784
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Development of DNA Biosensors Based on DNAzymes and Nucleases

ORCID Icon, , , &
Pages 161-176 | Published online: 06 Jul 2021

References

  • Sekretaryova, A. N.; Eriksson, M.; Turner, A. P. Bioelectrocatalytic Systems for Health Applications. Biotechnol. Adv. 2016, 34, 177–197. DOI: 10.1016/j.biotechadv.2015.12.005.
  • Loo, J. F.; Ho, A. H.; Turner, A. P.; Mak, W. C. Integrated Printed Microfluidic Biosensors. Trends Biotechnol. 2019, 37, 1104–1120. DOI: 10.1016/j.tibtech.2019.03.009.
  • Azharuddin, M.; Zhu, G. H.; Das, D.; Ozgur, E.; Uzun, L.; Turner, A. P.; Patra, H. K. A Repertoire of Biomedical Applications of Noble Metal Nanoparticles. Chem. Commun. (Cambridge, U. K.) 2019, 55, 6964–6996. DOI: 10.1039/c9cc01741k.
  • Tonyushkina, K.; Nichols, J. H. Glucose Meters: A Review of Technical Challenges to Obtaining Accurate Results. J. Diabetes Sci. Technol. 2009, 3, 971–980. DOI: 10.1177/193229680900300446.
  • Mello, L. D.; Kubota, L. T. Review of the Use of Biosensors as Analytical Tools in the Food and Drink Industries. Food Chem. 2002, 77, 237–256. DOI: 10.1016/S0308-8146(02)00104-8.
  • Dehghani, S.; Nosrati, R.; Yousefi, M.; Nezami, A.; Soltani, F.; Taghdisi, S. M.; Abnous, K.; Alibolandi, M.; Ramezani, M. Aptamer-Based Biosensors and Nanosensors for the Detection of Vascular Endothelial Growth Factor (VEGF): a Review. Biosens. Bioelectron. 2018, 110, 23–37. DOI: 10.1016/j.bios.2018.03.037.
  • Chen, Y.; Xu, J.; Su, J.; Xiang, Y.; Yuan, R.; Chai, Y. Q. In Situ Hybridization Chain Reaction Amplification for Universal and Highly Sensitive Electrochemiluminescent Detection of DNA. Anal. Chem. 2012, 84, 7750–7755. DOI: 10.1021/ac3012285.
  • Li, J. B.; Lei, P. H.; Ding, S. J.; Zhang, Y.; Yang, J. R.; Cheng, Q.; Yan, Y. R. An Enzyme-Free Surface Plasmon Resonance Biosensor for Real-Time Detecting microRNA Based on Allosteric Effect of Mismatched Catalytic Hairpin Assembly. Biosens. Bioelectron. 2016, 77, 435–441. DOI: 10.1016/j.bios.2015.09.069.
  • Zhou, C.; Zou, H. M.; Sun, C. J.; Ren, D. X.; Chen, J.; Li, Y. X. Signal Amplification Strategies for DNA-Based Surface Plasmon Resonance Biosensors. Biosens. Bioelectron. 2018, 117, 678–689. DOI: 10.1016/j.bios.2018.06.062.
  • Zhao, Y.; Li, Z.; Kuang, Q.; Jie, G. F. Signal-on Photoelectrochemical Bioassay for DNA Based on CdTe Quantum Dots by Endonuclease-Aided Cycling Amplification Strategy. J. Electroanal. Chem. 2018, 812, 68–73. DOI: 10.1016/j.jelechem.2018.02.001.
  • Songa, E. A.; Okonkwo, J. O. Recent Approaches to Improving Selectivity and Sensitivity of Enzyme-Based Biosensors for Organophosphorus Pesticides: A Review. Talanta 2016, 155, 289–304. DOI: 10.1016/j.talanta.2016.04.046.
  • Gong, L.; Zhao, Z. L.; Lv, Y. F.; Huan, S. Y.; Fu, T.; Zhang, X. B.; Shen, G. L.; Yu, R. Q. DNAzyme-Based Biosensors and Nanodevices. Chem. Commun. (Cambridge, U. K.) 2015, 51, 979–995. DOI: 10.1039/c4cc06855f.
  • Du, Y.; Dong, S. J. Nucleic Acid Biosensors: Recent Advances and Perspectives. Anal. Chem. 2017, 89, 189–215. DOI: 10.1021/acs.analchem.6b04190.
