espinosa, P.; Bosque-Sendra, J. M. Multivariate Analysis of HT/GC-(IT)MS Chromatographic Profiles of Triacylglycerol for Classification of Olive Oil Varieties . Anal. Bioanal. Chem. 2011, 399, 2093–2103. DOI: 10.1007/s00216-010-4423-z.
  • Vekiari, S. A.; Oreopoulou, V.; Kourkoutas, Y.; Kamoun, N.; Msallem, M.; Psimouli, V.; Arapoglou, D. Characterization and Seasonal Variation of the Quality of Virgin Olive Oil of the Throumbolia and Koroneiki Varieties from Southern Greece. Grasas Aceites 2010, 61, 221–231. DOI: 10.3989/gya.108709.
  • Bajoub, A.; Pacchiarotta, T.; Hurtado-Fernández, E.; Olmo-García, L.; García-Villalba, R.; Fernández-Gutiérrez, A.; Mayboroda, O. A.; Carrasco-Pancorbo, A. Comparing Two Metabolic Profiling Approaches (Liquid Chromatography and Gas Chromatography Coupled to Mass Spectrometry) for Extra-Virgin Olive Oil Phenolic Compounds Analysis: A Botanical Classification Perspective. J. Chromatogr. A. 2016, 1428, 267–279. DOI: 10.1016/j.chroma.2015.10.059.
  • Troya, F.; Lerma-García, M. J.; Herrero-Martínez, J. M.; Simó-Alfonso, E. F. Classification of Vegetable Oils according to Their Botanical Origin Using n-Alkane Profiles Established by GC-MS. Food Chem. 2015, 167, 36–39. DOI: 10.1016/j.foodchem.2014.06.116.
  • Ghisoni, S.; Lucini, L.; Angilletta, F.; Rocchetti, G.; Farinelli, D.; Tombesi, S.; Trevisan, M. Discrimination of Extra-Virgin-Olive Oils from Different Cultivars and Geographical Origins by Untargeted Metabolomics. Food Res. Int. 2019, 121, 746–753. DOI: 10.1016/j.foodres.2018.12.052.
  • Zhu, H.; Tang, S.; Shoemaker, C. F.; Wang, S. C. Characterization of Volatile Compounds of Virgin Olive Oil Originating from the USA. J. Am. Oil Chem. Soc. 2015, 92, 77–85. DOI: 10.1007/s11746-014-2572-5.
  • Damascelli, A.; Palmisano, F. Sesquiterpene Fingerprinting by Headspace SPME-GC-MS: Preliminary Study for a Simple and Powerful Analytical Tool for Traceability of Olive Oils. Food Anal. Methods 2013, 6, 900–905. DOI: 10.1007/s12161-012-9500-9.
  • Pouliarekou, E.; Badeka, A.; Tasioula-Margari, M.; Kontakos, S.; Longobardi, F.; Kontominas, M. G. Characterization and Classification of Western Greek Olive Oils according to Cultivar and Geographical Origin Based on Volatile Compounds. J. Chromatogr. A. 2011, 1218, 7534–7542. DOI: 10.1016/j.chroma.2011.07.081.
  • Quintanilla-Casas, B.; Marin, M.; Guardiola, F.; García-González, D. L.; Barbieri, S.; Bendini, A.; Gallina Toschi, T.; Vichi, S.; Tres, A. Supporting the Sensory Panel to Grade Virgin Olive Oils: An in-House-Validated Screening Tool by Volatile Fingerprinting and Chemometrics. Foods 2020, 9, 1509. DOI: 10.3390/foods9101509.
  • Antonini, E.; Farina, A.; Leone, A.; Mazzara, E.; Urbani, S.; Selvaggini, R.; Servili, M.; Ninfali, P. Phenolic Compounds and Quality Parameters of Family Farming versus Protected Designation of Origin (PDO) Extra-Virgin Olive Oils. J. Food Compos. Anal. 2015, 43, 75–81. DOI: 10.1016/j.jfca.2015.04.015.
  • del Monaco, G.; Officioso, A.; D'Angelo, S.; La Cara, F.; Ionata, E.; Marcolongo, L.; Squillaci, G.; Maurelli, L.; Morana, A. Characterization of Extra Virgin Olive Oils Produced with Typical Italian Varieties by Their Phenolic Profile. Food Chem. 2015, 184, 220–228. DOI: 10.1016/j.foodchem.2015.03.071.
