706
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Design, Fabrication and Applications of Electrospun Nanofiber-Based Surface-Enhanced Raman Spectroscopy Substrate

, , , ORCID Icon & ORCID Icon
Pages 289-308 | Published online: 20 Jul 2021

References

  • Raman, C. V.; Krishnan, K. S. A New Type of Secondary Radiation. Nature 1928, 121, 501–502. DOI: 10.1038/121501c0.
  • Xie, X. H.; Pu, H. B.; Sun, D. W. Recent Advances in Nanofabrication Techniques for SERS Substrates and Their Applications in Food Safety Analysis. Crit. Rev. Food Sci. Nutr. 2018, 58, 2800–2813. DOI: 10.1080/10408398.2017.1341866.
  • Neng, J.; Zhang, Q.; Sun, P. L. Application of Surface-Enhanced Raman Spectroscopy in Fast Detection of Toxic and Harmful Substances in Food. Biosens. Bioelectron. 2020, 167, 112480. DOI: 10.1016/j.bios.2020.112480.
  • Dharmalingam, P.; Venkatakrishnan, K.; Tan, B. Probing Cancer Metastasis at a Single-Cell Level with a Raman-Functionalized Anionic Probe. Nano Lett. 2020, 20, 1054–1066. DOI: 10.1021/acs.nanolett.9b04288.
  • Wu, S. Y.; Shen, Y.; Jin, C. J. Surface-Enhanced Raman Scattering Induced by the Coupling of the Guided Mode with Localized Surface Plasmon Resonances. Nanoscale 2019, 11, 14164–14173. DOI: 10.1039/c9nr02831e.
  • Fleischmann, M.; Hendra, P. J.; Mcquillan, A. J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. DOI: 10.1016/0009-2614(74)85388-1.
  • Jeanmaire, D. J.; Van Duyne, R. P. Surface Raman Spectroelectrochemistry: Part I. heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem. 1977, 84, 1–20. DOI: 10.1016/S0022-0728(77)80224-6.
  • Albrecht, M. G.; Creighton, J. A. Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217. DOI: 10.1002/chin.197744044.
  • Tian, Z. Q.; Ren, B.; Wu, D. Y. Surface-Enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures. J. Phys. Chem. B. 2002, 106, 9463–9483. DOI: 10.1021/jp0257449.
  • Banholzer, M. J.; Millstone, J. E.; Qin, L.; Mirkin, C. A. Rationally Designed Nanostructures for Surface-Enhanced Raman Spectroscopy. Chem. Soc. Rev. 2008, 37, 885–897. DOI: 10.1039/b710915f.
  • Aravind, P. K.; Nitzan, A.; Metiu, H. The Interaction between Electromagnetic Resonances and Its Role in Spectroscopic Studies of Molecules Adsorbed on Colloidal Particles or Metal Spheres. Surf. Sci. 1981, 110, 189–204. DOI: 10.1016/0039-6028(81)90595-1.
  • King, F. W.; Van Duyne, R. P.; Schatz, G. C. Theory of Raman Scattering by Molecules Adsorbed on Electrode Surfaces. J. Chem. Phys. 1979, 38, 245–256. DOI: 10.1016/0301-0104(79)85068-5.
  • Moskovits, M. Surface Roughness and the Enhanced Intensity of Raman Scattering by Molecules Adsorbed on Metals. J. Chem. Phys. 1978, 69, 4159–4161. DOI: 10.1063/1.437095.
  • Tong, L.; Zhu, T.; Liu, Z. Approaching the Electromagnetic Mechanism of Surface-Enhanced Raman Scattering: From Self-Assembled Arrays to Individual Gold Nanoparticles. Chem. Soc. Rev. 2011, 40, 1296–1314. DOI: 10.1039/c001054p.
  • Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic Theories of Surface-Enhanced Raman Spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076. DOI: 10.1039/c7cs00238f.
  • Lombardi, J. R.; Birke, R. L.; Lu, T.; Xu, J. Charge-Transfer Theory of Surface Enhanced Raman Spectroscopy: Herzberg–Teller Contributions. J. Chem. Phys. 1986, 84, 4174–4180. DOI: 10.1063/1.450037.
  • Adrian, F. J. Charge Transfer Effects in Surface-Enhanced Raman Scatteringa. J. Chem. Phys. 1982, 77, 5302–5314. DOI: 10.1063/1.443800.