  • Zhang, H. M.; Wang, K. Y.; Bu, S. J.; Li, Z. Y.; Ju, C. J.; Wan, J. Y. Colorimetric Detection of microRNA Based on DNAzyme and Nuclease-Assisted Catalytic Hairpin Assembly Signal Amplification. Mol. Cell. Probes. 2018, 38, 13–18. DOI: 10.1016/j.mcp.2018.02.002.
  • Miao, P.; Tang, Y. G.; Wang, B. D.; Yin, J.; Ning, L. M. Signal Amplification by Enzymatic Tools for Nucleic Acids. TrAC, Trends Anal. Chem. 2015, 67, 1–15. DOI: 10.1016/j.trac.2014.12.006.
  • Qing, T. P.; He, D. G.; He, X. X.; Wang, K. M.; Xu, F. Z.; Wen, L.; Shangguan, J. F.; Mao, Z. G.; Lei, Y. L. Nucleic Acid Tool Enzymes-Aided Signal Amplification Strategy for Biochemical Analysis: status and Challenges. Anal. Bioanal. Chem. 2016, 408, 2793–2811. DOI: 10.1007/s00216-015-9240-y.
  • Wu, Y. D.; Cui, S.; Li, Q.; Zhang, R. S.; Song, Z. M.; Gao, Y. Z.; Chen, W. J.; Xing, D. M. Recent Advances in Duplex-Specific Nuclease-Based Signal Amplification Strategies for microRNA Detection. Biosens. Bioelectron. 2020, 165, 112449.
  • Yan, M.; Bai, W.; Zhu, C.; Huang, Y.; Yan, J.; Chen, A. Design of Nuclease-Based Target Recycling Signal Amplification in Aptasensors. Biosens. Bioelectron. 2016, 77, 613–623. DOI: 10.1016/j.bios.2015.10.015.
  • Kruger, K.; Grabowski, P. J.; Zaug, A. J.; Sands, J.; Gottschling, D. E.; Cech, T. R. Self-Splicing RNA: Autoexcision and Autocyclization of the Ribosomal RNA Intervening Sequence of Tetrahymena. Cell 1982, 31, 147–157. DOI: 10.1016/0092-8674(82)90414-7.
  • Guerrier-Takada, C.; Gardiner, K.; Marsh, T.; Pace, N.; Altman, S. The RNA Moiety of Ribonuclease P is the Catalytic Subunit of the Enzyme. Cell 1983, 35, 849–857. DOI: 10.1016/0092-8674(83)90117-4.
  • Breaker, R. R.; Joyce, G. F. A DNA Enzyme That Cleaves RNA. Chem. Biol. 1994, 1, 223–229. DOI: 10.1016/1074-5521(94)90014-0.
  • Li, J.; Lu, Y. A Highly Sensitive and Selective Catalytic DNA Biosensor for Lead Ions. J. Am. Chem. Soc. 2000, 122, 10466–10467. DOI: 10.1021/ja0021316.
  • Lan, T.; Furuya, K.; Lu, Y. A Highly Selective Lead Sensor Based on a Classic Lead DNAzyme. Chem. Commun. (Cambridge, U. K.) 2010, 46, 3896–3898. DOI: 10.1039/b926910j.
  • Wang, L.; Jin, Y.; Deng, J.; Chen, G. Gold Nanorods-Based FRET Assay for Sensitive Detection of Pb2+ Using 8-17DNAzyme. Analyst 2011, 136, 5169–5174. DOI: 10.1039/c1an15783c.
  • Qi, L.; Zhao, Y.; Yuan, H.; Bai, K.; Zhao, Y.; Chen, F.; Dong, Y.; Wu, Y. Amplified Fluorescence Detection of Mercury(II) Ions (Hg2+) Using Target-Induced DNAzyme Cascade with Catalytic and Molecular Beacons. Analyst 2012, 137, 2799–2805. DOI: 10.1039/c2an35437c.
  • Wang, H.; He, D.; Wu, R.; Cheng, H.; Ma, W.; Huang, J.; Bu, H.; He, X.; Wang, K. A Hybridization-Triggered DNAzyme Cascade Assay for Enzyme-Free Amplified Fluorescence Detection of Nucleic Acids. Analyst 2018, 144, 143–147. DOI: 10.1039/c8an01796d.