  • Romero, M. P.; Tovar, M. J.; Girona, J.; Motilva, M. J. Changes in the HPLC Phenolic Profile of Virgin Olive Oil from Young Trees (Olea europaea L. Cv. Arbequina) Grown under Different Deficit Irrigation Strategies. J. Agric. Food Chem. 2002, 50, 5349–5354. DOI: 10.1021/jf020357h.
  • Deflaoui, L.; Setyaningsih, W.; Palma, M.; Mekhoukhe, A.; Tamendjari, A. Phenolic Compounds in Olive Oil by Solid Phase Extraction—Ultra Performance Liquid Chromatography—Photodiode Array Detection for Varietal Characterization. Arabian J. Chem. 2021, 14, 103102. DOI: 10.1016/j.arabjc.2021.103102.
  • Alkan, D.; Tokatli, F.; Ozen, B. Phenolic Characterization and Geographical Classification of Commercial Extra Virgin Olive Oils Produced in Turkey. J. Am. Oil Chem. Soc. 2012, 89, 261–268. DOI: 10.1007/s11746-011-1917-6.
  • Farrés-Cebrián, M.; Seró, R.; Saurina, J.; Núñez, O. HPLC-UV Polyphenolic Profiles in the Classification of Olive Oils and Other Vegetable Oils via Principal Component Analysis. Separations 2016, 3, 33. DOI: 10.3390/separations3040033.
  • Cichelli, A.; Pertesana, G. P. High-Performance Liquid Chromatographic Analysis of Chlorophylls, Pheophytins and Carotenoids in Virgin Olive Oils: Chemometric Approach to Variety Classification. J. Chromatogr. A. 2004, 1046, 141–146. DOI: 10.1016/S0021-9673(04)01061-1.
  • Nagy, K.; Bongiorno, D.; Avellone, G.; Agozzino, P.; Ceraulo, L.; Vékey, K. High Performance Liquid Chromatography-Mass Spectrometry Based Chemometric Characterization of Olive Oils. J. Chromatogr. A. 2005, 1078, 90–97. DOI: 10.1016/j.chroma.2005.05.008.
  • LIsa, M.; Holcapek, M.; Bohac, M. Statistical Evaluation of Triacylglycerol Composition in Plant Oils Based on High-Performance Liquid Chromatography- Atmospheric Pressure Chemical Ionization Mass Spectrometry Data. J. Agric. Food Chem. 2009, 57, 6888–6898.
  • Abdallah, M.; Vergara-Barberán, M.; Lerma-García, M. J.; Herrero-Martínez, J. M.; Zarrouk, M.; Guerfel, M.; Simó-Alfonso, E. F. Sterol Profiles of Tunisian Virgin Olive Oils: Classification among Different Cultivars and Maturity Indexes. Eur. Food Res. Technol. 2018, 244, 675–684. DOI: 10.1007/s00217-017-2990-3.
  • Lerma-García, M. J.; Concha-Herrera, V.; Herrero-Martínez, J. M.; Simó-Alfonso, E. F. Classification of Extra Virgin Olive Oils Produced at La Comunitat Valenciana according to Their Genetic Variety Using Sterol Profiles Established by High-Performance Liquid Chromatography with Mass Spectrometry Detection. J. Agric. Food Chem. 2009, 57, 10512–10517. DOI: 10.1021/jf902322c.
  • Negro, C.; Aprile, A.; Luvisi, A.; Nicolì, F.; Nutricati, E.; Vergine, M.; Miceli, A.; Blando, F.; Sabella, E.; Bellis, L. D. Phenolic Profile and Antioxidant Activity of Italian Monovarietal Extra Virgin Olive Oils. Antioxidants 2019, 8, 161. DOI: 10.3390/antiox8060161.
  • Ricciutelli, M.; Marconi, S.; Boarelli, M. C.; Caprioli, G.; Sagratini, G.; Ballini, R.; Fiorini, D. Olive Oil Polyphenols: A Quantitative Method by High-Performance Liquid-Chromatography-Diode-Array Detection for Their Determination and the Assessment of the Related Health Claim. J. Chromatogr. A. 2017, 1481, 53–63. DOI: 10.1016/j.chroma.2016.12.020.
