1,123
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Recent Advancement in Disposable Electrode Modified with Nanomaterials for Electrochemical Heavy Metal Sensors

, , , &
Pages 253-288 | Published online: 25 Sep 2021

References

  • Pathakoti, K.; Manubolu, M.; Hwang, H.-M. Chapter 48 - Nanotechnology Applications for Environmental Industry. In Handbook of Nanomaterials for Industrial Applications, Mustansar Hussain, C., Ed. Elsevier: Amsterdam, Netherlands, 2018; pp 894–907
  • Bánfalvi, G. Heavy Metals, Trace Elements and Their Cellular Effects. In Cellular Effects of Heavy Metals, Banfalvi, G., Ed. Springer Netherlands: Dordrecht, 2011; pp 3–28
  • Masindi, V.; Muedi, K. L. Environmental Contamination by Heavy Metals. In Heavy Metals, Saleh, H. E.-D. M.; Aglan, R. F., Eds. IntechOpen: London, United Kingdom, 2018.
  • Wuana, R. A.; Okieimen, F. E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. Int. Sch. Res. Notices 2011, 2011, 1–20. DOI: 10.5402/2011/402647.
  • Eddaif, L.; Shaban, A.; Telegdi, J. Sensitive Detection of Heavy Metals Ions Based on the Calixarene Derivatives-Modified Piezoelectric Resonators: A Review. Int. J. Environ. Anal. Chem. 2019, 99, 824–853. DOI: 10.1080/03067319.2019.1616708.
  • Alrobaian, M.; Arida, H. Assessment of Heavy and Toxic Metals in the Blood and Hair of Saudi Arabia Smokers Using Modern Analytical Techniques. Int. J. Anal. Chem. 2019, 2019, 7125210. DOI: 10.1155/2019/7125210.
  • Liu, X.; Yao, Y.; Ying, Y.; Ping, J. Recent Advances in Nanomaterial-Enabled Screen-Printed Electrochemical Sensors for Heavy Metal Detection. TrAC Trends Anal. Chem. 2019, 115, 187–202. DOI: 10.1016/j.trac.2019.03.021.
  • Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A Review of the Identification and Detection of Heavy Metal Ions in the Environment by voltammetry. Talanta 2018, 178, 324–338. DOI: 10.1016/j.talanta.2017.08.033.
  • Sivakumar, R.; Lee, N. Y. Recent Progress in Smartphone-Based Techniques for Food Safety and the Detection of Heavy Metal Ions in Environmental Water. Chemosphere 2021, 275, 130096. DOI: 10.1016/j.chemosphere.2021.130096.
  • Wu, S.; Li, K.; Zhang, Z.; Chen, L. Synthesis of Imprinted Chitosan/AuNPs/Graphene-Coated MWCNTs/Nafion Film for Detection of Lead Ions. New J. Chem. 2020, 44, 14129–14135. DOI: 10.1039/D0NJ02522D.
  • Franklin, R. K.; Martin, S. M.; Strong, T. D.; Brown, R. B. Chemical and Biological Systems: Chemical Sensing Systems for Liquids. In Reference Module in Materials Science and Materials Engineering, Elsevier: Amsterdam, Netherland, 2016.
  • March, G.; Nguyen, T. D.; Piro, B. Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis. Biosensors (Basel) 2015, 5, 241–275. https://www.mdpi.com/2079-6374/5/2/241. DOI: 10.3390/bios5020241.
  • Thiyagarajan, N.; Chang, J.-L.; Senthilkumar, K.; Zen, J.-M. Disposable Electrochemical Sensors: A Mini Review. Electrochem. Commun. 2014, 38, 86–90. DOI: 10.1016/j.elecom.2013.11.016.
  • Kawde, A.-N.; Baig, N.; Sajid, M. Graphite Pencil Electrodes as Electrochemical Sensors for Environmental Analysis: A Review of Features, Developments, and Applications. RSC Adv. 2016, 6, 91325–91340. DOI: 10.1039/C6RA17466C.
  • Hayat, A.; Marty, J. L. Disposable Screen Printed Electrochemical Sensors: tools for Environmental monitoring. Sensors (Basel) 2014, 14, 10432–10453. DOI: 10.3390/s140610432.
  • Wang, W.; Bai, H.; Li, H.; Lv, Q.; Zhang, Q.; Bao, N. Carbon Tape Coated with Gold Film as Stickers for Bulk Fabrication of Disposable Gold Electrodes to Detect Cr(VI). Sens. Actuator B. Chem. 2016, 236, 218–225. DOI: 10.1016/j.snb.2016.05.155.
  • Sánchez-Calvo, A.; Fernández-Abedul, M. T.; Blanco-López, M. C.; Costa-García, A. Paper-Based Electrochemical Transducer Modified with Nanomaterials for Mercury Determination in Environmental Waters. Sens. Actuator B. Chem. 2019, 290, 87–92. DOI: 10.1016/j.snb.2019.03.089.
  • Xu, G.; Li, X.; Cheng, C.; Yang, J.; Liu, Z.; Shi, Z.; Zhu, L.; Lu, Y.; Low, S. S.; Liu, Q. Fully Integrated Battery-Free and Flexible Electrochemical Tag for on-Demand Wireless in Situ Monitoring of Heavy Metals. Sens. Actuator B. Chem. 2020, 310, 127809. DOI: 10.1016/j.snb.2020.127809.
  • Du, C. X.; Han, L.; Dong, S. L.; Li, L. H.; Wei, Y. A Novel Procedure for Fabricating Flexible Screen-Printed Electrodes with Improved Electrochemical Performance. IOP Conf. Ser: Mater. Sci. Eng. 2016, 137, 012060. DOI: 10.1088/1757-899X/137/1/012060.
  • Jeerapan, I.; Poorahong, S. Review—Flexible and Stretchable Electrochemical Sensing Systems: Materials, Energy Sources, and Integrations. J. Electrochem. Soc. 2020, 167, 037573. DOI: 10.1149/1945-7111/ab7117.
  • Bagheri, H.; Afkhami, A.; Khoshsafar, H.; Rezaei, M.; Sabounchei, S. J.; Sarlakifar, M. Simultaneous Electrochemical Sensing of Thallium, Lead and Mercury Using a Novel Ionic Liquid/Graphene Modified Electrode. Anal. Chim. Acta. 2015, 870, 56–66. DOI: 10.1016/j.aca.2015.03.004.
  • Jeromiyas, N.; Elaiyappillai, E.; Kumar, A. S.; Huang, S.-T.; Mani, V. Bismuth Nanoparticles Decorated Graphenated Carbon Nanotubes Modified Screen-Printed Electrode for Mercury Detection. J. Taiwan Inst. Chem. Eng. 2019, 95, 466–474. DOI: 10.1016/j.jtice.2018.08.030.
  • Kanyong, P.; Rawlinson, S.; Davis, J. Gold Nanoparticle Modified Screen-Printed Carbon Arrays for the Simultaneous Electrochemical Analysis of Lead and Copper in Tap Water. Microchim. Acta 2016, 183, 2361–2368. DOI: 10.1007/s00604-016-1879-3.
  • Roushani, M.; Ghanbarzadeh, M.; Shahdost-Fard, F.; Sahraei, R.; Soheyli, E. AgNPs/QDs@GQDs Nanocomposites Developed as an Ultrasensitive Impedimetric Aptasensor for Ractopamine Detection. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110507. DOI: 10.1016/j.msec.2019.110507.
  • Yu, L.; Zhang, P.; Dai, H.; Chen, L.; Ma, H.; Lin, M.; Shen, D. An Electrochemical Sensor Based on Co3O4 Nanosheets for Lead Ions Determination. RSC Adv. 2017, 7, 39611–39616. DOI: 10.1039/C7RA06269A.
  • Yukird, J.; Kongsittikul, P.; Qin, J.; Chailapakul, O.; Rodthongkum, N. ZnO@Graphene Nanocomposite Modified Electrode for Sensitive and Simultaneous Detection of Cd (II) and Pb (II). Synth. Met 2018, 245, 251–259. DOI: 10.1016/j.synthmet.2018.09.012.
  • Seyi, P. A.; Onoyivwe, M. A.; Suprakas, S. R.; Peter, O. O. Metal Oxide Nanomaterials for Electrochemical Detection of Heavy Metals in Water. In Nanostructured Metal-Oxide Electrode Materials for Water Purification, Onoyivwe, M. A.; Suprakas, S. R., Eds. Springer International Publishing: Cham, Switzerland 2020; pp 113–127
  • Maduraiveeran, G.; Jin, W. Nanomaterials Based Electrochemical Sensor and Biosensor Platforms for Environmental Applications. Trends Environ. Anal. Chem. 2017, 13, 10–23. DOI: 10.1016/j.teac.2017.02.001.