  • Zhang, C. L.; Yu, S. H. Nanoparticles Meet Electrospinning: Recent Advances and Future Prospects. Chem. Soc. Rev. 2014, 43, 4423–4483. DOI: 10.1039/c3cs60426h.
  • Inagaki, M.; Ying, Y.; Kang, F. Carbon Nanofibers Prepared via Electrospinning. Adv. Mater. 2012, 24, 2547–2566. DOI: 10.1002/adma.201104940.
  • Yaseen, T.; Pu, H.; Sun, D. W. Functionalization Techniques for Improving SERS Substrates and Their Applications in Food Safety Evaluation: A Review of Recent Research Trends. Trends Food Sci. Tech 2018, 72, 162–174. DOI: 10.1016/j.tifs.2017.12.012.
  • Xu, M. L.; Gao, Y.; Han, X. X.; Zhao, B. Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review. J. Agric. Food Chem. 2017, 65, 6719–6726. DOI: 10.1021/acs.jafc.7b02504.
  • Huang, C. C.; Cheng, C. Y.; Lai, Y. S. Paper-Based Flexible Surface Enhanced Raman Scattering Platforms and Their Applications to Food Safety. Trends Food Sci. Tech. 2020, 100, 349–358. DOI: 10.1016/j.tifs.2020.04.019.
  • Alyami, A.; Quinn, A. J.; Iacopino, D. Flexible and Transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS Composites for in-Situ Detection of Food Contaminants. Talanta 2019, 201, 58–64. DOI: 10.1016/j.talanta.2019.03.115.
  • Restaino, S. M.; White, I. M. A Critical Review of Flexible and Porous SERS Sensors for Analytical Chemistry at the Point-of-Sample. Anal. Chim. Acta 2019, 1060, 17–29. DOI: 10.1016/j.aca.2018.11.057.
  • Prikhozhdenko, E. S.; Bratashov, D. N.; Gorin, D. A.; Yashchenok, A. M. Flexible Surface-Enhanced Raman Scattering-Active Substrates Based on Nanofibrous Membranes. Nano Res. 2018, 11, 4468–4488. DOI: 10.1007/s12274-018-2064-2.
  • Ding, Y. C.; Hou, H. Q.; Zhao, Y.; Zhu, Z. T.; Fong, H. Electrospun Polyimide Nanofibers and Their Applications. Prog. Polym. Sci. 2016, 61, 67–103. DOI: 10.1016/j.progpolymsci.2016.06.006.
  • Ramakrishna, S.; Fujihara, K.; Teo, W. E.; Yong, T.; Ma, Z. W.; Ramaseshan, R. Electrospun Nanofibers: Solving Global Issues. Mater. Today 2006, 9, 40–50. DOI: 10.1016/S1369-7021(06)71389-X.
  • Xue, J. J.; Wu, T.; Dai, Y. Q.; Xia, Y. N. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. DOI: 10.1021/acs.chemrev.8b00593.0
  • Cui, J. X.; Li, F. H.; Wang, Y. L.; Zhang, Q. L.; Ma, W. J.; Huang, C. B. Electrospun Nanofiber Membranes for Wastewater Treatment Applications. Sep. Purif. Technol. 2020, 250, 117116. DOI: 10.1016/j.seppur.2020.117116.
  • Teo, W. E.; Ramakrishna, S. A Review on Electrospinning Design and Nanofibre Assemblies. Nanotechnology 2006, 17, R89–R106. DOI: 10.1088/0957-4484/17/14/R01.
  • Quist-Jensen, C. A.; Macedonio, F.; Drioli, E. Membrane Technology for Water Production in Agriculture: Desalination and Wastewater Reuse. Desalination 2015, 364, 17–32. DOI: 10.1016/j.desal.2015.03.001.
  • Yang, X. J.; Salles, V.; Kaneti, Y. V.; Liu, M. S.; Maillard, M.; Journet, C.; Jiang, X. C.; Brioude, A. Fabrication of Highly Sensitive Gas Sensor Based on Au Functionalized WO3 Composite Nanofibers by Electrospinning. Sens. Actuators B 2015, 220, 1112–1119. DOI: 10.1016/j.snb.2015.05.121.
