1,084
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Recent Developments and Applications of Microfluidic Paper-Based Analytical Devices for the Detection of Biological and Chemical Hazards in Foods: A Critical Review

ORCID Icon, & ORCID Icon
Pages 233-252 | Published online: 25 Jul 2021

References

  • The Food and Agriculture Organization of the United Nations. Right to Food. http://www.fao.org/right-to-food/en/. (accessed February 15, 2021).
  • The Canadian Food Inspection Agency. Imported and Manufactured Food Program Inspection Manual. https://www.inspection.gc.ca/food-safety-for-industry/archived-food-guidance/non-federally-registered/product-inspection/inspection-manual/eng/1393949957029/1393950086417?chap=5. (accessed February 15, 2021).
  • Manning, L.; Soon, J. M. Food Safety, Food Fraud, and Food Defense: A Fast Evolving Literature. J. Food Sci. 2016, 81, R823–R834. DOI: 10.1111/1750-3841.13256.
  • Batt, A. C. Chemical and Physical Hazards in Food. Reference Module in Food Science, 2016. DOI: 10.1016/B978-0-08-100596-5.03437-5.
  • Singh, P. K.; Singh, R. P.; Singh, P.; Singh, R. L. Food Hazards: Physical, Chemical, and Biological. In Food Safety and Human Health; Singh, R. L., Mondal, S., Eds.; Elsevier, 2019; pp. 15–65. ISBN: 978-0-12-816333-7. DOI: 10.1016/C2017-0-04079-X.
  • Law, J.; Ab-Mutalib, N.-S.; Chan, K.-G.; Lee, L.-H. An Insight into the Isolation, Enumeration, and Molecular Detection of Listeria monocytogenes in Food. Front. Microbiol. 2015, 6, 1227. DOI: 10.3389/fmicb.2015.01227.
  • Song, X.; Shukla, S.; Lee, G.; Park, S.; Kim, M. Detection of Cronobacter Genus in Powdered Infant Formula by Enzyme-Linked Immunosorbent Assay Using anti-Cronobacter Antibody. Front. Microbiol. 2016, 7, 1124. DOI: 10.3389/fmicb.2016.01124.
  • Tungkijanansin, N.; Alahmad, W.; Nhujak, T.; Varanusupakul, P. Simultaneous Determination of Benzoic Acid, Sorbic Acid, and Propionic Acid in Fermented Food by Headspace Solid-Phase Microextraction Followed by GC-FID. Food Chem. 2020, 329, 127161. DOI: 10.1016/j.foodchem.2020.127161.
  • Tuan, S. J.; Tsai, H. M.; Hsu, S. M.; Li, H. P. Multiresidue Analysis of 176 Pesticides and Metabolites in Pre-Harvested Fruits and Vegetables for Ensuring Food Safety by Gas Chromatography and High-Performance Liquid Chromatography. J. Food Drug Anal. 2009, 17, 163–177.
  • Domínguez, I.; Frenich, A. G.; Romero-González, R. Mass Spectrometry Approaches to Ensure Food Safety. Anal. Methods. 2020, 12, 1148–1162. DOI: 10.1039/C9AY02681A.
  • Hernández, F.; Portolés, T.; Pitarch, E.; López, F. J. Gas Chromatography Coupled to High-Resolution Time-of-Flight Mass Spectrometry to Analyze Trace-Level Organic Compounds in the Environment, Food Safety and Toxicology. Trends Anal. Chem. 2011, 30, 388–400. DOI: 10.1016/j.trac.2010.11.007.
  • Malik, A. K.; Blasco, C.; Picó, Y. Liquid Chromatography-Mass Spectrometry in Food Safety. J. Chromatogr. A. 2010, 1217, 4018–4040. DOI: 10.1016/j.chroma.2010.03.015.
  • Hong, E.; Lee, S. Y.; Jeong, J. Y.; Park, J. M.; Kim, B. H.; Kwon, K.; Chun, H. S. Modern Analytical Methods for the Detection of Food Fraud and Adulteration by Food Category. J. Sci. Food Agric. 2017, 97, 3877–3896. DOI: 10.1002/jsfa.8364.
  • Martinez, A. W.; Phillips, S. T.; Butte, M. J.; Whitesides, G. M. Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Angew. Chem. Int. Ed. Engl. 2007, 46, 1318–1320. DOI: 10.1002/anie.200603817.
  • Lin, Y.; Xu, J. Paper-Fluidic Based Sensing in Food Safety and Quality Analysis. In X. Lu (Ed.), Sensing Techniques for Food Safety and Quality Control; The Royal Society of Chemistry: London, UK, 2017; pp. 95–120. DOI: 10.1039/9781788010528-00095.
  • Busa, L. S. A.; Mohammadi, S.; Maeki, M.; Ishida, A.; Tani, H.; Tokeshi, T. Advances in Microfluidic Paper-Based Analytical Devices for Food and Water Analysis. Micromachines. 2016, 7, 86. DOI: 10.3390/mi7050086.