  • Trachioti, M. G.; Hrbac, J.; Prodromidis, M. I. Determination of Cd and Zn with “Green” Screen-Printed Electrodes Modified with Instantly Prepared Sparked Tin Nanoparticles. Sens. Actuator B. Chem. 2018, 260, 1076–1083. DOI: 10.1016/j.snb.2017.10.039.
  • María-Hormigos, R.; Gismera, M. J.; Procopio, J. R.; Sevilla, M. T. Disposable Screen-Printed Electrode Modified with Bismuth–PSS Composites as High Sensitive Sensor for Cadmium and Lead Determination. J. Electroanal. Chem. 2016, 767, 114–122. DOI: 10.1016/j.jelechem.2016.02.025.
  • Li, M.; Li, D.-W.; Xiu, G.; Long, Y.-T. Applications of Screen-Printed Electrodes in Current Environmental Analysis. Curr. Opin. Electrochem. 2017, 3, 137–143. DOI: 10.1016/j.coelec.2017.08.016.
  • Laschi, S.; Palchetti, I.; Mascini, M. Gold-Based Screen-Printed Sensor for Detection of Trace Lead. Sens. Actuator B. Chem. 2006, 114, 460–465. DOI: 10.1016/j.snb.2005.05.028.
  • Lin, Y.; Peng, Y.; Di, J. Electrochemical Detection of Hg(II) Ions Based on Nanoporous Gold Nanoparticles Modified Indium Tin Oxide Electrode. Sens. Actuator B. Chem. 2015, 220, 1086–1090. DOI: 10.1016/j.snb.2015.06.064.
  • Huang, A.; Li, H.; Xu, D. An on-Chip Electrochemical Sensor by Integrating ITO Three-Electrode with Low-Volume Cell for on-Line Determination of Trace Hg(II). J. Electroanal. Chem. 2019, 848, 113189. DOI: 10.1016/j.jelechem.2019.113189.
  • Deshmukh, M. A.; Gicevicius, M.; Ramanaviciene, A.; Shirsat, M. D.; Viter, R.; Ramanavicius, A. Hybrid Electrochemical/Electrochromic Cu(II) Ion Sensor Prototype Based on PANI/ITO-Electrode. Sens. Actuator B. Chem. 2017, 248, 527–535. DOI: 10.1016/j.snb.2017.03.167.
  • Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing platforms. Biosens. Bioelectron. 2017, 94, 443–455. DOI: 10.1016/j.bios.2017.03.031.
  • Asadian, E.; Ghalkhani, M.; Shahrokhian, S. Electrochemical Sensing Based on Carbon Nanoparticles: A Review. Sens. Actuator B. Chem. 2019, 293, 183–209. DOI: 10.1016/j.snb.2019.04.075.
  • Hou, H.; Zeinu, K. M.; Gao, S.; Liu, B.; Yang, J.; Hu, J. Recent Advances and Perspective on Design and Synthesis of Electrode Materials for Electrochemical Sensing of Heavy Metals. Energy Environ. Mater. 2018, 1, 113–131. DOI: 10.1002/eem2.12011.
  • García-Miranda Ferrari, A.; Carrington, P.; Rowley-Neale, S. J.; Banks, C. E. Recent Advances in Portable Heavy Metal Electrochemical Sensing Platforms. Environ. Sci. Water Res. Technol. 2020, 6, 2676–2690. DOI: 10.1039/D0EW00407C.
  • da Silva, S. M.; Squissato, A. L.; Rocha, D. P.; Vasconcellos, M. L. S.; de Q. Ferreira, R.; Richter, E. M.; Munoz, R. A. A. Improved Anodic Stripping Voltammetric Detection of Zinc on a Disposable Screen-Printed Gold Electrode. Ionics 2020, 26, 2611–2621. DOI: 10.1007/s11581-019-03379-6.
  • Koudelkova, Z.; Syrovy, T.; Ambrozova, P.; Moravec, Z.; Kubac, L.; Hynek, D.; Richtera, L.; Adam, V. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide. Sensors (Basel) 2017, 17, 1832. DOI: 10.3390/s17081832.
  • Zheng, X.; Chen, S.; Chen, J.; Guo, Y.; Peng, J.; Zhou, X.; Lv, R.; Lin, J.; Lin, R. Highly Sensitive Determination of Lead(ii) and Cadmium(ii) by a Large Surface Area Mesoporous Alumina Modified Carbon Paste Electrode. RSC Adv. 2018, 8, 7883–7891. DOI: 10.1039/C8RA00041G.
  • Sun, M.; Li, Z.; Wu, S.; Gu, Y.; Li, Y. Simultaneous Detection of Pb2+, Cu2+ and Hg2+ by Differential Pulse Voltammetry at an Indium Tin Oxide Glass Electrode Modified by Hydroxyapatite. Electrochim. Acta 2018, 283, 1223–1230. DOI: 10.1016/j.electacta.2018.07.019.
  • Kokkinos, C.; Economou, A.; Giokas, D. Paper-Based Device with a Sputtered Tin-Film Electrode for the Voltammetric Determination of Cd(II) and Zn(II). Sens. Actuator B. Chem. 2018, 260, 223–226. DOI: 10.1016/j.snb.2017.12.182.
  • Shen, L.-L.; Zhang, G.-R.; Li, W.; Biesalski, M.; Etzold, B. J. M. Modifier-Free Microfluidic Electrochemical Sensor for Heavy-Metal Detection. ACS Omega. 2017, 2, 4593–4603. DOI: 10.1021/acsomega.7b00611.
  • Barón-Jaimez, J.; Joya, M. R.; Barba-Ortega, J. Anodic Stripping Voltammetry – ASV for Determination of Heavy Metals. J. Phys: Conf. Ser. 2013, 466, 012023. DOI: 10.1088/1742-6596/466/1/012023.
  • Sawan, S.; Maalouf, R.; Errachid, A.; Jaffrezic-Renault, N. Metal and Metal Oxide Nanoparticles in the Voltammetric Detection of Heavy Metals: A Review. TrAC Trends Anal. Chem. 2020, 131, 116014. DOI: 10.1016/j.trac.2020.116014.
  • Cammann, K.; Ross, B.; Katerkamp, A.; Reinbold, J.; Gründig, B.; Renneberg, R. Chemical and Biochemical Sensors. In Ullmann's Encyclopedia of Industrial Chemistry, Wiley‐VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2001.
  • Pujol, L.; Evrard, D.; Groenen-Serrano, K.; Freyssinier, M.; Ruffien-Cizsak, A.; Gros, P. Electrochemical Sensors and Devices for Heavy Metals Assay in Water: The French Groups' Contribution. Front. Chem. 2014, 2, 19. DOI: 10.3389/fchem.2014.00019.
  • Bontempelli, G.; Dossi, N.; Toniolo, R. Linear Sweep and Cyclic⋆. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier: Amsterdam, Netherland, 2016.
  • Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197–206. DOI: 10.1021/acs.jchemed.7b00361.
  • Joshi, P. S.; Sutrave, D. S. A Brief Study of Cyclic Voltammetry and Electrochemical Analysis. IJCTR 2018, 11, 77–88. DOI: 10.20902/IJCTR.2018.110911.
  • Westbroek, P. 2 - Electrochemical Methods. In Analytical Electrochemistry in Textiles, Westbroek, P.; Priniotakis, G.; Kiekens, P., Eds. Woodhead Publishing: Cambridge, United Kingdom, 2005; pp 37–69
  • Bontempelli, G.; Dossi, N.; Toniolo, R. Voltammetry | Polarography. In Encyclopedia of Analytical Science (Third Edition), Worsfold, P.; Poole, C.; Townshend, A.; Miró, M., Eds. Academic Press: Oxford, 2019; pp 218–229
  • Arduini, F.; Calvo, J. Q.; Palleschi, G.; Moscone, D.; Amine, A. Bismuth-Modified Electrodes for Lead Detection. TrAC, Trends Anal. Chem. 2010, 29, 1295–1304. DOI: 10.1016/j.trac.2010.08.003.
  • Švancara, I.; Prior, C.; Hočevar, S. B.; Wang, J. A Decade with Bismuth-Based Electrodes in Electroanalysis. Electroanalysis 2010, 22, 1405–1420. DOI: 10.1002/elan.200970017.
  • Simões, F. R.; Xavier, M. G. 6 - Electrochemical Sensors. In Nanoscience and Its Applications, Da Róz, A. L.; Ferreira, M.; de Lima Leite, F.; Oliveira, O. N., Eds. William Andrew Publishing: Cambridge, Massachusetts, 2017; pp 155–178
  • Mirceski, V.; Skrzypek, S.; Stojanov, L. Square-Wave Voltammetry. ChemTexts 2018, 4, 17. DOI: 10.1007/s40828-018-0073-0.