  • Yu, T. M.; Zhou, W. H.; Liu, J. W. Screening of DNAzyme Mutants for Highly Sensitive and Selective Detection of Calcium in Milk. Anal. Methods 2018, 10, 1740–1746. DOI: 10.1039/C8AY00373D.
  • Liu, J.; Brown, A. K.; Meng, X.; Cropek, D. M.; Istok, J. D.; Watson, D. B.; Lu, Y. A Catalytic Beacon Sensor for Uranium with Parts-per-Trillion Sensitivity and Millionfold Selectivity. Proc. Natl. Acad. Sci USA 2007, 104, 2056–2061. DOI: 10.1073/pnas.0607875104.
  • Ren, W.; Huang, P. J. J.; de Rochambeau, D.; Moon, W. J.; Zhang, J. Y.; Lyu, M. S.; Wang, S. J.; Sleiman, H.; Liu, J. W. Selection of a Metal Ligand Modified DNAzyme for Detecting Ni2+. Biosens. Bioelectron. 2020, 165, 112285.
  • Gu, L.; Yan, W.; Wu, H.; Fan, S.; Ren, W.; Wang, S.; Lyu, M.; Liu, J. Selection of DNAzymes for Sensing Aquatic Bacteria: Vibrio Anguillarum. Anal. Chem. 2019, 91, 7887–7893. DOI: 10.1021/acs.analchem.9b01707.
  • Huang, P. J. J.; Liu, J. W. In Vitro Selection of Chemically Modified DNAzymes. Chemistryopen 2020, 9, 1046–1059. DOI: 10.1002/open.202000134.
  • Ono, A.; Togashi, H. Highly Selective Oligonucleotide-Based Sensor for Mercury(II) in Aqueous Solutions. Angew. Chem., Int. Ed. Engl. 2004, 43, 4300–4302. DOI: 10.1002/anie.200454172.
  • Breaker, R. R.; Joyce, G. F. A DNA Enzyme with Mg(2+)-Dependent RNA Phosphoesterase Activity. Chem. Biol. 1995, 2, 655–660. DOI: 10.1016/1074-5521(95)90028-4.
  • Georgiades, S. N.; Abd Karim, N. H.; Suntharalingam, K.; Vilar, R. Interaction of Metal Complexes with G‐Quadruplex DNA. Angew. Chem., Int. Ed. Engl. 2010, 49, 4020–4034. DOI: 10.1002/anie.200906363.
  • Murat, P.; Singh, Y.; Defrancq, E. Methods for Investigating G-Quadruplex DNA/Ligand Interactions. Chem. Soc. Rev. 2011, 40, 5293–5307. DOI: 10.1039/c1cs15117g.
  • Hud, N. V.; Smith, F. W.; Anet, F. A.; Feigon, J. The Selectivity for K + versus Na + in DNA Quadruplexes is Dominated by Relative Free Energies of Hydration: A Thermodynamic Analysis by 1H NMR. Biochemistry 1996, 35, 15383–15390. DOI: 10.1021/bi9620565.
  • Xu, Q.; Deng, H.; Braunlin, W. H. Selective Localization and Rotational Immobilization of Univalent Cations on Quadruplex DNA. Biochemistry 1993, 32, 13130–13137. DOI: 10.1021/bi00211a023.
  • Deng, H.; Braunlin, W. H. Kinetics of Sodium Ion Binding to DNA Quadruplexes. J. Mol. Biol. 1996, 255, 476–483. DOI: 10.1006/jmbi.1996.0039.
  • Kotch, F. W.; Fettinger, J. C.; Davis, J. T. A lead-filled G-quadruplex: insight into the G-Quartet's selectivity for Pb(2+) over K(+). Org. Lett. 2000, 2, 3277–3280. DOI: 10.1021/ol0065120.
  • Li, Y.; Sen, D. A Catalytic DNA for Porphyrin Metallation. Nat. Struct. Biol. 1996, 3, 743–747. DOI: 10.1038/nsb0996-743.
  • Li, Y. F.; Sen, D. Toward an Efficient DNAzyme. Biochemistry 1997, 36, 5589–5599. DOI: 10.1021/bi962694n.
  • Sugimoto, N.; Toda, T.; Ohmichi, T. Reaction Field for Efficient Porphyrin Metallation Catalysis Produced by Self-Assembly of a Short DNA Oligonucleotide. Chem. Commun. 1998, 15, 1533–1534. DOI: 10.1039/a801998c.