  • Hua, M. Z.; Li, S.; Wang, S.; Lu, X. Detecting Chemical Hazards in Foods Using Microfluidic Paper-Based Analytical Devices (µPADs): The Real-World Application. Micromachines. 2018, 9, 32. DOI: 10.3390/mi9010032.
  • Cinti, S. Novel Paper-Based Electroanalytical Tools for Food Surveillance. Anal. Bioanal. Chem. 2019, 411, 4303–4311. DOI: 10.1007/s00216-019-01640-5.
  • Akyazi, T.; Basabe-Desmonts, L.; Benito-Lopez, F. Review on Microfluidic Paper-Based Analytical Devices towards Commercialisation. Anal. Chim. Acta. 2018, 1001, 1–17. DOI: 10.1016/j.aca.2017.11.010.
  • Fernandes, S. C.; Walz, J. A.; Wilson, D. J.; Brooks, J. C.; Mace, C. R. Beyond Wicking: Expanding the Role of Patterned Paper as the Foundation for an Analytical Platform. Anal. Chem. 2017, 89, 5654–5664. DOI: 10.1021/acs.analchem.6b03860.
  • Kaneta, T.; Alahmad, W.; Varanusupakul, P. Microfluidic Paper-Based Analytical Devices with Instrument-Free Detection and Miniaturized Portable Detectors. Appl. Spectrosc. Rev. 2019, 54, 117–141. DOI: 10.1080/05704928.2018.1457045.
  • Liana, D. D.; Raguse, B.; Gooding, J. J.; Chow, E. Recent Advances in Paper-Based Sensors. Sensors (Basel). 2012, 12, 11505–11526. DOI: 10.3390/s120911505.
  • Morbioli, G. G.; Mazzu-Nascimento, T.; Stockton, A. M.; Carrilho, E. Technical Aspects and Challenges of Colorimetric Detection with Microfluidic Paper-Based Analytical Devices (μPADs) - A Review. Anal. Chim. Acta. 2017, 970, 1–22. DOI: 10.1016/j.aca.2017.03.037.
  • Noviana, E.; Carrao, D. B.; Pratiwi, R.; Henry, C. S. Emerging Applications of Paper-Based Analytical Devices for Drug Analysis: A Review. Anal. Chim. Acta. 2020, 1116, 70–90. DOI: 10.1016/j.aca.2020.03.013.
  • Ozer, T.; McMahon, C.; Henry, C. S. Advances in Paper-Based Analytical Devices. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 2020, 13, 85–109. DOI: 10.1146/annurev-anchem-061318-114845.
  • Singh, A. T.; Lantigua, D.; Meka, A.; Taing, S.; Pandher, M.; Camci-Unal, G. Paper Based Sensors: Emerging Themes and Applications. Sensors. 2018, 18, 2838. DOI: 10.3390/s18092838.
  • Xia, Y.; Si, J.; Li, Z. Fabrication Techniques for Microfluidic Paper-Based Analytical Devices and Their Applications for Biological Testing: A Review. Biosens. Bioelectron. 2016, 77, 774–789. DOI: 10.1016/j.bios.2015.10.032.
  • Harpaz, D.; Eltzov, E.; Axelrod, T.; Marks, R. S.; Tok, A. I. Y. Membrane Type Comparison and Modification to Modulate Sample Flow in Paper Diagnostics. Biochem. Eng. J. 2020, 2020, 155. DOI: ARTN 107483.
  • Sitanurak, J.; Fukana, N.; Wongpakdee, T.; Thepchuay, Y.; Ratanawimarnwong, N.; Amornsakchai, T.; Nacapricha, D. T-Shirt Ink for One-Step Screen-Printing of Hydrophobic Barriers for 2D- and 3D-Microfluidic Paper-Based Analytical Devices. Talanta. 2019, 205, 120113. DOI: 10.1016/j.talanta.2019.120113.
  • Thepchuay, Y.; Sonsa-Ard, T.; Ratanawimarnwong, N.; Auparakkitanon, S.; Sitanurak, J.; Nacapricha, D. Paper-Based Colorimetric Biosensor of Blood Alcohol with in-Situ Headspace Separation of Ethanol from Whole Blood. Anal. Chim. Acta. 2020, 1103, 115–121. DOI: 10.1016/j.aca.2019.12.043.
  • Alahmad, W.; Varanusupakul, P.; Kaneta, T.; Varanusupakul, P. Chromium Speciation Using paper-based analytical devices by direct determination and with electromembrane microextraction. Anal. Chim. Acta. 2019, 1085, 98–106. DOI: 10.1016/j.aca.2019.08.002.
  • Sun, L.; Jiang, Y.; Pan, R.; Li, M.; Wang, R.; Chen, S.; Fu, S.; Man, C. A Novel, Simple and Low-Cost Paper-Based Analytical Device for Colorimetric Detection of Cronobacter Spp. Anal. Chim. Acta. 2018, 1036, 80–88. DOI: 10.1016/j.aca.2018.05.061.