  • Osteryoung, J. G.; Osteryoung, R. A. Square Wave Voltammetry. Anal. Chem. 1985, 57, 101–110. DOI: 10.1021/ac00279a004.
  • Santos, S. B.; Valezi, C. F.; Scremin, J.; Salamanca-Neto, C. A. R.; Dall'Antonia, L. H.; Sartori, E. R. A Simple Square-Wave Voltammetric Method for the Determination of Scopolamine in Pharmaceuticals Using a Boron-Doped Diamond Electrode. Quim. Nova 2014, 37, 1579–1583. DOI: http://dx.doi.org/10.5935/0100-4042.20140278.
  • Scholz, F. Voltammetric Techniques of Analysis: The Essentials. ChemTexts 2015, 1, 17. DOI: 10.1007/s40828-015-0016-y.
  • Cui, H.; Li, Q, School of Fine Arts and Art Design, Qiqihar University, Qiqihar City, 161006, China Multi-Walled Carbon Nanotubes Modified Screen-Printed Electrode Coated Bismuth Oxide Nanoparticle for Rapid Detection of Cd(II) and Pb(II). Int. J. Electrochem. Sci. 2019, 14, 6154–6167. DOI: 10.20964/2019.07.15.
  • Wang, J. Anodic Stripping Voltammetry as an Analytical tool. Environ. Sci. Technol. 1982, 16, 104A–109A. DOI: 10.1021/es00096a724.
  • Adeloju, S. B. Chapter 18 - Electrochemical Stripping Analysis of Trace and Ultra-Trace Concentrations of Toxic Metals and Metalloids in Foods and Beverages. In Food Toxicants Analysis, Picó, Y., Ed. Elsevier: Amsterdam, 2007; pp 667–696
  • Mota, A. M.; Pinheiro, J. P.; Simões Gonçalves, M. L. Electrochemical Methods for Speciation of Trace Elements in Marine Waters. Dynamic Aspects. J. Phys. Chem. A. 2012, 116, 6433–6442. DOI: 10.1021/jp2124636.
  • Abollino, O.; Giacomino, A.; Malandrino, M. Voltammetry | Stripping Voltammetry⋆. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P.; Poole, C.; Townshend, A.; Miró, M., Eds. Academic Press: Oxford, 2019; pp 238–257
  • Achterberg, E. P.; Barriada, J. L.; Braungardt, C. B. VOLTAMMETRY | Cathodic Stripping. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P.; Townshend, A.; Poole, C., Eds. Elsevier: Oxford, 2005; pp 203–211
  • Biver, M.; Quentel, F.; Filella, M. Direct Determination of Tellurium and Its Redox Speciation at the Low Nanogram Level in Natural Waters by Catalytic Cathodic Stripping Voltammetry. Talanta 2015, 144, 1007–1013. DOI: 10.1016/j.talanta.2015.07.010.
  • Biver, M.; Filella, M. Selective Determination of Niobium in Natural Waters at the Low ngL-1 Level by Differential Pulse Cathodic Stripping Voltammetry in the Presence of Pyrogallol Red. Sci. Total Environ. 2018, 615, 1406–1410. DOI: 10.1016/j.scitotenv.2017.09.040.
  • Baś, B.; Jedlińska, K.; Węgiel, K. New Electrochemical Sensor with the Renewable Silver Annular Band Working Electrode: Fabrication and Application for Determination of Selenium(IV) by Cathodic Stripping Voltammetry. Electrochem. Commun. 2014, 49, 79–82. DOI: 10.1016/j.elecom.2014.10.004.
  • Han, H.; Pan, D. Voltammetric Methods for Speciation Analysis of Trace Metals in Natural Waters. Trends Environ. Anal. Chem. 2021, 29, e00119. DOI: 10.1016/j.teac.2021.e00119.
  • Rojas-Romo, C.; Serrano, N.; Ariño, C.; Arancibia, V.; Díaz-Cruz, J. M.; Esteban, M. Determination of Sb(III) Using an Ex-Situ Bismuth Screen-Printed Carbon Electrode by Adsorptive Stripping Voltammetry. Talanta 2016, 155, 21–27. DOI: 10.1016/j.talanta.2016.04.015.
  • Ferreira, T. A.; Rodríguez, J. A.; Galán-Vidal, C. A.; Castrillejo, Y.; Barrado, E. Flow Based Determination of Cr(VI) by Adsorptive Cathodic Stripping Voltammetry on an Immobilized Magnetic Poly(Ionic Liquid) Modified Electrode. Talanta 2018, 183, 172–176. DOI: 10.1016/j.talanta.2018.02.054.
  • Rojas-Romo, C.; Aliaga, M. E.; Arancibia, V. Determination of Molybdenum(VI) via Adsorptive Stripping Voltammetry Using an Ex‒Situ Bismuth Screen‒Printed Carbon Electrode. Microchem. J. 2020, 154, 104589. DOI: 10.1016/j.microc.2019.104589.
  • Sanchayanukun, P.; Muncharoen, S. Chitosan Coated Magnetite Nanoparticle as a Working Electrode for Determination of Cr(VI) Using Square Wave Adsorptive Cathodic Stripping Voltammetry. Talanta 2020, 217, 121027. DOI: 10.1016/j.talanta.2020.121027.
  • Pokpas, K.; Jahed, N.; McDonald, E.; Bezuidenhout, P.; Smith, S.; Land, K.; Iwuoha, E. Graphene-AuNP Enhanced Inkjet-Printed Silver Nanoparticle Paper Electrodes for the Detection of Nickel(II)-Dimethylglyoxime [Ni(dmgH2)] Complexes by Adsorptive Cathodic Stripping Voltammetry (AdCSV). Electroanalysis 2020, 32, 3017–3031. DOI: 10.1002/elan.202060379.
  • Honeychurch, M. J.; Díaz-Cruz, J. M.; Serrano, N.; Ariño, C.; Esteban, M. Voltammetry | Potentiometric Stripping Analysis⋆. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P.; Poole, C.; Townshend, A.; Miró, M., Eds. Academic Press: Oxford, 2019; pp 230–237
  • Suturović, Z. J.; Kravić, S. Ž.; Stojanović, Z. S.; Đurović, A. D.; Brezo-Borjan, T. Ž. Potentiometric Stripping Analysis of Cadmium and Lead with Constant Inverse Current in the Analytical Step Using an Open Tubular Mercury-Coated Glassy Carbon Electrode. J. Anal. Methods Chem. 2019, 2019, 3579176. DOI: 10.1155/2019/3579176.
  • Chumbimuni-Torres, K. Y.; Calvo-Marzal, P.; Wang, J. Comparison between Potentiometric and Stripping Voltammetric Detection of Trace Metals: Measurements of Cadmium and Lead in the Presence of Thalium, Indium, and Tin. Electroanalysis 2009, 21, 1939–1943. DOI: 10.1002/elan.200904613.
  • Estela, J. M.; Tomás, C.; Cladera, A.; Cerdà, V. Potentiometric Stripping Analysis: A Review. Crit. Rev. Anal. Chem. 1995, 25, 91–141. DOI: 10.1080/10408349508050559.
  • Ardalani, M.; Shamsipur, M.; Besharati-Seidani, A. A New Generation of Highly Sensitive Potentiometric Sensors Based on Ion Imprinted Polymeric Nanoparticles/Multiwall Carbon Nanotubes/Polyaniline/Graphite Electrode for Sub-Nanomolar Detection of Lead(II) Ions. J. Electroanal. Chem. 2020, 879, 114788. DOI: 10.1016/j.jelechem.2020.114788.
  • Afkhami, A.; Shirzadmehr, A.; Madrakian, T.; Bagheri, H. Improvement in the Performance of a Pb2+ Selective Potentiometric Sensor Using Modified Core/Shell SiO2/Fe3O4 Nano-Structure. J. Mol. Liq. 2014, 199, 108–114. DOI: 10.1016/j.molliq.2014.08.027.
  • Tang, X.; Wang, P.-Y.; Buchter, G. Ion-Selective Electrodes for Detection of Lead (II) in Drinking Water: A Mini-Review. Environments 2018, 5, 95. DOI: 10.3390/environments5090095.