  • Yang, L.; Ding, P.; Luo, Y.; Wang, J.; Lv, H.; Li, W.; Cao, Y.; Pei, R. Exploration of Catalytic Nucleic Acids on Porphyrin Metalation and Peroxidase Activity by in Vitro Selection of Aptamers for N-Methyl Mesoporphyrin IX. ACS Comb. Sci. 2019, 21, 83–89. DOI: 10.1021/acscombsci.8b00129.
  • Kolic, P. E.; Siraj, N.; Hamdan, S.; Regmi, B. P.; Warner, I. M. Synthesis and Characterization of Porphyrin-Based GUMBOS and nanoGUMBOS as Improved Photosensitizers. J. Phys. Chem. C. 2016, 120, 5155–5163. DOI: 10.1021/acs.jpcc.5b12013.
  • Yaghoubi-Berijani, M.; Bahramian, B. Synthesis, and New Design into Enhanced Photocatalytic Activity of Porphyrin Immobilization on the Surface of Bismuth Oxyhalides Modified with Polyaniline. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4637–4654.
  • Zhang, L.; Zhu, J.; Ai, J.; Zhou, Z.; Jia, X.; Wang, E. Label-free G-quadruplex-specific fluorescent probe for sensitive detection of copper(II) ion. Biosens. Bioelectron. 2013, 39, 268–273. DOI: 10.1016/j.bios.2012.07.058.
  • Brown, S. B.; Shillcock, M.; Jones, P. Equilibrium and Kinetic Studies of the Aggregation of Porphyrins in Aqueous Solution. Biochem. J. 1976, 153, 279–285. DOI: 10.1042/bj1530279.
  • Melø, T. B.; Reisaeter, G. The Physicochemical State of Protoporphyrin IX in Aqueous Solution Investigated by Fluorescence and Light Scattering. Biophys. Chem. 1986, 25, 99–104. DOI: 10.1016/0301-4622(86)85070-0.
  • Peng, D.; Li, Y. Q.; Huang, Z. C.; Liang, R. P.; Qiu, J. D.; Liu, J. W. Efficient DNA-Catalyzed Porphyrin Metalation for Fluorescent Ratiometric Pb2+ Detection. Anal. Chem. 2019, 91, 11403–11408. DOI: 10.1021/acs.analchem.9b02759.
  • Yang, H.; Peng, D.; Zhou, Y.; Liu, J. Pb2+ as a Substrate and a Cofactor of a Porphyrin Metalation DNAzyme. ChemBioChem 2020, 21, 2259–2263. DOI: 10.1002/cbic.202000073.
  • Travascio, P.; Li, Y.; Sen, D. DNA-Enhanced Peroxidase Activity of a DNA Aptamer-Hemin Complex. Chem. Biol. 1998, 5, 505–517. DOI: 10.1016/S1074-5521(98)90006-0.
  • Kosman, J.; Juskowiak, B. Hemin/G-Quadruplex Structure and Activity Alteration Induced by Magnesium Cations. Int. J. Biol. Macromol. 2016, 85, 555–564. DOI: 10.1016/j.ijbiomac.2016.01.020.
  • Wu, C.; Gao, G.; Zhai, K.; Xu, L.; Zhang, D. A Visual Hg2+ Detection Strategy Based on Distance as Readout by G-Quadruplex DNAzyme on Microfluidic Paper. Food Chem. 2020, 331, 127208. DOI: 10.1016/j.foodchem.2020.127208.
  • Li, H.; Liu, M.; Zhao, W.; Pu, J.; Xu, J.; Wang, S.; Yu, R. Multi-Channel Collection of G-Quadruplex Transducers for Amplified Signaling of Pax-5 Based on Target-Triggered Split-to-Intact Remodeling of dual-G-Rich Duplex Probe. Sens. Actuators, B 2020, 311, 127913. DOI: 10.1016/j.snb.2020.127913.
  • Liang, G.; Man, Y.; Li, A.; Jin, X.; Pan, L.; Liu, X. Chemiluminescence Assay for Detection of 2-Hydroxyfluorene Using the G-Quadruplex DNAzyme-H 2 O 2-Luminol System. Microchim. Acta 2018, 185, 54.
  • Ye, Z.; Li, G.; Xu, L.; Yu, Q.; Yue, X.; Wu, Y.; Ye, B. Peptide-conjugated hemin/G-quadruplex as a versatile probe for “signal-on” electrochemical peptide biosensor. Talanta 2020, 209, 120611. DOI: 10.1016/j.talanta.2019.120611.