  • da Silva, J. L.; Buffon, E.; Beluomini, M. A.; Pradela-Filho, L. A.; Gouveia Araújo, D. A.; Santos, A. L.; Takeuchi, R. M.; Stradiotto, N. R. Non-Enzymatic Lactose Molecularly Imprinted Sensor Based on Disposable Graphite Paper Electrode. Anal. Chim. Acta. 2021, 1143, 53–64. DOI: 10.1016/j.aca.2020.11.030.
  • Wang, L.; Zhu, F.; Zhu, Y.; Xie, S.; Chen, M.; Xiong, Y.; Liu, Q.; Yang, H.; Chen, X. Intelligent Platform for Simultaneous Detection of Multiple Aminoglycosides Based on a Ratiometric Paper-Based Device with Digital Fluorescence Detector Readout. ACS Sens. 2019, 4, 3283–3290. DOI: 10.1021/acssensors.9b01845.
  • Hassanzadeh, J.; Al Lawati, H. A. J.; Al Lawati, I. Metal-Organic Framework Loaded by Rhodamine B as a Novel Chemiluminescence System for the Paper-Based Analytical Devices and Its Application for Total Phenolic Content Determination in Food Samples. Anal. Chem. 2019, 91, 10631–10639. DOI: 10.1021/acs.analchem.9b01862.
  • Ma, Y.; Wang, Y.; Luo, Y.; Duan, H.; Li, D.; Xu, H.; Fodjo, E. K. Rapid and Sensitive on-Site Detection of Pesticide Residues in Fruits and Vegetables Using Screen-Printed Paper-Based SERS Swabs. Anal. Methods. 2018, 10, 4655–4664. DOI: 10.1039/C8AY01698D.
  • Alahmad, W.; Tungkijanansin, N.; Kaneta, T.; Varanusupakul, P. A Colorimetric Paper-Based Analytical Device Coupled with Hollow Fiber Membrane Liquid Phase Microextraction (HF-LPME) for Highly Sensitive Detection of Hexavalent Chromium in Water Samples. Talanta. 2018, 190, 78–84. DOI: 10.1016/j.talanta.2018.07.056.
  • Wang, C. C.; Hennek, J. W.; Ainla, A.; Kumar, A. A.; Lan, W. J.; Im, J.; Smith, B. S.; Zhao, M.; Whitesides, G. M. A Paper-Based "Pop-up" Electrochemical Device for Analysis of Beta-Hydroxybutyrate. Anal. Chem. 2016, 88, 6326–6333. DOI: 10.1021/acs.analchem.6b00568.
  • Fujimoto, T.; Kawahara, S.; Fuchigami, Y.; Shimokawa, S.; Nakamura, Y.; Fukayama, K.; Kamahori, M.; Uno, S. Portable Electrochemical Sensing System Attached to Smartphones and Its Incorporation with Paper-Based Electrochemical Glucose Sensor. Int. J. Electr. Comput. Eng. 2017, 7, 1423–1429. DOI: 10.11591/ijece.v7i3.pp1423-1429.
  • Liang, L.; Su, M.; Li, L.; Lan, F.; Yang, G.; Ge, S.; Yu, J.; Song, X. Aptamerbased Fluorescent and Visual Biosensor for Multiplexed Monitoring of Cancer Cells in Microfluidic Paper-Based Analytical Devices. Sens. Actuators. B. 2016, 229, 347–354. DOI: 10.1016/j.snb.2016.01.137.
  • Anjana, R. R.; Anjali Devi, J. S.; Jayasree, M.; Aparna, R. S.; Aswathy, B.; Praveen, G. L.; Lekha, G. M.; Sony, G. S,n-Doped Carbon Dots as a Fluorescent Probe for Bilirubin. Microchim. Acta. 2018, 185, 1–11. DOI: 10.1007/s00604-017-2574-8.
  • Silva, N. F. D.; Almeida, C. M. R.; Magalhaes, J.; Goncalves, M. P.; Freire, C.; Delerue-Matos, C. Development of a Disposable Paper-Based Potentiometric Immunosensor for Real-Time Detection of a Foodborne Pathogen. Biosens. Bioelectron. 2019, 141, 111317. DOI: 10.1016/j.bios.2019.111317.
  • You, S. M.; Jeong, K. B.; Luo, K.; Park, J. S.; Park, J. W.; Kim, Y. R. Paper-Based Colorimetric Detection of Pathogenic Bacteria in Food through Magnetic Separation and Enzyme-Mediated Signal Amplification on Paper Disc. Anal. Chim. Acta. 2021, 1151, 338252. DOI: 10.1016/j.aca.2021.338252.
  • Madej, K.; Kalenik, T. K.; Piekoszewski, W. Sample Preparation and Determination of Pesticides in Fat-Containing Foods. Food Chem. 2018, 269, 527–541. DOI: 10.1016/j.foodchem.2018.07.007.