  • Radu, A.; Diamond, D. Chapter 2 Ion-Selective Electrodes in Trace Level Analysis of Heavy Metals: Potentiometry for the XXI Century. In Comprehensive Analytical Chemistry, Alegret, S.; Merkoçi, A., Eds. Elsevier: Amsterdam, Netherland, 2007; Vol. 49, pp 25–52
  • Lindner, E.; Pendley, B. D. A Tutorial on the Application of ion-selective electrode potentiometry: an analytical method with unique qualities, unexplored opportunities and potential pitfalls; tutorial. Anal. Chim. Acta. 2013, 762, 1–13. DOI: 10.1016/j.aca.2012.11.022.
  • Pechenkina, I. A.; Mikhelson, K. N. Materials for the Ionophore-Based Membranes for Ion-Selective Electrodes: Problems and Achievements (Review Paper). Russ. J. Electrochem. 2015, 51, 93–102. DOI: 10.1134/S1023193515020111.
  • Ivaska, A.; Bobacka, J. PROCESS ANALYSIS | Electroanalytical Techniques. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P.; Townshend, A.; Poole, C., Eds. Elsevier: Oxford, 2005; pp 309–316
  • Dias, L. G.; Meirinho, S. G.; Veloso, A. C. A.; Rodrigues, L. R.; Peres, A. M. 13 - Electronic Tongues and Aptasensors. In Bioinspired Materials for Medical Applications, Rodrigues, L.; Mota, M., Eds. Woodhead Publishing: Duxford, United Kingdom, 2017; pp 371–402
  • Economou, A. Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements. Sensors (Basel, Switzerland) 2018, 18, 1032. DOI: 10.3390/s18041032.
  • Ahmad, R.; Wolfbeis, O. S.; Hahn, Y.-B.; Alshareef, H. N.; Torsi, L.; Salama, K. N. Deposition of Nanomaterials: A Crucial Step in Biosensor Fabrication. Mater. Today Commun. 2018, 17, 289–321. DOI: 10.1016/j.mtcomm.2018.09.024.
  • Cinti, S.; Arduini, F. Graphene-Based Screen-Printed Electrochemical (Bio)Sensors and Their Applications: Efforts and Criticisms. Biosens. Bioelectron. 2017, 89, 107–122. DOI: 10.1016/j.bios.2016.07.005.
  • Pérez-Ràfols, C.; Bastos-Arrieta, J.; Serrano, N.; Díaz-Cruz, J.; Ariño, C.; de Pablo, J.; Esteban, M. Ag Nanoparticles Drop-Casting Modification of Screen-Printed Electrodes for the Simultaneous Voltammetric Determination of Cu(II) and Pb(II). Sensors 2017, 17, 1458. DOI: 10.3390/s17061458.
  • Ezhil Vilian, A. T.; Shahzad, A.; Chung, J.; Choe, S. R.; Kim, W.-S.; Huh, Y. S.; Yu, T.; Han, Y.-K. Square Voltammetric Sensing of Mercury at Very Low Working Potential by Using Oligomer-Functionalized Ag@Au Core-Shell Nanoparticles. Microchim. Acta 2017, 184, 3547–3556. DOI: 10.1007/s00604-017-2372-3.
  • Dutta, S.; Strack, G.; Kurup, P. Gold Nanostar Electrodes for Heavy Metal Detection. Sens. Actuator B. Chem. 2019, 281, 383–391. DOI: 10.1016/j.snb.2018.10.111.
  • Lopez, T. B. G.; Palisoc, S. T.; Natividad, M. T. Highly Sensitive [Ru(Bpy)3]2+/Nafion® Modified Indium Tin Oxide-Based Sensor for Heavy Metal Detection. Sens. Bio-Sens. Res. 2017, 15, 34–40. DOI: 10.1016/j.sbsr.2017.07.001.
  • Migliorini, F. L.; Sanfelice, R. C.; Pavinatto, A.; Steffens, J.; Steffens, C.; Correa, D. S. Voltammetric Cadmium(II) Sensor Based on a Fluorine Doped Tin Oxide Electrode Modified with Polyamide 6/Chitosan Electrospun Nanofibers and Gold Nanoparticles. Microchim. Acta 2017, 184, 1077–1084. DOI: 10.1007/s00604-017-2082-x.
  • Promphet, N.; Rattanarat, P.; Rangkupan, R.; Chailapakul, O.; Rodthongkum, N. An Electrochemical Sensor Based on Graphene/Polyaniline/Polystyrene Nanoporous Fibers Modified Electrode for Simultaneous Determination of Lead and Cadmium. Sens. Actuator B. Chem. 2015, 207, 526–534. DOI: 10.1016/j.snb.2014.10.126.
  • Fakude, C. T.; Arotiba, O. A.; Mabuba, N. Electrochemical Aptasensing of Cadmium (II) on a Carbon Black-Gold Nano-Platform. J. Electroanal. Chem. 2020, 858, 113796. DOI: 10.1016/j.jelechem.2019.113796.
  • Ruengpirasiri, P.; Punrat, E.; Chailapakul, O.; Chuanuwatanakul, S. Graphene Oxide-Modified Electrode Coated with in-Situ Antimony Film for the Simultaneous Determination of Heavy Metals by Sequential Injection-Anodic Stripping Voltammetry. Electroanalysis 2017, 29, 1022–1030. DOI: 10.1002/elan.201600568.
  • Besra, L.; Liu, M. A Review on Fundamentals and Applications of Electrophoretic Deposition (EPD). Prog. Mater. Sci. 2007, 52, 1–61. DOI: 10.1016/j.pmatsci.2006.07.001.
  • Zhu, S.-Q.; Zhang, T.; Guo, X.-L.; Wang, Q.-L.; Liu, X.; Zhang, X.-Y. Gold Nanoparticle Thin Films Fabricated by Electrophoretic Deposition Method for Highly Sensitive SERS Application. Nanoscale Res. Lett. 2012, 7, 613. DOI: 10.1186/1556-276X-7-613.
  • Krasovska, M.; Gerbreders, V.; Mihailova, I.; Ogurcovs, A.; Sledevskis, E.; Gerbreders, A.; Sarajevs, P. ZnO-Nanostructure-Based Electrochemical Sensor: Effect of Nanostructure Morphology on the Sensing of Heavy Metal Ions. Beilstein J. Nanotechnol. 2018, 9, 2421–2431. DOI: 10.3762/bjnano.9.227.
  • Cheng, B.; Zhou, L.; Lu, L.; Liu, J.; Dong, X.; Xi, F.; Chen, P. Simultaneous Label-Free and Pretreatment-Free Detection of Heavy Metal Ions in Complex Samples Using Electrodes Decorated with Vertically Ordered Silica Nanochannels. Sens. Actuator B. Chem. 2018, 259, 364–371. DOI: 10.1016/j.snb.2017.12.083.
  • Coelho, M. K. L.; De Oliveira, H. L.; De Almeida, F. G.; Borges, K. B.; Tarley, C. R. T.; Pereira, A. C. Development of Carbon Paste Electrode Modified with Cadmium Ion-Imprinted Polymer for Selective Voltammetric Determination of Cd2+. Int. J. Environ. Anal. Chem.s 2017, 97, 1378–1392. DOI: 10.1080/03067319.2018.1424330.
  • Amare, M.; Worku, A.; Kassa, A.; Hilluf, W. Green Synthesized Silver Nanoparticle Modified Carbon Paste Electrode for SWAS Voltammetric Simultaneous Determination of Cd(II) and Pb(II) in Bahir Dar Textile Discharged effluent. Heliyon 2020, 6, e04401. DOI: 10.1016/j.heliyon.2020.e04401.
  • Adarakatti, P. S.; Kempahanumakkagari, S. K. Modified Electrodes for Sensing. In Electrochemistry: Volume 15, The Royal Society of Chemistry: Croydon, United Kingdom, 2019; Vol. 15, pp 58–95
  • Rodriguez, C. A. D.; Tremiliosi-Filho, G. Electrochemical Deposition. In Encyclopedia of Tribology, Wang, Q. J.; Chung, Y.-W., Eds. Springer US: Boston, MA, 2013; pp 918–922
  • Liu, L.; Mandler, D. Using Nanomaterials as Building Blocks for Electrochemical Deposition: A Mini Review. Electrochem. Commun. 2020, 120, 106830. DOI: 10.1016/j.elecom.2020.106830.
  • Saldan, I.; Dobrovetska, O.; Sus, L.; Makota, O.; Pereviznyk, O.; Kuntyi, O.; Reshetnyak, O. Electrochemical Synthesis and Properties of Gold Nanomaterials. J. Solid State Electrochem. 2018, 22, 637–656. DOI: 10.1007/s10008-017-3835-5.
  • Niu, Y.; Xie, H.; Luo, G.; Zhuang, Y.; Wu, X.; Li, G.; Sun, W. ZnO-Reduced Graphene Oxide Composite Based Photoelectrochemical Aptasensor for Sensitive Cd(II) Detection with Methylene Blue as Sensitizer. Anal. Chim. Acta. 2020, 1118, 1–8. DOI: 10.1016/j.aca.2020.04.042.