  • Alizadeh, N.; Salimi, A.; Hallaj, R. Hemin/G-Quadruplex Horseradish Peroxidase-Mimicking DNAzyme: Principle and Biosensing Application. Adv. Biochem. Eng. Biotechnol. 2020, 170, 85–106. DOI: 10.1007/10_2017_37.
  • Zhou, X. H.; Kong, D. M.; Shen, H. X. G-Quadruplex-Hemin DNAzyme-Amplified Colorimetric Detection of Ag + Ion. Anal. Chim. Acta. 2010, 678, 124–127. DOI: 10.1016/j.aca.2010.08.025.
  • Hu, X.; Li, C.; Feng, C.; Mao, X.; Xiang, Y.; Li, G. One-Step Colorimetric Detection of an Antibody Based on Protein-Induced Unfolding of a G-Quadruplex Switch. Chem. Commun. (Cambridge, U. K.) 2017, 53, 4692–4694. DOI: 10.1039/c7cc00687j.
  • Li, X.; Zhang, H.; Tang, Y.; Wu, P.; Xu, S.; Zhang, X. A Both-End Blocked Peroxidase-Mimicking DNAzyme for Low-Background Chemiluminescent Sensing of miRNA. ACS Sens. 2017, 2, 810–816. DOI: 10.1021/acssensors.7b00178.
  • He, Y.; Wang, X.; Zhang, Y.; Gao, F.; Li, Y.; Chen, H.; Wang, L. An Ultrasensitive Chemiluminescent Immunosensor for the Detection of Human Leptin Using Hemin/G-Quadruplex DNAzymes-Assembled Signal Amplifier. Talanta 2013, 116, 816–821. DOI: 10.1016/j.talanta.2013.07.074.
  • Wang, C.; Li, Y.; Jia, G.; Liu, Y.; Lu, S.; Li, C. Enantioselective Friedel-Crafts reactions in water catalyzed by a human telomeric G-quadruplex DNA metalloenzyme . Chem. Commun. (Cambridge, U. K.) 2012, 48, 6232–6234. DOI: 10.1039/c2cc31320k.
  • Ma, Y.; Xu, M.; Wang, Y.; Liu, Z.; Ye, B. A Highly Sensitive and Adjustable Colorimetric Assay of Hydrogen Sulfide by Signal Amplification Based on G-quadruplex-Cu 2+ Peroxidase Mimetics. Analyst 2020, 145, 2995–3001. DOI: 10.1039/D0AN00093K.
  • Wu, C.; Fan, D.; Zhou, C.; Liu, Y.; Wang, E. Colorimetric Strategy for Highly Sensitive and Selective Simultaneous Detection of Histidine and Cysteine Based on G-quadruplex-Cu (II) Metalloenzyme. Anal. Chem. 2016, 88, 2899–2903. DOI: 10.1021/acs.analchem.5b04796.
  • Wang, Y.; Wu, Y.; Liu, W.; Chu, L.; Liao, Z.; Guo, W.; Liu, G. Q.; He, X.; Wang, K. Electrochemical Strategy for Pyrophosphatase Detection Based on the Peroxidase-like Activity of G-quadruplex-Cu2+ DNAzyme. Talanta 2018, 178, 491–497. DOI: 10.1016/j.talanta.2017.09.069.
  • Cho, E. J.; Yang, L.; Levy, M.; Ellington, A. D. Using a Deoxyribozyme Ligase and Rolling Circle Amplification to Detect a Non-Nucleic Acid Analyte, ATP. J. Am. Chem. Soc. 2005, 127, 2022–2023. DOI: 10.1021/ja043490u.
  • Liu, J.; Lu, Y. Colorimetric Cu2+ Detection with a Ligation DNAzyme and Nanoparticles. Chem. Commun. 2007, 46, 4872. DOI: 10.1039/b712421j.
  • Wang, F.; Orbach, R.; Willner, I. Detection of Metal Ions (Cu2+, Hg2+) and Cocaine by Using Ligation DNAzyme Machinery. Chemistry 2012, 18, 16030–16036. DOI: 10.1002/chem.201201479.
  • Lu, C. H.; Wang, F.; Willner, I. Zn(2+)-Ligation DNAzyme-Driven Enzymatic and Nonenzymatic Cascades for the Amplified Detection of DNA. J. Am. Chem. Soc. 2012, 134, 10651–10658. DOI: 10.1021/ja3037838.