  • Liu, Z.; Hu, J.; Zhao, Y.; Qu, Z.; Xu, F. Experimental and Numerical Studies on Liquid Wicking into Filter Papers for Paper-Based Diagnostics. Appl. Therm. Eng. 2015, 88, 280–287. DOI: 10.1016/j.applthermaleng.2014.09.057.
  • Zhang, D.; Wang, Y.; Li, C.; Zhang, X. Polychlorinated Biphenyl Detection in Organic Solvents with Paper-Based Analytical Devices. Environ. Technol. 2021, 41, 1766–1771. DOI: 10.1080/09593330.2019.1680741.
  • Chemat, F.; Fabiano-Tixier, A. S.; Vian, M. A.; Allaf, T.; Vorobiev, E. Solvent-Free Extraction of Food and Natural Products. TrAC-Trends Anal. Chem. 2015, 71, 157–168. DOI: 10.1016/j.trac.2015.02.021.
  • Ibarra, I. S.; Miranda, J. M.; Perez-Silva, I.; Jardinez, C.; Islas, G. Sample Treatment Based on Molecularly Imprinted Polymers for the Analysis of Veterinary Drugs in Food Samples: A Review. Anal Methods. 2020, 12, 2958–2977. DOI: 10.1039/d0ay00533a.
  • Du, F. Y.; Guo, L.; Qin, Q.; Zheng, X.; Ruan, G. H.; Li, J. P.; Li, G. K. Recent Advances in Aptamer-Functionalized Materials in Sample Preparation. Trends Anal. Chem. 2015, 67, 134–146. DOI: 10.1016/j.trac.2015.01.007.
  • Kou, X.; Tong, L.; Huang, S.; Chen, G.; Zhu, F.; Ouyang, G. Recent Advances of Covalent Organic Frameworks and Their Application in Sample Preparation of Biological Analysis. Trends Anal. Chem. 2021, 136, 116182. DOI: 10.1016/j.trac.2021.11618.
  • Perez-Cejuela, H. M.; Herrero-Martinez, J. M.; Simo-Alfonso, E. F. Recent Advances in Affinity MOF-Based Sorbents with Sample Preparation Purposes. Molecules. 2020, 25, 4216. DOI: 10.3390/molecules25184216.
  • Zhao, Y.; Zeng, D.; Yan, C.; Chen, W.; Ren, J.; Jiang, Y.; Jiang, L.; Xue, F.; Ji, D.; Tang, F.; et al. Rapid and Accurate Detection of Escherichia coli O157:H7 in Beef Using Microfluidic Wax-Printed Paper-Based ELISA. Analyst. 2020, 145, 3106–3115. DOI: 10.1039/d0an00224k.
  • Carrell, C. S.; Wydallis, R. M.; Bontha, M.; Boehle, K. E.; Beveridge, J. R.; Geiss, B. J.; Henry, C. S. Rotary Manifold for Automating a Paper-Based Salmonella Immunoassay. RSC Adv. 2019, 9, 29078–29086. DOI: 10.1039/C9RA07106G.
  • Kim, H. J.; Kwon, C.; Lee, B. S.; Noh, H. One-Step Sensing of Foodborne Pathogenic Bacteria Using a 3D Paper-Based Device. Analyst. 2019, 144, 2248–2255. DOI: 10.1039/c8an02151a.
  • Qi, J.; Li, B.; Wang, X.; Fu, L.; Luo, L.; Chen, L. Rotational Paper-Based Microfluidic-Chip Device for Multiplexed and Simultaneous Fluorescence Detection of Phenolic Pollutants Based on a Molecular-Imprinting Technique. Anal. Chem. 2018, 90, 11827–11834. DOI: 10.1021/acs.analchem.8b01291.
  • Bhardwaj, J.; Devarakonda, S.; Kumar, S.; Jang, J. Development of a Paper-Based Electrochemical Immunosensor Using an Antibody-Single Walled Carbon Nanotubes Bio-Conjugate Modified Electrode for Label-Free Detection of Foodborne Pathogens. Sens. Actuators B Chem. 2017, 253, 115–123. DOI: 10.1016/j.snb.2017.06.108.
  • Cao, L.; Fang, C.; Zeng, R.; Zhao, X.; Jiang, Y.; Chen, Z. Paper-Based Microfluidic Devices for Electrochemical Immunofiltration Analysis of Human Chorionic Gonadotropin. Biosens. Bioelectron. 2017, 92, 87–94. DOI: 10.1016/j.bios.2017.02.002.
  • Schaumburg, F.; Carrell, C. S.; Henry, C. S. Rapid Bacteria Detection at Low Concentrations Using Sequential Immunomagnetic Separation and Paper-Based Isotachophoresis. Anal. Chem. 2019, 91, 9623–9630. DOI: 10.1021/acs.analchem.9b01002.