  • Moutcine, A.; Laghlimi, C.; Ziat, Y.; Smaini, M. A.; Qouatli, S. E. E.; Hammi, M.; Chtaini, A. Preparation, Characterization and Simultaneous Electrochemical Detection toward Cd (II) and Hg(II) of a Phosphate/Zinc Oxide Modified Carbon Paste Electrode. Inorg. Chem. Commun. 2020, 116, 107911. DOI: 10.1016/j.inoche.2020.107911.
  • Zhuang, Y.; Zhao, M.; He, Y.; Cheng, F.; Chen, S. Fabrication of ZnO/rGO/PPy Heterostructure for Electrochemical Detection of Mercury Ion. J. Electroanal. Chem. 2018, 826, 90–95. DOI: 10.1016/j.jelechem.2018.08.016.
  • Huang, Q.; Zhu, Y. Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications. Adv. Mater. Technol. 2019, 4, 1800546. DOI: 10.1002/admt.201800546.
  • Hong, Y.; Wu, M.; Chen, G.; Dai, Z.; Zhang, Y.; Chen, G.; Dong, X. 3D Printed Microfluidic Device with Microporous Mn2O3-Modified Screen Printed Electrode for Real-Time Determination of Heavy Metal Ions. ACS Appl Mater Interfaces 2016, 8, 32940–32947. DOI: 10.1021/acsami.6b10464.
  • Kang, W.; Pei, X.; Bange, A.; Haynes, E. N.; Heineman, W. R.; Papautsky, I. Copper-Based Electrochemical Sensor with Palladium Electrode for Cathodic Stripping Voltammetry of Manganese. Anal. Chem. 2014, 86, 12070–12077. DOI: 10.1021/ac502882s.
  • Chen, C.; Niu, X.; Chai, Y.; Zhao, H.; Lan, M. Bismuth-Based Porous Screen-Printed Carbon Electrode with Enhanced Sensitivity for Trace Heavy Metal Detection by Stripping Voltammetry. Sens. Actuator B. Chem. 2013, 178, 339–342. DOI: 10.1016/j.snb.2012.12.109.
  • Diaz-Amaya, S.; Lin, L.-K.; DiNino, R. E.; Ostos, C.; Stanciu, L. A. Inkjet Printed Electrochemical Aptasensor for Detection of Hg2+ in Organic Solvents. Electrochim. Acta 2019, 316, 33–42. DOI: 10.1016/j.electacta.2019.05.079.
  • Khan, S.; Ali, S.; Bermak, A. Smart Manufacturing Technologies for Printed Electronics. In Hybrid Nanomaterials - Flexible Electronics Materials, Bernal, R. V.; He, P.; Zhang, S., Eds. IntechOpen: London, United Kingdom, 2019. https://www.intechopen.com/books/hybrid-nanomaterials-flexible-electronics-materials/smart-manufacturing-technologies-for-printed-electronics.
  • Wang, W.; Fu, Y.; Lv, Q.; Bai, H.; Li, H.; Wang, Z.; Zhang, Q. Miniaturized Device with a Detachable Three-Electrode System and Vibration Motor for Electrochemical Analysis Based on Disposable Electrodes. Sens. Actuator B. Chem. 2019, 297, 126719. DOI: 10.1016/j.snb.2019.126719.
  • Barton, J.; García, M. B. G.; Santos, D. H.; Fanjul-Bolado, P.; Ribotti, A.; McCaul, M.; Diamond, D.; Magni, P. Screen-Printed Electrodes for Environmental Monitoring of Heavy Metal Ions: A Review. Microchim. Acta 2016, 183, 503–517. DOI: 10.1007/s00604-015-1651-0.
  • Thiruppathi, A. R.; Sidhureddy, B.; Keeler, W.; Chen, A. Facile One-Pot Synthesis of Fluorinated Graphene Oxide for Electrochemical Sensing of Heavy Metal Ions. Electrochem. Commun. 2017, 76, 42–46. DOI: 10.1016/j.elecom.2017.01.015.
  • Wang, H.; Zhao, G.; Zhang, Z.; Yi, Y.; Wang, Z.; Liu, G. A Portable Electrochemical Workstation Using Disposable Screen-Printed Carbon Electrode Decorated with Multiwall Carbon Nanotube-Ionic Liquid and Bismuth Film for Cd(II) and Pb(II) Determination. Int. J. Electrochem. Sci. 2017, 12, 4702–4713. DOI: 10.20964/2017.06.73.
  • Bedin, K. C.; Mitsuyasu, E. Y.; Ronix, A.; Cazetta, A. L.; Pezoti, O.; Almeida, V. C. Inexpensive Bismuth-Film Electrode Supported on Pencil-Lead Graphite for Determination of Pb(II) and Cd(II) Ions by Anodic Stripping Voltammetry. Int. J. Anal. Chem. 2018, 2018, 1473706s. DOI: 10.1155/2018/1473706.
  • Frutos-Puerto, S.; Miró, C.; Pinilla-Gil, E. Nafion-Protected Sputtered-Bismuth Screen-Printed Electrode for on-Site Voltammetric Measurements of Cd(II) and Pb(II) in Natural Water Samples. Sensors (Basel, Switzerland) 2019, 19, 279. DOI: 10.3390/s19020279.
  • Finšgar, M.; Majer, D.; Maver, U.; Maver, T. Reusability of SPE and Sb-Modified SPE Sensors for Trace Pb(II) Determination. Sensors (Basel, Switzerland) 2018, 18, 3976. DOI: 10.3390/s18113976.
  • Hai, T. L.; Hung, L. C.; Phuong, T. T. B.; Ha, B. T. T.; Nguyen, B. S.; Hai, T. D.; Nguyen, V. H. Multiwall Carbon Nanotube Modified by Antimony Oxide (Sb2O3/MWCNTs) Paste Electrode for the Simultaneous Electrochemical Detection of Cadmium and Lead Ions. Microchem. J. 2020, 153, (November 2019), 104456. DOI: 10.1016/j.microc.2019.104456.
  • Ding, J.; Liu, Y.; Zhang, D.; Yu, M.; Zhan, X.; Zhang, D.; Zhou, P. An Electrochemical Aptasensor Based on gold@polypyrrole composites for detection of lead ions. Mikrochim. Acta. 2018, 185, 545. DOI: 10.1007/s00604-018-3068-z.
  • Cui, L.; Wu, J.; Li, J.; Ju, H. Electrochemical Sensor for Lead Cation Sensitized with a DNA Functionalized Porphyrinic Metal-Organic Framework. Anal. Chem. 2015, 87, 10635–10641. DOI: 10.1021/acs.analchem.5b03287.
  • Song, W.; Zhang, L.; Shi, L.; Li, D.-W.; Li, Y.; Long, Y.-T. Simultaneous Determination of Cadmium(II), Lead(II) and Copper(II) by Using a Screen-Printed Electrode Modified with Mercury Nano-Droplets. Microchim. Acta 2010, 169, 321–326. DOI: 10.1007/s00604-010-0354-9.
  • Li, Y.; Chen, Y.; Yu, H.; Tian, L.; Wang, Z. Portable and Smart Devices for Monitoring Heavy Metal Ions Integrated with Nanomaterials. TrAC Trends Anal. Chem. 2018, 98, 190–200. DOI: 10.1016/j.trac.2017.11.011.
  • Waheed, A.; Mansha, M.; Ullah, N. Nanomaterials-Based Electrochemical Detection of Heavy Metals in Water: Current Status, Challenges and Future Direction. TrAC Trends Anal. Chem. 2018, 105, 37–51. DOI: 10.1016/j.trac.2018.04.012.
  • Hwang, J.-H.; Wang, X.; Zhao, D.; Rex, M. M.; Cho, H. J.; Lee, W. H. A Novel Nanoporous Bismuth Electrode Sensor for in Situ Heavy Metal Detection. Electrochim. Acta 2019, 298, 440–448. DOI: 10.1016/j.electacta.2018.12.122.
  • Lu, Z.; Zhang, J.; Dai, W.; Lin, X.; Ye, J.; Ye, J. A Screen-Printed Carbon Electrode Modified with a Bismuth Film and Gold Nanoparticles for Simultaneous Stripping Voltammetric Determination of Zn(II), Pb(II) and Cu(II). Microchim. Acta 2017, 184, 4731–4740. DOI: 10.1007/s00604-017-2521-8.
  • Lee, S.; Oh, J.; Kim, D.; Piao, Y. A Sensitive Electrochemical Sensor Using an Iron Oxide/Graphene Composite for the Simultaneous Detection of Heavy Metal Ions. Talanta 2016, 160, 528–536. DOI: 10.1016/j.talanta.2016.07.034.