  • Žanetić, M.; Cerretani, L.; Škevin, D.; Politeo, O.; Vitanović, E.; Jukić-Špika, M.; Perica, S.; Ožić, M. Influence of Polyphenolic Compounds on the Oxidative Stability of Virgin Olive Oils from Selected Autochthonous Varieties. J. Food Agric. Env. 2013, 11, 126–131.
  • Ammar, S.; Kelebek, H.; Zribi, A.; Abichou, M.; Selli, S.; Bouaziz, M. LC-DAD/ESI-MS/MS Characterization of Phenolic Constituents in Tunisian Extra-Virgin Olive Oils: Effect of Olive Leaves Addition on Chemical Composition. Food Res. Int. 2017, 100, 477–485. DOI: 10.1016/j.foodres.2016.11.001.
  • Kesen, S.; Kelebek, H.; Selli, S. LC-ESI-MS Characterization of Phenolic Profiles Turkish Olive Oils as Influenced by Geographic Origin and Harvest Year. J. Am. Oil Chem. Soc. 2014, 91, 385–394. DOI: 10.1007/s11746-013-2380-3.
  • la Torre-Carbot, K.; Jauregui, O.; Gimeno, E.; Castellote, A. I.; Lamuela-Raventós, R. M.; López-Sabater, M. C. Characterization and Quantification of Phenolic Compounds in Olive Oils by Solid-Phase Extraction, HPLC-DAD, and HPLC-MS/MS. J. Agric. Food Chem. 2005, 53, 4331–4340. DOI: 10.1021/jf0501948.
  • Ouni, Y.; Taamalli, A.; Gómez-Caravaca, A. M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Zarrouk, M. Characterisation and Quantification of Phenolic Compounds of Extra-Virgin Olive Oils according to Their Geographical Origin by a Rapid and Resolutive LC-ESI-TOF MS Method. Food Chem. 2011, 127, 1263–1267. DOI: 10.1016/j.foodchem.2011.01.068.
  • Taamalli, A.; Román, D. A.; Zarrouk, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Classification of “'Chemlali' Accessions According to the geographical Area Using Chemometric Methods of Phenolic Profiles Analysed by HPLC-ESI-TOF-MS”. Food Chem. 2012, 132, 561–566. DOI: 10.1016/j.foodchem.2011.10.070.
  • Bakhouche, A.; Lozano-Sánchez, J.; Beltrán-Debón, R.; Joven, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic Characterization and Geographical Classification of Commercial Arbequina Extra-Virgin Olive Oils Produced in Southern Catalonia. Food Res. Int. 2013, 50, 401–408. DOI: 10.1016/j.foodres.2012.11.001.
  • Taamalli, A.; Gómez-Caravaca, A. M.; Zarrouk, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of Apolar and Minor Polar Compounds and Other Chemical Parameters for the Discrimination of Six Different Varieties of Tunisian Extra-Virgin Olive Oil Cultivated in Their Traditional Growing Area. Eur. Food Res. Technol. 2010, 231, 965–975. DOI: 10.1007/s00217-010-1350-3.
  • Rovellini, P.; Zaganelli, P. HPLC-MS Analysis of Volatile Carbonyl Compounds in Extra Virgin Olive Oil: Correlation with Sensory Analysis. Riv. Ital. Sostanze Gr 2011, 88, 147–152.
  • Carrasco-Pancorbo, A.; Gómez-Caravaca, A. M.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. A Simple and Rapid Electrophoretic Method to Characterize Simple Phenols, Lignans, Complex Phenols, Phenolic Acids, and Flavonoids in Extra-Virgin Olive Oil. J. Sep. Sci. 2006, 29, 2221–2233. DOI: 10.1002/jssc.200600132.
  • del Pilar Godoy-Caballero, M.; Galeano-Díaz, T.; Isabel Acedo-Valenzuela, M. Simple and Fast Determination of Phenolic Compounds from Different Varieties of Olive Oil by Nonaqueous Capillary Electrophoresis with UV-Visible and Fluorescence Detection. J. Sep. Sci. 2012, 35, 3529–3539. DOI: 10.1002/jssc.201200696.