  • Luo, K.; Ryu, J.; Seol, I. H.; Jeong, K. B.; You, S. M.; Kim, Y. R. Paper-Based Radial Chromatographic Immunoassay for the Detection of Pathogenic Bacteria in Milk. ACS Appl. Mater. Interfaces. 2019, 11, 46472–46478. DOI: 10.1021/acsami.9b16075.
  • Weng, X.; Neethirajan, S. Aptamer-Based Fluorometric Determination of Norovirus Using a Paper-Based Microfluidic Device. Microchim. Acta. 2017, 184, 4545–4552. DOI: 10.1007/s00604-017-2467-x.
  • Khoshbin, Z.; Housaindokht, M. R.; Verdian, A. A Low-Cost Paper-Based Aptasensor for Simultaneous Trace-Level Monitoring of Mercury (II) and Silver (I) ions. Anal. Biochem. 2020, 597, 113689. DOI: 10.1016/j.ab.2020.113689.
  • Waller, A. W.; Toc, M.; Rigsby, D. J.; Gaytan-Martinez, M.; Andrade, J. E. Development of a Paper-Based Sensor Compatible with a Mobile Phone for the Detection of Common Iron Formulas Used in Fortified Foods within Resource-Limited Settings. Nutrients. 2019, 11, 1673. DOI: 10.3390/nu11071673.
  • WHO (World Health Organization). Pesticides, Health topics. 2020. https://www.who.int/topics/pesticides/en/ (accessed February 15, 2021).
  • Jin, L.; Hao, Z.; Zheng, Q.; Chen, H.; Zhu, L.; Wang, C.; Liu, X.; Lu, C. A Facile Microfluidic Paper-Based Analytical Device For Acetylcholinesterase Inhibition Assay Utilizing Organic Solvent Extraction in Rapid Detection of Pesticide Residues in Food. Anal. Chim. Acta. 2020, 1100, 215–224. DOI: 10.1016/j.aca.2019.11.067.
  • Ha, N.-R.; Jung, I.-P.; Kim, S.-H.; Kim, A. R.; Yoon, M.-Y. Paper Chip-Based Colorimetric Sensing Assay for Ultra-Sensitive Detection of Residual Kanamycin. Process Biochem. 2017, 62, 161–168. DOI: 10.1016/j.procbio.2017.07.008.
  • Huang, L.; Sun, D.-W.; Pu, H.; Wei, Q.; Luo, L.; Wang, J. A Colorimetric Paper Sensor Based on the Domino Reaction of Acetylcholinesterase and Degradable γ-MnOOH Nanozyme for Sensitive Detection of Organophosphorus Pesticides. Sens. Actuators B Chem. 2019, 290, 573–580. DOI: 10.1016/j.snb.2019.04.020.
  • Xu, J.; Hu, X.; Khan, H.; Tian, M.; Yang, L. Converting Solution Viscosity to Distance-Readout on Paper Substrates Based on Enzyme-Mediated Alginate Hydrogelation: Quantitative Determination of Organophosphorus Pesticides. Anal. Chim. Acta. 2019, 1071, 1–7. DOI: 10.1016/j.aca.2019.04.017.
  • Xie, J.; Li, L.; Khan, I. M.; Wang, Z.; Ma, X. Flexible Paper-Based SERS Substrate Strategy for Rapid Detection of Methyl Parathion on the Surface of Fruit. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 231, 118104. DOI: 10.1016/j.saa.2020.118104.
  • Zhang, Z.; Ma, X.; Li, B.; Zhao, J.; Qi, J.; Hao, G.; Jianhui, R.; Yang, X. Fluorescence Detection of 2,4-Dichlorophenoxyacetic Acid by Ratiometric Fluorescence Imaging on Paper-Based Microfluidic Chips. Analyst. 2020, 145, 963–974. DOI: 10.1039/c9an01798d.
  • Sawetwong, P.; Chairam, S.; Jarujamrus, P.; Amatatongchai, M. Enhanced Selectivity and Sensitivity for Colorimetric Determination of Glyphosate Using Mn-ZnS Quantum Dot Embedded Molecularly Imprinted Polymers Combined with a 3D-Microfluidic Paper-Based Analytical Device. Talanta. 2021, 225, 122077. DOI: 10.1016/j.talanta.2020.122077.
  • Baynes, R. E.; Dedonder, K.; Kissell, L.; Mzyk, D.; Marmulak, T.; Smith, G.; Tell, L.; Gehring, R.; Davis, J.; Riviere, J. E. Health Concerns and Management of Select Veterinary Drug Residues. Food Chem. Toxicol. 2016, 88, 112–122. DOI: 10.1016/j.fct.2015.12.020.
  • Nilghaz, A.; Lu, X. Detection of Antibiotic Residues in Pork Using Paper-Based Microfluidic Device Coupled with Filtration and Concentration. Anal. Chim. Acta. 2019, 1046, 163–169. DOI: 10.1016/j.aca.2018.09.041.