  • Zheng, J.; Sun, B.; Wang, X. X.; Cai, Z. X.; Ning, X.; Alshehri, S. M.; Ahamad, T.; Xu, X. T.; Yamauchi, Y.; Long, Y. Z. Magnetic-Electrospinning Synthesis of gamma-Fe2O3 Nanoparticle-Embedded Flexible Nanofibrous Films for Electromagnetic Shielding. Polymers 2020, 12, 695. DOI: 10.3390/polym12030695.
  • Wang, C. H.; Kaneti, Y. V.; Bando, Y.; Lin, J. J.; Liu, C.; Li, J. S.; Yamauchi, Y. Metal-Organic Framework-Derived One-Dimensional Porous or Hollow Carbon-Based Nanofibers for Energy Storage and Conversion. Mater. Horiz. 2018, 5, 394–407. DOI: 10.1039/C8MH00133B.
  • Tian, Z. Q.; Yang, Z. L.; Ren, B.; Wu, D. Y. SERS from Transition Metals and Excited by Ultraviolet Light. In Surface-Enhanced Raman Scattering: Physics and Applications, Kneipp, K.; Moskovits, M.; Kneipp, H., Eds.; Springer-Verlag: Berlin, 2006, pp 125–146.
  • Wang, Y.; Ruan, W.; Zhang, J.; Bai, Y.; Xu, W.; Bing, Z.; Lombardi, J. R. Direct Observation of Surface‐Enhanced Raman Scattering in ZnO Nanocrystals. J. Raman Spectrosc. 2009, 40, 1072–1077. DOI: 10.1002/jrs.2241.
  • Wang, Y.; Sun, Z.; Hu, H.; Jing, S.; Zhao, B.; Xu, W.; Zhao, C.; Lombardi, J. R. Raman Scattering Study of Molecules Adsorbed on ZnS Nanocrystals. J. Raman Spectrosc. 2007, 38, 34–38. DOI: 10.1002/jrs.1570.
  • Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N. M.; Mujica, V.; Martin, D.; Rajh, T. SERS of Semiconducting Nanoparticles (TiO(2) hybrid composites). J. Am. Chem. Soc. 2009, 131, 6040–6041. ), DOI: 10.1021/ja808277u.
  • Liu, Q.; Jiang, L.; Guo, L. Precursor-Directed Self-Assembly of Porous ZnO Nanosheets as High-Performance Surface-Enhanced Raman Scattering Substrate. Small 2014, 10, 48–51. DOI: 10.1002/smll.201300440.
  • Oh, W. D.; Lok, L. W.; Veksha, A.; Giannis, A.; Lim, T. T. Enhanced Photocatalytic Degradation of Bisphenol a with Ag-Decorated S-Doped g-C3N4 under Solar Irradiation: Performance and Mechanistic Studies. Chem. Eng. J 2018, 333, 739–749. DOI: 10.1016/j.cej.2017.09.182.
  • Demchenko, V.; Riabov, S.; Sinelnikov, S.; Radchenko, O.; Kobylinskyi, S.; Rybalchenko, N. Novel Approach to Synthesis of Silver Nanoparticles in Interpolyelectrolyte Complexes Based on Pectin, Chitosan, Starch and Their Derivatives. Carbohydr. Polym. 2020, 242, 116431. DOI: 10.1016/j.carbpol.2020.116431.
  • Joseph, D.; Huh, Y. S.; Han, Y. K. A Top-down Chemical Approach to Tuning the Morphology and Plasmon Resonance of Spiky Nanostars for Enriched SERS-Based Chemical. Sens. Actuators B 2019, 288, 120–126. DOI: 10.1016/j.snb.2019.02.065.
  • Wang, Y. Z.; Yang, Q. B.; Shan, G. Y.; Wang, C.; Du, J. S.; Wang, S. G.; Li, Y. X.; Chen, X. S.; Jing, X. B.; Wei, Y. Preparation of Silver Nanoparticles Dispersed in Polyacrylonitrile Nanofiber Film Spun by Electrospinning. Mater. Lett. 2005, 59, 3046–3049. DOI: 10.1016/j.matlet.2005.05.016.
  • Song, W.; Wang, Y. X.; Zhao, B. Surface-Enhanced Raman Scattering of 4-Mercaptopyridine on the Surface of TiO2 Nanofibers Coated with ag Nanoparticles. J. Phys. Chem. C. 2007, 111, 12786–12791. DOI: 10.1021/jp073728b.