  • Deshmukh, S.; Kandasamy, G.; Upadhyay, R. K.; Bhattacharya, G.; Banerjee, D.; Maity, D.; Deshusses, M. A.; Roy, S. S. Terephthalic Acid Capped Iron Oxide Nanoparticles for Sensitive Electrochemical Detection of Heavy Metal Ions in Water. J. Electroanal. Chem. 2017, 788, 91–98. DOI: 10.1016/j.jelechem.2017.01.064.
  • Borrill, A. J.; Reily, N. E.; Macpherson, J. V. Addressing the Practicalities of Anodic Stripping Voltammetry for Heavy Metal Detection: A Tutorial Review. Analyst 2019, 144, 6834–6849. DOI: 10.1039/C9AN01437C.
  • Vasconcellos, M. L. S.; Rocha, D. P.; Castro, S. V. F.; Silva, L. R. G. e.; Muñoz, R. A. A.; Freitas, M. B. J. G.; Ferreira, R. Q. Electroanalytical Method for Determination of Trace Metals in Struvite Using Electrochemically Treated Screen-Printed Gold Electrodes. J. Braz. Chem. Soc. 2020, 31, 873–1882. DOI: 10.21577/0103-5053.20200081.
  • Pérez-Ràfols, C.; Serrano, N.; Díaz-Cruz, J. M.; Ariño, C.; Esteban, M. New Approaches to Antimony Film Screen-Printed Electrodes Using Carbon-Based Nanomaterials Substrates. Anal. Chim. Acta. 2016, 916, 17–23. DOI: 10.1016/j.aca.2016.03.003.
  • Uslu, B.; Ozkan, S. A. Electroanalytical Application of Carbon Based Electrodes to the Pharmaceuticals. Analytical Lett. 2007, 40, 817–853. DOI: 10.1080/00032710701242121.
  • Zhang, W.; Zhu, S.; Luque, R.; Han, S.; Hu, L.; Xu, G. Recent Development of Carbon Electrode Materials and Their Bioanalytical and Environmental Applications. Chem. Soc. Rev. 2016, 45, 715–752. DOI: 10.1039/c5cs00297d.
  • Kava, A. A.; Beardsley, C.; Hofstetter, J.; Henry, C. S. Disposable Glassy Carbon Stencil Printed Electrodes for Trace Detection of Cadmium and Lead. Anal. Chim. Acta. 2020, 1103, 58–66. DOI: 10.1016/j.aca.2019.12.047.
  • Nantaphol, S.; Channon, R. B.; Kondo, T.; Siangproh, W.; Chailapakul, O.; Henry, C. S. Boron Doped Diamond Paste Electrodes for Microfluidic Paper-Based Analytical Devices. Anal. Chem. 2017, 89, 4100–4107. DOI: 10.1021/acs.analchem.6b05042.
  • Barek, J. How to Improve the Performance of Electrochemical Sensors via Minimization of Electrode Passivation. Chemosens 2021, 9, 12. DOI: 10.3390/chemosensors9010012.
  • Geto, A.; Noori, J. S.; Mortensen, J.; Svendsen, W. E.; Dimaki, M. Electrochemical Determination of Bentazone Using Simple Screen-Printed Carbon Electrodes. Environ. Int. 2019, 129, 400–407. DOI: 10.1016/j.envint.2019.05.009.
  • Couto, R. A. S.; Lima, J. L. F. C.; Quinaz, M. B. Recent Developments, Characteristics and Potential Applications of Screen-Printed Electrodes in Pharmaceutical and Biological Analysis. Talanta 2016, 146, 801–814. DOI: 10.1016/j.talanta.2015.06.011.
  • Torah, R.; Wei, Y.; Li, Y.; Yang, K.; Beeby, S.; Tudor, J. Printed Textile-Based Electronic Devices. In Handbook of Smart Textiles, Tao, X., Ed. Springer Singapore: Singapore, 2015; pp 653–687
  • Economou, A.; Kokkinos, C.; Prodromidis, M. Flexible Plastic, Paper and Textile Lab-on-a Chip Platforms for Electrochemical Biosensing. Lab Chip. 2018, 18, 1812–1830. DOI: 10.1039/C8LC00025E.
  • Somé, I. T.; Sakira, A. K.; Mertens, D.; Ronkart, S. N.; Kauffmann, J.-M. Determination of Groundwater Mercury (II) Content Using a Disposable Gold Modified Screen Printed Carbon Electrode. Talanta 2016, 152, 335–340. DOI: 10.1016/j.talanta.2016.02.033.
  • Liu, S.; Wu, T.; Li, F.; Zhang, Q.; Dong, X.; Niu, L. Disposable Graphene Sensor with an Internal Reference Electrode for Stripping Analysis of Heavy Metals. Anal. Methods 2018, 10, 1986–1992. DOI: 10.1039/C8AY00221E.
  • Wang, J.; Pedrero, M.; Sakslund, H.; Hammerich, O.; Pingarron, J. Electrochemical Activation of Screen-Printed Carbon Strips. Analyst 1996, 121, 345–350. DOI: 10.1039/an9962100345.
  • González-Sánchez, M. I.; Gómez-Monedero, B.; Agrisuelas, J.; Iniesta, J.; Valero, E. Highly Activated Screen-Printed Carbon Electrodes by Electrochemical Treatment with Hydrogen Peroxide. Electrochem. Commun. 2018, 91, 36–40. DOI: 10.1016/j.elecom.2018.05.002.
  • Cumba, L. R.; Foster, C. W.; Brownson, D.; Smith, J.; Iniesta, J.; Thakur, B.; Carmo, D. R. d.; Banks, C. Can the Mechanical Activation (Polishing) of Screen-Printed Electrodes Enhance Their Electroanalytical Response? Analyst 2016, 141, 2791–2799. DOI: 10.1039/c6an00167j.
  • Bernalte, E.; Arévalo, S.; Pérez-Taborda, J.; Wenk, J.; Estrela, P.; Avila, A.; Di Lorenzo, M. Rapid and on-Site Simultaneous Electrochemical Detection of Copper, Lead and Mercury in the Amazon River. Sens. Actuator B. Chem. 2020, 307, 127620. DOI: 10.1016/j.snb.2019.127620.
  • Cui, G.; Yoo, J. H.; Lee, J. S.; Yoo, J.; Uhm, J. H.; Cha, G. S.; Nam, H. Effect of Pre-Treatment on the Surface and Electrochemical Properties of Screen-Printed Carbon Paste Electrodes. Analyst 2001, 126, 1399–1403. DOI: 10.1039/b102934g.
  • Mohanraj, J.; Durgalakshmi, D.; Ajay Rakkesh, R. Review—Current Trends in Disposable Graphene-Based Printed Electrode for Electrochemical Biosensors. J. Electrochem. Soc. 2020, 167, 067523. DOI: 10.1149/1945-7111/ab818b.
  • Tu, J.; Gan, Y.; Liang, T.; Wan, H.; Wang, P. A Miniaturized Electrochemical System for High Sensitive Determination of Chromium(VI) by Screen-Printed Carbon Electrode with Gold Nanoparticles Modification. Sens. Actuator B. Chem. 2018, 272, 582–588. DOI: 10.1016/j.snb.2018.06.006.
  • Pudza, M. Y.; Abidin, Z. Z.; Abdul-Rashid, S.; Yasin, F. M.; Noor, A. S. M.; Abdullah, J. Selective and Simultaneous Detection of Cadmium, Lead and Copper by tapioca-derived carbon dot-modified electrode. Environ. Sci. Pollut. Res. Int. 2020, 27, 13315–13324. DOI: 10.1007/s11356-020-07695-7.
  • Filik, H.; Avan, A. A. Dextran Modified Magnetic Nanoparticles Based Solid Phase Extraction Coupled with Linear Sweep Voltammetry for the Speciation of Cr(VI) and Cr(III) in Tea, Coffee, and Mineral Water Samples. Food Chem. 2019, 292, 151–159. DOI: 10.1016/j.foodchem.2019.04.058.
  • Torres-Rivero, K.; Torralba-Cadena, L.; Espriu-Gascon, A.; Casas, I.; Bastos-Arrieta, J.; Florido, A. Strategies for Surface Modification with Ag-Shaped Nanoparticles: Electrocatalytic Enhancement of Screen-Printed Electrodes for the Detection of Heavy Metals. Sensors (Basel, Switzerland) 2019, 19, 4249. DOI: 10.3390/s19194249.