  • Li, T.; Wang, E.; Dong, S. Lead(II)-Induced Allosteric G-Quadruplex DNAzyme as a Colorimetric and Chemiluminescence Sensor for Highly Sensitive and Selective Pb2+ Detection. Anal. Chem. 2010, 82, 1515–1520. DOI: 10.1021/ac902638v.
  • Liu, J.; Lu, Y. Rational Design of “Turn-on” Allosteric DNAzyme Catalytic Beacons for Aqueous Mercury Ions with Ultrahigh Sensitivity and Selectivity. Angew. Chem. Int. Ed. Engl. 2007, 46, 7587–7590. DOI: 10.1002/anie.200702006.
  • Zheng, X.; Yang, J.; Zhou, C.; Zhang, C.; Zhang, Q.; Wei, X. Allosteric DNAzyme-Based DNA Logic Circuit: Operations and Dynamic Analysis. Nucleic Acids Res. 2019, 47, 1097–1109. DOI: 10.1093/nar/gky1245.
  • Nakama, T.; Takezawa, Y.; Sasaki, D.; Shionoya, M. Allosteric Regulation of DNAzyme Activities through Intrastrand Transformation Induced by Cu(II)-Mediated Artificial Base Pairing. J. Am. Chem. Soc. 2020, 142, 10153–10162. DOI: 10.1021/jacs.0c03129.
  • Shagin, D. A.; Rebrikov, D. V.; Kozhemyako, V. B.; Altshuler, I. M.; Shcheglov, A. S.; Zhulidov, P. A.; Bogdanova, E. A.; Staroverov, D. B.; Rasskazov, V. A.; Lukyanov, S. A Novel Method for SNP Detection Using a New Duplex-Specific Nuclease from Crab Hepatopancreas. Genome Res. 2002, 12, 1935–1942. DOI: 10.1101/gr.547002.
  • Keijzers, G.; Liu, D.; Rasmussen, L. J. Exonuclease 1 and Its Versatile Roles in DNA Repair. Crit. Rev. Biochem. Mol. Biol. 2016, 51, 440–451. DOI: 10.1080/10409238.2016.1215407.
  • Wen, L.; Xu, F.-Z.; He, X.-X.; Wang, K.-M.; He, D.-G.; Qing, T.-P.; Zou, Z. Application Progress of Exonuclease-Assisted Signal Amplification Strategies in Biochemical Analysis. Chinese J. Anal. Chem. 2015, 43, 1620–1628. DOI: 10.1016/S1872-2040(15)60874-X.
  • Chen, X.; Hong, F.; Cao, Y.; Hu, F.; Wu, Y.; Wu, D.; Li, T.; Lin, J.; Gan, N. A Microchip Electrophoresis-Based Assay for Ratiometric Detection of Kanamycin by R-Shape Probe and Exonuclease-Assisted Signal Amplification. Talanta 2018, 189, 494–501. DOI: 10.1016/j.talanta.2018.07.010.
  • Yuan, M.; Zhu, Y.; Lou, X.; Chen, C.; Wei, G.; Lan, M.; Zhao, J. Sensitive Label-Free Oligonucleotide-Based Microfluidic Detection of Mercury (II) Ion by Using Exonuclease I. Biosens. Bioelectron. 2012, 31, 330–336. DOI: 10.1016/j.bios.2011.10.043.
  • Ramezani, M.; Danesh, N. M.; Lavaee, P.; Abnous, K.; Taghdisi, S. M. A Selective and Sensitive Fluorescent Aptasensor for Detection of Kanamycin Based on Catalytic Recycling Activity of Exonuclease III and Gold Nanoparticles. Sensor. Actuat. B: Chem. 2016, 222, 1–7. DOI: 10.1016/j.snb.2015.08.024.
  • Ren, W.; Zhang, Y.; Huang, W. T.; Li, N. B.; Luo, H. Q. Label-free colorimetric detection of Hg²⁺ based on Hg²⁺-triggered exonuclease III-assisted target recycling and DNAzyme amplification. Biosens. Bioelectron. 2015, 68, 266–271. DOI: 10.1016/j.bios.2015.01.010.
  • Liu, S.; Cheng, C.; Liu, T.; Wang, L.; Gong, H.; Li, F. Highly Sensitive Fluorescence Detection of Target DNA by Coupling Exonuclease-Assisted Cascade Target Recycling and DNAzyme Amplification. Biosens. Bioelectron. 2015, 63, 99–104. DOI: 10.1016/j.bios.2014.07.023.