  • Trofimchuk, E.; Nilghaz, A.; Sun, S.; Lu, X. Determination of Norfloxacin Residues in Foods by Exploiting the Coffee-Ring Effect and Paper-Based Microfluidics Device Coupling with Smartphone-Based Detection. J. Food Sci. 2020, 85, 736–743. DOI: 10.1111/1750-3841.15039.
  • Yeh, Y. C.; Creran, B.; Rotello, V. M. Gold Nanoparticles: Preparation, Properties, and Applications in Bionanotechnology. Nanoscale. 2012, 4, 1871–1880. DOI: 10.1039/c1nr11188d.
  • Honikel, K. O. The Use and Control of Nitrate and Nitrite for the Processing of Meat Products. Meat Sci. 2008, 78, 68–76. DOI: 10.1016/j.meatsci.2007.05.030.
  • De Mey, E.; De Maere, H.; Paelinck, H.; Fraeye, I. Fraeye, I. Volatile N-Nitrosamines in Meat Products: Potential Precursors, Influence of Processing, and Mitigation Strategies. Crit. Rev. Food Sci. Nutr. 2017, 57, 2909–2923. DOI: 10.1080/10408398.2015.1078769.
  • Almasvandi, Z.; Vahidinia, A.; Heshmati, A.; Zangeneh, M. M.; Goicoechea, H. C.; Jalalvand, A. R. Coupling of Digital Image Processing and Three-Way Calibration to Assist a Paper-Based Sensor for Determination of Nitrite in Food Samples. RSC Adv. 2020, 10, 14422–14430. DOI: 10.1039/C9RA10918H.
  • Ratnarathorn, N.; Dungchai, W. Paper-Based Analytical Device (PAD) for the Determination of Borax, Salicylic Acid, Nitrite, and Nitrate by Colorimetric Methods. J. Anal. Chem. 2020, 75, 487–494. DOI: 10.1134/S1061934820040127.
  • Thongkam, T.; Hemavibool, K. An Environmentally Friendly Microfluidic Paper-Based Analytical Device for Simultaneous Colorimetric Detection of Nitrite and Nitrate in Food Products. Microchem. J. 2020, 159, 105412–105412. DOI: 10.1016/j.microc.2020.105412.
  • Trofimchuk, E.; Hu, Y.; Nilghaz, A.; Hua, M. Z.; Sun, S.; Lu, X. Development of Paper-Based Microfluidic Device for the Determination of Nitrite in Meat. Food Chem. 2020, 316, 126396. DOI: 10.1016/j.foodchem.2020.126396.
  • WHO (World Health Organization). International Programme on Chemical Safety; Safety Evaluation of Certain Food Additives: Geneva, Switzerland, 1999.
  • Taprab, N.; Sameenoi, Y. Rapid Screening of Formaldehyde in Food Using Paper-Based Titration. Anal. Chim. Acta. 2019, 1069, 66–72. DOI: 10.1016/j.aca.2019.03.063.
  • Guzman, J. M. C. C.; Tayo, L. L.; Liu, C.-C.; Wang, Y.-N.; Fu, L.-M. Rapid Microfluidic Paper-Based Platform for Low Concentration Formaldehyde Detection. Sens. Actuators B Chem. 2018, 255, 3623–3629. DOI: 10.1016/j.snb.2017.09.080.
  • Phansi, P.; Sumantakul, S.; Wongpakdee, T.; Fukana, N.; Ratanawimarnwong, N.; Sitanurak, J.; Nacapricha, D. Membraneless Gas-Separation Microfluidic Paper-Based Analytical Devices for Direct Quantitation of Volatile and Nonvolatile Compounds. Anal. Chem. 2016, 88, 8749–8756. DOI: 10.1021/acs.analchem.6b02103.
  • Liu, C. C.; Wang, Y. N.; Fu, L. M.; Chen, K. L. Microfluidic Paper-Based Chip Platform for Benzoic Acid Detection in Food. Food Chem. 2018, 249, 162–167. DOI: 10.1016/j.foodchem.2018.01.004.
  • Shahvar, A.; Saraji, M.; Gordan, H.; Shamsaei, D. Combination of Paper-Based Thin Film Microextraction with Smartphone-Based Sensing for Sulfite Assay in Food Samples. Talanta. 2019, 197, 578–583. DOI: 10.1016/j.talanta.2019.01.071.
  • Jalili, M. A Review Paper on Melamine in Milk and Dairy Products. JDVS. 2017, 1, 555566. DOI: 10.19080/JDVS.2017.01.555566.
  • Zhang, C.; You, T.; Yang, N.; Gao, Y.; Jiang, L.; Yin, P. Hydrophobic Paper-Based SERS Platform for Direct-Droplet Quantitative Determination of Melamine. Food Chem. 2019, 287, 363–368. DOI: 10.1016/j.foodchem.2019.02.094.