  • Ghazali, N. N.; Mohamad Nor, N.; Abdul Razak, K.; Lockman, Z.; Hattori, T. Hydrothermal Synthesis of Bismuth Nanosheets for Modified APTES-Functionalized Screen-Printed Carbon Electrode in Lead and Cadmium Detection. J. Nanopart. Res 2020, 22, 211. DOI: 10.1007/s11051-020-04946-z.
  • Bao, Q.; Li, G.; Yang, Z.; Pan, P.; Liu, J.; Chang, J.; Wei, J.; Lin, L. Electrochemical Performance of a Three-Layer Electrode Based on Bi Nanoparticles, Multi-Walled Carbon Nanotube Composites for Simultaneous Hg(II) and Cu(II) Detection. Chin. Chem. Lett 2020, 31, 2752–2756. DOI: 10.1016/j.cclet.2020.06.021.
  • Molinero-Abad, B.; Izquierdo, D.; Pérez, L.; Escudero, I.; Arcos-Martínez, M. J. Comparison of Backing Materials of Screen Printed Electrochemical Sensors for Direct Determination of the Sub-Nanomolar Concentration of Lead in Seawater. Talanta 2018, 182, 549–557. DOI: 10.1016/j.talanta.2018.02.005.
  • Ramalingam, M.; Ponnusamy, V. K.; Sangilimuthu, S. N. A Nanocomposite Consisting of Porous Graphitic Carbon Nitride Nanosheets and Oxidized Multiwalled Carbon Nanotubes for Simultaneous Stripping Voltammetric Determination of Cadmium(II), Mercury(II), Lead(II) and Zinc(II). Microchim. Acta 2019, 186, 69. DOI: 10.1007/s00604-018-3178-7.
  • Palanisamy, S.; Thangavelu, K.; Chen, S.-M.; Velusamy, V.; Chang, M.-H.; Chen, T.-W.; Al-Hemaid, F. M. A.; Ali, M. A.; Ramaraj, S. K. Synthesis and Characterization of Polypyrrole Decorated Graphene/β-Cyclodextrin Composite for Low Level Electrochemical Detection of Mercury (II) in Water. Sens. Actuator B. Chem. 2017, 243, 888–894. DOI: 10.1016/j.snb.2016.12.068.
  • Ismail, S.; Yusof, N. A.; Abdullah, J.; Abd Rahman, S. F. Electrochemical Detection of Arsenite Using a Silica Nanoparticles-Modified Screen-Printed Carbon Electrode. Materials (Basel, Switzerland) 2020, 13, 3168. DOI: 10.3390/ma13143168.
  • Fu, L.; Xie, K.; Wang, A.; Lyu, F.; Ge, J.; Zhang, L.; Zhang, H.; Su, W.; Hou, Y.-L.; Zhou, C.; et al. High Selective Detection of Mercury (II) Ions by Thioether Side Groups on Metal-Organic Frameworks. Anal. Chim. Acta. 2019, 1081, 51–58. DOI: 10.1016/j.aca.2019.06.055.
  • Mishra, R. K.; Nawaz, M. H.; Hayat, A.; Nawaz, M. A. H.; Sharma, V.; Marty, J.-L. Electrospinning of Graphene-Oxide onto Screen Printed Electrodes for Heavy Metal Biosensor. Sens. Actuator B. Chem. 2017, 247, 366–373. DOI: 10.1016/j.snb.2017.03.059.
  • Cui, L.; Wu, J.; Ju, H. Label-Free Signal-on Aptasensor for Sensitive Electrochemical Detection of Arsenite. Biosens. Bioelectron. 2016, 79, 861–865. DOI: 10.1016/j.bios.2016.01.010.
  • Ran, G.; Wu, F.; Ni, X.; Li, X.; Li, X.; Liu, D.; Sun, J.; Xie, C.; Yao, D.; Bai, W. A Novel Label-Free Electrochemical Aptasensor with One-Step Assembly Process for Rapid Detection of Lead (II) Ions. Sens. Actuator B. Chem. 2020, 320, 128326. DOI: 10.1016/j.snb.2020.128326.
  • Alghamdi, A. H. Applications of Stripping Voltammetric Techniques in Food Analysis. Arab. J. Chem. 2010, 3, 1–7. DOI: 10.1016/j.arabjc.2009.12.001.
  • Lu, Z.; Dai, W.; Lin, X.; Liu, B.; Zhang, J.; Ye, J.; Ye, J. Facile One-Step Fabrication of a Novel 3D Honeycomb-like Bismuth Nanoparticles Decorated N-Doped Carbon Nanosheet Frameworks: Ultrasensitive Electrochemical Sensing of Heavy Metal Ions. Electrochim. Acta 2018, 266, 94–102. DOI: 10.1016/j.electacta.2018.01.188.
  • Liu, Y.; Liu, J.; Zhang, Q.; Wei, J.; Xu, G. Bismuth Nano-Flower Modified CPE for Anodic Stripping Voltammetry Detection of Cd(II). Int. J. Electrochem. Sci. 2019, 14, 4483–4495. DOI: 10.20964/2019.05.34.
  • Niu, P.; Fernández-Sánchez, C.; Gich, M.; Navarro-Hernández, C.; Fanjul-Bolado, P.; Roig, A. Screen-Printed Electrodes Made of a Bismuth Nanoparticle Porous Carbon Nanocomposite Applied to the Determination of Heavy Metal Ions. Microchim. Acta 2016, 183, 617–623. DOI: 10.1007/s00604-015-1684-4.
  • Oularbi, L.; Turmine, M.; Salih, F. E.; El Rhazi, M. Ionic Liquid/Carbon Nanofibers/Bismuth Particles Novel Hybrid Nanocomposite for Voltammetric Sensing of Heavy Metals. J. Environ. Chem. Eng. 2020, 8, 103774. DOI: 10.1016/j.jece.2020.103774.
  • Wang, Z.; Dai, Z. Carbon Nanomaterial-Based Electrochemical Biosensors: An Overview. Nanoscale 2015, 7, 6420–6431. DOI: 10.1039/c5nr00585j.
  • Mohan, V. B.; Lau, K-t.; Hui, D.; Bhattacharyya, D. Graphene-Based Materials and Their Composites: A Review on Production, Applications and Product Limitations. Compos. B. Eng. 2018, 142, 200–220. DOI: 10.1016/j.compositesb.2018.01.013.
  • Lanzalaco, S.; Molina, B. G. Polymers and Plastics Modified Electrodes for Biosensors: A Review. Molecules (Basel, Switzerland) 2020, 25, 2446. DOI: 10.3390/molecules25102446.
  • Karel, V. Carbon Paste Electrodes in Electroanalytical Chemistry. J. Serb. Chem. Soc. 2009, 74, 1021–1033. DOI: 10.2298/JSC0910021V.
  • ŠVancara, I.; VytřAs, K.; Kalcher, K.; Walcarius, A.;.; Wang, J. Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis. Electroanalysis 2009, 21, 7–28. DOI: 10.1002/elan.200804340.
  • Ashrafi, A. M.; Richtera, L. Preparation and Characterization of Carbon Paste Electrode Bulk-Modified with Multiwalled Carbon Nanotubes and Its Application in a Sensitive Assay of Antihyperlipidemic Simvastatin in Biological Samples. Molecules 2019, 24, 2215. DOI: 10.3390/molecules24122215.
  • Mohammadi, S.; Taher, M. A.; Beitollahi, H.; Naghizadeh, M. Sensitive Voltammetric Determination of Cadmium at a Carbon Nanotubes/Fe3O4/Eggshell Composites Modified Carbon Paste Electrode. Environ. Nanotechnol. Monit. Manag. 2019, 12, (November 2018), 100241. DOI: 10.1016/j.enmm.2019.100241.
  • Estrada-Aldrete, J.; Hernández-López, J. M.; García-León, A. M.; Peralta-Hernández, J. M.; Cerino-Córdova, F. J. Electroanalytical Determination of Heavy Metals in Aqueous Solutions by Using a Carbon Paste Electrode Modified with Spent Coffee Grounds. J. Electroanal. Chem. 2020, 857, 113663. DOI: 10.1016/j.jelechem.2019.113663.
  • Nunez-Bajo, E.; Blanco-López, M. C.; Costa-García, A.; Fernández-Abedul, M. T. Electrogeneration of Gold Nanoparticles on Porous-Carbon Paper-Based Electrodes and Application to Inorganic Arsenic Analysis in White Wines by Chronoamperometric Stripping. Anal. Chem. 2017, 89, 6415–6423. DOI: 10.1021/acs.analchem.7b00144.