  • Zeng, Y.; Wan, Y.; Zhang, D.; Qi, P. A Novel magneto-DNA Duplex Probe for Bacterial DNA Detection Based on Exonuclease III-Aided Cycling Amplification. Talanta 2015, 132, 59–64. DOI: 10.1016/j.talanta.2014.08.054.
  • Yasuda, T.; Ueki, M.; Takeshita, H.; Fujihara, J.; Kimura-Kataoka, K.; Iida, R.; Tsubota, E.; Soejima, M.; Koda, Y.; Kato, H.; Panduro, A. A Biochemical and Genetic Study on All Non-Synonymous Single Nucleotide Polymorphisms of the Gene Encoding Human Deoxyribonuclease I Potentially Relevant to Autoimmunity. Int. J. Biochem. Cell Biol. 2010, 42, 1216–1225. DOI: 10.1016/j.biocel.2010.04.012.
  • Keyel, P. A. Dnases in Health and Disease. Dev. Biol. 2017, 429, 1–11. DOI: 10.1016/j.ydbio.2017.06.028.
  • Yang, C.; Chilvers, M.; Montgomery, M.; Nolan, S. J. Dornase Alfa for Cystic Fibrosis. Cochrane Database Syst. Rev. 2016, 4, CD001127.
  • Galas, D. J.; Schmitz, A. DNAse Footprinting: A Simple Method for the Detection of protein-DNA Binding Specificity. Nucleic Acids Res. 1978, 5, 3157–3170. DOI: 10.1093/nar/5.9.3157.
  • Li, H.; Li, Y.; Li, W.; Cui, L.; Huang, G.; Huang, J. A Carbon Nanoparticle and DNase I-Assisted Amplified Fluorescent Biosensor for miRNA Analysis. Talanta 2020, 213, 120816. DOI: 10.1016/j.talanta.2020.120816.
  • Lou, J.; Liu, S.; Tu, W.; Dai, Z. Graphene Quantums Dots Combined with Endonuclease Cleavage and Bidentate Chelation for Highly Sensitive Electrochemiluminescent DNA Biosensing. Anal. Chem. 2015, 87, 1145–1151. DOI: 10.1021/ac5037318.
  • Xue, L. Y.; Zhou, X. M.; Xing, D. Sensitive and Homogeneous Protein Detection Based on Target-Triggered Aptamer Hairpin Switch and Nicking Enzyme Assisted Fluorescence Signal Amplification. Anal. Chem. 2012, 84, 3507–3513. DOI: 10.1021/ac2026783.
  • Hun, X.; Wang, Z. P. L-Argininamide Biosensor Based on S1 Nuclease Hydrolysis Signal Amplification. Microchim. Acta 2012, 176, 209–216. DOI: 10.1007/s00604-011-0673-5.
  • Pingoud, A.; Jeltsch, A. Recognition and Cleavage of DNA by type-II Restriction Endonucleases. Eur. J. Biochem. 1997, 246, 1–22. DOI: 10.1111/j.1432-1033.1997.t01-6-00001.x.
  • Palecek, E.; Bartosik, M. Electrochemistry of Nucleic Acids. Chem. Rev. 2012, 112, 3427.
  • Smith, M.; Smith, K.; Olstein, A.; Oleinikov, A.; Ghindilis, A. Restriction Endonuclease-Based Assays for DNA Detection and Isothermal Exponential Signal Amplification. Sensors (Basel) 2020, 20, 3873. DOI: 10.3390/s20143873.
  • Hu, Y.; Xu, X.; Liu, Q.; Wang, L.; Lin, Z.; Chen, G. Ultrasensitive Electrochemical Biosensor for Detection of DNA from Bacillus subtilis by Coupling Target-Induced Strand Displacement and Nicking Endonuclease Signal Amplification. Anal. Chem. 2014, 86, 8785–8790. DOI: 10.1021/ac502008k.
  • Hong, M.; Wang, M.; Wang, J.; Xu, X.; Lin, Z. Ultrasensitive and Selective Electrochemical Biosensor for Detection of Mercury (II) Ions by Nicking Endonuclease-Assisted Target Recycling and Hybridization Chain Reaction Signal Amplification. Biosens. Bioelectron. 2017, 94, 19–23. DOI: 10.1016/j.bios.2017.02.031.