  • Fleurat-Lessard, F. STORED GRAIN | Pest Management. In Encyclopedia of Grain Science; Wrigley, C., Ed.; Elsevier: Oxford, 2004; pp. 244–254. DOI: 10.1016/B0-12-765490-9/00210-X.
  • Kasoju, A.; Shrikrishna, N. S.; Shahdeo, D.; Khan, A. A.; Alanazi, A. M.; Gandhi, S. Microfluidic Paper Device for Rapid Detection of Aflatoxin B1 Using an Aptamer Based Colorimetric Assay. RSC Adv. 2020, 10, 11843–11850. DOI: 10.1039/D0RA00062K.
  • Jiang, Q.; Wu, J.; Yao, K.; Yin, Y.; Gong, M. M.; Yang, C.; Lin, F. Paper-Based Microfluidic Device (Don-Chip) for Rapid and Low-Cost Deoxynivalenol Quantification in Food, Feed, and Feed Ingredients. ACS Sens. 2019, 4, 3072–3079. DOI: 10.1021/acssensors.9b01895.
  • Nogueira, S. A.; Lemes, A. D.; Chagas, A. C.; Vieira, M. L.; Talhavini, M.; Morais, P. A. O.; Coltro, W. K. T. Redox Titration on Foldable Paper-Based Analytical Devices for the Visual Determination of Alcohol Content in Whiskey Samples. Talanta. 2019, 194, 363–369. DOI: 10.1016/j.talanta.2018.10.036.
  • Nouanthavong, S.; Nacapricha, D.; Henry, C. S.; Sameenoi, Y. Pesticide Analysis Using Nanoceria-Coated Paper-Based Devices as a Detection Platform. Analyst. 2016, 141, 1837–1846. DOI: 10.1039/c5an02403j.
  • Tang, X.; Zhang, Q.; Zhang, Z.; Ding, X.; Jiang, J.; Zhang, W.; Li, P. Rapid, on-Site and Quantitative Paper-Based Immunoassay Platform for Concurrent Determination of Pesticide Residues and Mycotoxins. Anal. Chim. Acta. 2019, 1078, 142–150. DOI: 10.1016/j.aca.2019.06.015.
  • Li, J.; Wang, X.; Shan, Y.; Huang, H.; Jian, D.; Xue, L.; Wang, S.; Liu, F. Handheld Inkjet Printing Paper Chip Based Smart Tetracycline Detector. Micromachines (Basel). 2019, 10, 27. DOI: 10.3390/mi10010027.
  • Marin-Barroso, E.; Moreira, C. M.; Messina, G. A.; Bertolino, F. A.; Alderete, M.; Soler-Illia, G. J. A. A.; Raba, J.; Pereira, S. V. Paper Based Analytical Device Modified with Nanoporous Material for the Fluorescent Sensing of Gliadin Content in Different Food Samples. Microchem. J. 2018, 142, 78–84. DOI: 10.1016/j.microc.2018.06.005.
  • Sheini, A. Colorimetric Aggregation Assay Based on Array of Gold and Silver Nanoparticles for Simultaneous Analysis of Aflatoxins, Ochratoxin and Zearalenone by Using Chemometric Analysis and Paper Based Analytical Devices. Mikrochim. Acta. 2020, 187, 167. DOI: 10.1007/s00604-020-4147-5.
  • Zhang, Y.; Zuo, P.; Ye, B. C. A Low-Cost and Simple Paper-Based Microfluidic Device for Simultaneous Multiplex Determination of Different Types of Chemical Contaminants in Food. Biosens. Bioelectron. 2015, 68, 14–19. DOI: 10.1016/j.bios.2014.12.042.
  • Singh, H.; Singh, G.; Mahajan, D. K.; Kaur, N.; Singh, N. A Low-Cost Device for Rapid ‘Color to Concentration’ Quantification of Cyanide in Real Samples Using Paper-Based Sensing Chip. Sens. Actuators B Chem. 2020, 322, 128622. DOI: 10.1016/j.snb.2020.128622.
  • Pungjunun, K.; Nantaphol, S.; Praphairaksit, N.; Siangproh, W.; Chaiyo, S.; Chailapakul, O. Enhanced Sensitivity and Separation for Simultaneous Determination of Tin and Lead Using Paper-Based Sensors Combined with a Portable Potentiostat. Sens. Actuators B Chem. 2020, 318, 128241. DOI: 10.1016/j.snb.2020.128241.
  • Chen, H.; Liu, R.; Guo, X.; Deng, G.; Xu, L.; Zhang, L.; Lan, W.; Zhou, C.; She, Y.; Fu, H. Visual Paper-Based Sensor for the Highly Sensitive Detection of Caffeine in Food and Biological Matrix Based on CdTe-Nano ZnTPyP Combined with Chemometrics. Mikrochim Acta. 2021, 188, 27. DOI: 10.1007/s00604-020-04663-3.