  • Moutcine, A.; Laghlimi, C.; Ifguis, O.; Smaini, M. A.; El Qouatli, S. E.; Hammi, M.; Chtaini, A. A Novel Carbon Paste Electrode Modified by NP-Al2O3 for the Electrochemical Simultaneous Detection of Pb (II) and Hg (II). Diamond Relat. Mater. 2020, 104, 107747. DOI: 10.1016/j.diamond.2020.107747.
  • Al-Zahrani, E.; Soomro, M. T.; Bashami, R. M.; Rehman, A. U.; Danish, E.; Ismail, I. M. I.; Aslam, M.; Hameed, A. Fabrication and Performance of Magnetite (Fe3O4) Modified Carbon Paste Electrode for the Electrochemical Detection of Chlorite Ions in Aqueous Medium. J. Environ. Chem. Eng 2016, 4, 4330–4341. DOI: 10.1016/j.jece.2016.09.036.
  • Laghlimi, C.; Ziat, Y.; Moutcine, A.; Hammi, M.; Zarhri, Z.; Maallah, R.; Ifguis, O.; Chtaini, A.; Analysis Of Pb, (I. I. ), Cu(II) and Co(II) in Drinking Water by a New Carbon Paste Electrode Modified with an Organic Molecule. Chem. Data Collect. 2020, 29, 100496. DOI: 10.1016/j.cdc.2020.100496.
  • Fathinezhad, M.; AbbasiTarighat, M.; Dastan, D. Chemometrics Heavy Metal Content Clusters Using Electrochemical Data of Modified Carbon Paste Electrode. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100307. DOI: 10.1016/j.enmm.2020.100307.
  • Malakootian, M.; Abolghasemi, H.; Mahmoudi-Moghaddam, H. A Novel Electrochemical Sensor Based on the Modified Carbon Paste Using Eu3+ − Doped NiO for Simultaneous Determination of Pb (II) and Cd (II) in Food Samples. J. Electroanal. Chem. 2020, 876, 114474. DOI: 10.1016/j.jelechem.2020.114474.
  • Sahoo, P. K.; Sahoo, S.; Satpati, A. K.; Bahadur, D. Solvothermal Synthesis of Reduced Graphene Oxide/Au Nanocomposite-Modified Electrode for the Determination of Inorganic Mercury and Electrochemical Oxidation of Toxic Phenolic Compounds. Electrochim. Acta 2015, 180, 1023–1032. DOI: 10.1016/j.electacta.2015.09.018.
  • Alizadeh, T.; Hamidi, N.; Ganjali, M. R.; Rafiei, F. An Extraordinarily Sensitive Voltammetric Sensor with Picomolar Detection Limit for Pb2+ Determination Based on Carbon Paste Electrode Impregnated with Nano-Sized Imprinted Polymer and Multi-Walled Carbon Nanotubes. J. Environ. Chem. Eng. 2017, 5, 4327–4336. DOI: 10.1016/j.jece.2017.08.009.
  • Alizadeh, T.; Hamidi, N.; Ganjali, M. R.; Nourozi, P. Development of a Highly Selective and Sensitive Electrochemical Sensor for Bi3+ Determination Based on Nano-Structured Bismuth-Imprinted Polymer Modified Carbon/Carbon Nanotube Paste Electrode. Sens. Actuator B. Chem. 2017, 245, 605–614. DOI: 10.1016/j.snb.2017.02.024.
  • Liu, Y.; Li, T.; Ling, C.; Chen, Z.; Deng, Y.; He, N. Electrochemical Sensor for Cd2+ and Pb2+ Detection Based on Nano-Porous Pseudo Carbon Paste Electrode. Chin. Chem. Lett. 2019, 30, 2211–2215. DOI: 10.1016/j.cclet.2019.05.020.
  • Branger, C.; Meouche, W.; Margaillan, A. Recent Advances on Ion-Imprinted Polymers. React. Funct. Polym. 2013, 73, 859–875. DOI: 10.1016/j.reactfunctpolym.2013.03.021.
  • Lauriane, N. T. R.; Najih, R.; Chtaini, A. Electrochemical Sensor of Heavy Metals Based on Chelating Compounds. Pharm. Anal. Acta 2014, 5, 1000295. DOI: 10.4172/2153-2435.1000295.
  • Zhang, M.; Wilkinson, B.; Liao, Y.; Zheng, J.; Lau, C. F. J.; Kim, J.; Bing, J.; Green, M. A.; Huang, S.; Ho-Baillie, A. W.-Y. Electrode Design to Overcome Substrate Transparency Limitations for Highly Efficient 1 cm2 Mesoscopic Perovskite Solar Cells. Joule 2018, 2, 2694–2705. DOI: 10.1016/j.joule.2018.08.012.
  • Gupte, T.; Jana, S. K.; Mohanty, J. S.; Srikrishnarka, P.; Mukherjee, S.; Ahuja, T.; Sudhakar, C.; Thomas, T.; Pradeep, T. Highly Sensitive As3+ Detection Using Electrodeposited Nanostructured MnOx and Phase Evolution of the Active Material during Sensing. ACS Appl. Mater. Interfaces 2019, 11, 28154–28163. DOI: 10.1021/acsami.9b06023.
  • Way, A.; Luke, J.; Evans, A. D.; Li, Z.; Kim, J.-S.; Durrant, J. R.; Lee, H. K. H.; Tsoi, W. C. Fluorine Doped Tin Oxide as an Alternative of Indium Tin Oxide for Bottom Electrode of Semi-Transparent Organic Photovoltaic Devices. AIP Adv. 2019, 9, 085220. DOI: 10.1063/1.5104333.
  • Kowsalya, B.; Anusha Thampi, V. V.; Sivakumar, V.; Subramanian, B. Electrochemical Detection of Chromium(VI) Using NiO Nanoparticles. J. Mater. Sci: Mater. Electron. 2019, 30, 14755–14761. DOI: 10.1007/s10854-019-01847-3.
  • Palisoc, S. T.; Natividad, M. T.; Martinez, N. M. D. C.; Ramos, R. M. A.; Kaw, K. A. Y. Fabrication and Electrochemical Study of [Ru(NH3)6]3+/Nafion Modified Electrodes for the Determination of Trace Amounts of Pb2+, Cd2+, and Zn2+ via Anodic Stripping Voltammetry. e-Polymers 2016, 16, 117–123. DOI: 10.1515/epoly-2015-0210.
  • George, J. M.; Antony, A.; Mathew, B. Metal Oxide Nanoparticles in Electrochemical Sensing and Biosensing: A Review. Microchim. Acta 2018, 185, 358. DOI: 10.1007/s00604-018-2894-3.
  • Martinez, A. W.; Phillips, S. T.; Wiley, B. J.; Gupta, M.; Whitesides, G. M. FLASH: A Rapid Method for Prototyping Paper-Based Microfluidic Devices. Lab Chip. 2008, 8, 2146–2150. DOI: 10.1039/b811135a.
  • Li, S.; Zhang, C.; Wang, S.; Liu, Q.; Feng, H.; Ma, X.; Guo, J. Electrochemical Microfluidics Techniques for Heavy Metal Ion Detection. Analyst 2018, 143, 4230–4246. DOI: 10.1039/c8an01067f.
  • Tang, R. H.; Liu, L. N.; Zhang, S. F.; He, X. C.; Li, X. J.; Xu, F.; Ni, Y. H.; Li, F. A Review on Advances in Methods for Modification of Paper Supports for Use in Point-of-Care Testing. Microchim. Acta 2019, 186, 521. DOI: 10.1007/s00604-019-3626-z.
  • Nie, Z.; Deiss, F.; Liu, X.; Akbulut, O.; Whitesides, G. M. Integration of Paper-Based Microfluidic Devices with Commercial Electrochemical Readers. Lab Chip. 2010, 10, 3163–3169. DOI: 10.1039/c0lc00237b.
  • Wang, X.; Sun, J.; Tong, J.; Guan, X.; Bian, C.; Xia, S. Paper-Based Sensor Chip for Heavy Metal Ion Detection by SWSV. Micromachines 2018, 9, 150. DOI: 10.3390/mi9040150.
  • Bi, X.-M.; Wang, H.-R.; Ge, L.-Q.; Zhou, D.-M.; Xu, J.-Z.; Gu, H.-Y.; Bao, N. Gold-Coated Nanostructured Carbon Tape for Rapid Electrochemical Detection of Cadmium in Rice with in Situ Electrodeposition of Bismuth in Paper-Based Analytical Devices. Sens. Actuator B. Chem. 2018, 260, 475–479. DOI: 10.1016/j.snb.2018.01.007.
  • Sánchez-Calvo, A.; Blanco-López, M. C.; Costa-García, A. Paper-Based Working Electrodes Coated with Mercury or Bismuth Films for Heavy Metals Determination. Biosensors 2020, 10, 52. DOI: 10.3390/bios10050052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.