  • Liu, J.; Liu, L.; Chen, J.; Wang, T.; Xu, Y.; Dai, Z.; Zou, X. Selective and Rapid Detection of Mercury Ion Based on DNA Assembly and Nicking Endonuclease-Assisted Signal Amplification. Anal. Methods 2019, 11, 3073–3078. DOI: 10.1039/C9AY00656G.
  • Qiu, X. P.; Zhang, H.; Yu, H. L.; Jiang, T. L.; Luo, Y. Duplex-Specific Nuclease-Mediated Bioanalysis. Trends Biotechnol. 2015, 33, 180–188. DOI: 10.1016/j.tibtech.2014.12.008.
  • Yin, B.-C.; Liu, Y.-Q.; Ye, B.-C. One-Step, Multiplexed Fluorescence Detection of microRNAs Based on Duplex-Specific Nuclease Signal Amplification. J. Am. Chem. Soc. 2012, 134, 5064–5067. DOI: 10.1021/ja300721s.
  • Lu, W.; Chen, Y.; Liu, Z.; Tang, W.; Feng, Q.; Sun, J.; Jiang, X. Quantitative Detection of MicroRNA in One Step via Next Generation Magnetic Relaxation Switch Sensing. ACS Nano 2016, 10, 6685–6692. DOI: 10.1021/acsnano.6b01903.
  • Wang, M.; Chen, W.; Tang, L.; Yan, R.; Miao, P. Duplex-Specific Nuclease Assisted miRNA Assay Based on Gold and Silver Nanoparticles co-Decorated on Electrode Interface. Anal. Chim. Acta. 2020, 1107, 23–29. DOI: 10.1016/j.aca.2020.01.041.
  • Kim, J. H.; Chung, B. H. Proteolytic Fluorescent Signal Amplification on Gold Nanoparticles for a Highly Sensitive and Rapid Protease Assay. Small 2010, 6, 126–131. DOI: 10.1002/smll.200901635.
  • Sriskanda, V.; Shuman, S. A Second NAD(+)-Dependent DNA Ligase (LigB) in Escherichia coli. Nucleic Acids Res. 2001, 29, 4930–4934. DOI: 10.1093/nar/29.24.4930.
  • Zhao, J.; Zhang, L.; Jiang, J.; Shen, G.; Yu, R. A Label-Free Fluorescence DNA Probe Based on Ligation Reaction with Quadruplex Formation for Highly Sensitive and Selective Detection of Nicotinamide Adenine Dinucleotide. Chem. Commun. (Cambridge, U. K.) 2012, 48, 4468–4470. DOI: 10.1039/c2cc30540b.
  • Huang, R.; He, L.; Xia, Y.; Xu, H.; Liu, C.; Xie, H.; Wang, S.; Peng, L.; Liu, Y.; Liu, Y.; et al. A Sensitive Aptasensor Based on a Hemin/G-Quadruplex-Assisted Signal Amplification Strategy for Electrochemical Detection of Gastric Cancer Exosomes. Small 2019, 15, e1900735. DOI: 10.1002/smll.201900735.
  • Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-Mediated Isothermal Amplification of DNA. Nucleic Acids Res. 2000, 28, E63. DOI: 10.1093/nar/28.12.e63.
  • Ye, X.; Li, Y.; Wang, L.; Fang, X.; Kong, J. A Novel Exonuclease-Assisted Isothermal Nucleic Acid Amplification with Ultrahigh Specificity Mediated by Full-Length Bst DNA Polymerase. Chem. Commun. (Cambridge, U. K.) 2018, 54, 10562–10565. DOI: 10.1039/c8cc04577a.
  • Zhao, Y.; Chen, F.; Li, Q.; Wang, L.; Fan, C. Isothermal Amplification of Nucleic Acids. Chem. Rev. 2015, 115, 12491–12545. DOI: 10.1021/acs.chemrev.5b00428.
  • Yang, H. L.; Zhou, Y.; Liu, J. W. G-Quadruplex DNA for Construction of Biosensors. TrAC, Trends Anal. Chem. 2020, 132, 116060.
  • Zhang, Z. H.; Zhang, F.; He, P.; Zhang, X. R.; Song, W. L. Fluorometric Determination of Mercury(II) by Using Thymine-Thymine Mismatches as Recognition Elements, Toehold Binding, and Enzyme-Assisted Signal Amplification. Microchim. Acta 2019, 186, 551.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.