  • Grazioli, C.; Faura, G.; Dossi, N.; Toniolo, R.; Tubaro, F.; Terzi, F.; Bontempelli, G. A Colorimetric Paper-Based Smart Label Soaked with a Deep-Eutectic Solvent for the Detection of Malondialdehyde. Sens. Actuators, B. 2021, 329, 129174. DOI: 10.1016/j.snb.2020.129174.
  • Na, G.; Hu, X.; Sun, Y.; Xing, G.; Xing, Y.; Zhang, G. A Novel Gold Particle-Based Paper Sensor for Sensitively Detecting Carprofen in Bovine Muscle. Food Agric. Immunol. 2020, 31, 463–474. DOI: 10.1080/09540105.2020.1740178.
  • Katelakha, K.; Nopponpunth, V.; Boonlue, W.; Laiwattanapaisal, W. A Simple Distance Paper-Based Analytical Device for the Screening of Lead in Food Matrices. Biosensors (Basel). 2021, 11, 90. DOI: 10.3390/bios11030090.
  • Carolina Rafanhin Sousa, A.; Nascimento Makara, C.; Canniatti Brazaca, L.; Carrilho, E. A Colorimetric Microfluidic Paper-Based Analytical Device for Sulfonamides in Cow Milk Using Enzymatic Inhibition. Food Chem. 2021, 356, 129692. DOI: 10.1016/j.foodchem.2021.129692.
  • Hua, M. Z.; Lu, X. Development of a Microfluidic Paper-Based Immunoassay for Rapid Detection of Allergic Protein in Foods. ACS Sens. 2020, 5, 4048–4056. DOI: 10.1021/acssensors.0c02044.
  • Zhang, X.; Zhi, H.; Zhu, M.; Wang, F.; Meng, H.; Feng, L. Electrochemical/Visual Dual-Readout Aptasensor for Ochratoxin A Detection Integrated into a Miniaturized Paper-Based Analytical Device. Biosens. Bioelectron. 2021, 180, 113146. DOI: 10.1016/j.bios.2021.113146.
  • Shrivas, K.; Monisha, Patel, S.; Thakur, S. S.; Shankar, R. Food Safety Monitoring of the Pesticide Phenthoate Using a Smartphone-Assisted Paper-Based Sensor with Bimetallic Cu@Ag Core-Shell Nanoparticles. Lab Chip. 2020, 20, 3996–4006. DOI: 10.1039/d0lc00515k.
  • Malahom, N.; Jarujamrus, P.; Anutrasakda, W.; Chawengkirttikul, R.; Siripinyanond, A.; Meelapsom, R.; Amatatongchai, M. Novel Paper-Based Colorimetric Immunoassay (PCI) for Sensitive and Specific Detection of Salbutamol Residues in Flesh of Swine and Urine Using Ag3 PO4/Ag Nanocomposite as Label. J. Food Sci. 2020, 85, 209–219. DOI: 10.1111/1750-3841.14974.
  • Lu, H.; Li, M.; Nilghaz, A.; Li, L.; Chen, G.; Jiang, Y.; Tian, J. Paper-Based Analytical Device for High-Throughput Monitoring Tetracycline Residue in Milk. Food Chem. 2021, 354, 129548. DOI: 10.1016/j.foodchem.2021.129548.
  • Mustafa, F.; Andreescu, S. Paper-Based Enzyme Biosensor for One-Step Detection of Hypoxanthine in Fresh and Degraded Fish. ACS Sens. 2020, 5, 4092–4100. DOI: 10.1021/acssensors.0c02350.
  • Hao, Z.; Zheng, Q.; Jin, L.; Zhou, S.; Chen, H.; Liu, X.; Lu, C. Rapid Measurement of Total Polyphenol Content in Tea by Kinetic Matching Approach on Microfluidic Paper-Based Analytical Devices. Food Chem. 2021, 342, 128368. DOI: 10.1016/j.foodchem.2020.128368.
  • Han, M.; Wei, W.; Lu, H.; Zhang, Z. Rapid and Sensitive Detection of Neotame in Instant Grain Beverages by Paper‐Based Silver Nanoparticles Substrates. Micro Nano Lett. 2020, 15, 1099–1104. DOI: 10.1049/mnl.2020.0298.
  • Bougadi, E. T.; Kalogianni, D. P. Paper-Based DNA Biosensor for Food Authenticity Testing. Food Chem. 2020, 322, 126758. DOI: 10.1016/j.foodchem.2020.126758.
  • Sriram, G.; Bhat, M. P.; Patial, P.; Uthappa, U. T.; Jung, H. Y.; Altalhi, T.; Kumeria, T.; Aminabhavi, T. M.; Pai, R. K.; Madhuprasad, M. D. K. Paper-Based Microfluidic Analytical Devices for Colorimetric Detection of Toxic Ions: A Review. Trends Anla. Chem. 2017, 93, 212–227. DOI: 10.1016/j.trac.2017.06.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.