  • Bonoli, M.; Montanucci, M.; Toschi, T. G.; Lercker, G. Fast Separation and Determination of Tyrosol, Hydroxytyrosol and Other Phenolic Compounds in Extra-Virgin Olive Oil by Capillary Zone Electrophoresis with Ultraviolet-Diode Array Detection. J. Chromatogr. A. 2003, 1011, 163–172. DOI: 10.1016/S0021-9673(03)01100-2.
  • Ballus, C. A.; Meinhart, A. D.; Bruns, R. E.; Godoy, H. T. Use of Multivariate Statistical Techniques to Optimize the Simultaneous Separation of 13 Phenolic Compounds from Extra-Virgin Olive Oil by Capillary Electrophoresis. Talanta 2011, 83, 1181–1187. DOI: 10.1016/j.talanta.2010.07.013.
  • Ballus, C. A.; Meinhart, A. D.; de Souza Campos, F. A.; Jr, Bruns, R. E.; Godoy, H. T. Doehlert Design-Desirability Function Multi-Criteria Optimal Separation of 17 Phenolic Compounds from Extra-Virgin Olive Oil by Capillary Zone Electrophoresis. Food Chem. 2014, 146, 558–568. DOI: 10.1016/j.foodchem.2013.09.102.
  • del Pilar Godoy-Caballero, M.; Culzoni, M. J.; Galeano-Díaz, T.; Acedo-Valenzuela, M. I. Novel Combination of Non-Aqueous Capillary Electrophoresis and Multivariate Curve Resolution-Alternating Least Squares to Determine Phenolic Acids in Virgin Olive Oil. Anal. Chim. Acta. 2013, 763, 11–19. DOI: 10.1016/j.aca.2012.12.014.
  • Carrasco‐Pancorbo, A.; Gómez‐Caravaca, A. M.; Segura‐Carretero, A.; Cerretani, L.; Bendini, A.; Fernández‐Gutiérrez, A. Use of Capillary Electrophoresis with UV Detection to Compare the Phenolic Profiles of Extra‐Virgin Olive Oils Belonging to Spanish and Italian PDOs and Their Relation to Sensorial Properties. J. Sci. Food Agric. 2009, 89, 2144–2155. DOI: 10.1002/jsfa.3707.
  • Montealegre, C.; Marina, M. L.; García‐Ruiz, C. Separation of Proteins from Olive Oil by CE: An Approximation to the Differentiation of Monovarietal Olive Oils. Electrophoresis 2010, 31, 2218–2225. DOI: 10.1002/elps.200900675.
  • Nevado, J. J. B.; Peñalvo, G. C.; Robledo, V. R.; Martínez, G. V. New CE-ESI-MS Analytical Method for the Separation, Identification and Quantification of Seven Phenolic Acids Including Three Isomer Compounds in Virgin Olive Oil . Talanta 2009, 79, 1238–1246. DOI: 10.1016/j.talanta.2009.05.021.
  • Sánchez-Hernández, L.; Marina, M. L.; Crego, A. L. A Capillary Electrophoresis–Tandem Mass Spectrometry Methodology for the Determination of Non-Protein Amino Acids in Vegetable Oils as Novel Markers for the Detection of Adulterations in Olive Oils. J. Chromatogr. A 2011, 1218, 4944–4951. DOI: 10.1016/j.chroma.2011.01.045.
  • Sánchez‐Hernández, L.; Castro‐Puyana, M.; Luisa Marina, M.; Crego, A. L. Determination of Betaines in Vegetable Oils by Capillary Electrophoresis Tandem Mass spectrometry-application to the detection of olive oil adulteration with seed oils. Electrophoresis 2011, 32, 1394–1401. DOI: 10.1002/elps.201100005.
  • Vergara-Barberán, M.; Escrig-Doménech, A.; Lerma-García, M. J.; Simó-Alfonso, E. F.; Herrero-Martínez, J. M. Capillary Electrophoresis of Free Fatty Acids by Indirect Ultraviolet Detection: Application to the Classification of Vegetable Oils according to Their Botanical Origin. J. Agric. Food Chem. 2011, 59, 10775–10780. DOI: 10.1021/jf202798c.
  • Circi, S.; Capitani, D.; Randazzo, A.; Ingallina, C.; Mannina, L.; Sobolev, A. P. Panel Test and Chemical Analyses of Commercial Olive Oils: A Comparative Study. Chem. Biol. Technol. Agric. 2017, 4, 1–10. DOI: 10.1186/s40538-017-0101-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.