  • Arvand, M.; Mirzaei, E.; Derakhshan, M. A.; Kharrazi, S.; Sadroddiny, E.; Babapour, M.; Faridi-Majidi, R. Fabrication of Antibacterial Silver Nanoparticle-Modified Chitosan Fibers Using Eucalyptus Extract as a Reducing Agent. J. Appl. Polym. Sci. 2015, 132, n/a–n/a. DOI: 10.1002/app.42133.
  • Severyukhina, A. N.; Parakhonskiy, B. V.; Prikhozhdenko, E. S.; Gorin, D. A.; Sukhorukov, G. B.; Mohwald, H.; Yashchenok, A. M. Nanoplasmonic Chitosan Nanofibers as Effective SERS Substrate for Detection of Small Molecules. ACS Appl. Mater. Interfaces 2015, 7, 15466–15473. DOI: 10.1021/acsami.5b03696.
  • Song, W.; Li, T. T.; Wang, X.; Zhao, B. Preparation Polyacrylonitrile/Ag Nanoparticle Composite Nanofibers via an Elelctrospinning Technique and Their Surface Enhanced Raman Scattering Study. Spectrosc. Spect. Anal. 2015, 35, 1899–1903.
  • Li, Y.; Lu, R.; Shen, J. Y.; Han, W. Q.; Sun, X. Y.; Li, J. S.; Wang, L. J. Electrospun Flexible Poly(Bisphenol a Carbonate) Nanofibers Decorated with Ag Nanoparticles as Effective 3D SERS Substrates for Trace TNT Detection. Analyst 2017, 142, 4756–4764. DOI: 10.1039/c7an01639e.
  • Cao, M. H.; Zhou, L.; Xu, X. Q.; Cheng, S.; Yao, J. L.; Fan, L. J. Galvanic Replacement Approach for Bifunctional Polyacrylonitrile/Ag-M (M = Au or Pd) Nanofibers as SERS-Active Substrates for Monitoring Catalytic Reactions. J. Mater. Chem. A. 2013, 1, 8942–8949. DOI: 10.1039/c3ta11435j.
  • Bai, J.; Yang, Q.; Wang, S.; Li, Y. Preparation and Characterization of Electrospun Ag/Polyacrylonitrile Composite Nanofibers. Korean J. Chem. Eng. 2011, 28, 1761–1763. DOI: 10.1007/s11814-011-0006-8.
  • Lee, B. S.; Lin, P. C.; Lin, D. Z.; Yen, T. J. Rapid Biochemical Mixture Screening by Three-Dimensional Patterned Multifunctional Substrate with Ultra-Thin Layer Chromatography (UTLC) and Surface Enhanced Raman Scattering (SERS). Sci. Rep. 2018, 8, 516. DOI: 10.1038/s41598-017-18967-7.
  • Prikhozhdenko, E. S.; Atkin, V. S.; Parakhonskiy, B. V.; Rybkin, I. A.; Lapanje, A.; Sukhorukov, G. B.; Gorin, D. A.; Yashchenok, A. M. New Post-Processing Method of Preparing Nanofibrous SERS Substrates with a High Density of Silver Nanoparticles. RSC Adv. 2016, 6, 84505–84511. DOI: 10.1039/C6RA18636J.
  • Balamurugan, M.; Yang, J. Three-Dimensional Surface-Enhanced Raman Scattering Substrate Fabricated Using Chemical Decoration of Silver Nanoparticles on Electrospun Polycarbonate Nanofibers. Appl. Spectrosc. 2017, 71, 879–887. DOI: 10.1177/0003702816658670.
  • Yang, Y.; Zhang, Z. J.; He, Y. L.; Wang, Z. H.; Zhao, Y. B.; Sun, L. Fabrication of Ag@TiO2 Electrospinning Nanofibrous Felts as SERS Substrate for Direct and Sensitive Bacterial Detection. Sens. Actuators B 2018, 273, 600–609. DOI: 10.1016/j.snb.2018.05.129.
  • Kong, L. S.; Dong, N. X.; Tian, G. F.; Qi, S. L.; Wu, D. Z. Highly Enhanced Raman Scattering with Good Reproducibility Observed on a Flexible PI Nanofabric Substrate Decorated by Silver Nanoparticles with Controlled Size. Appl. Surf. Sci. 2020, 511, 145443. DOI: 10.1016/j.apsusc.2020.145443.
  • Yun, B. J.; Koh, W.-G. Highly-Sensitive SERS-Based Immunoassay Platform Prepared on Silver Nanoparticle-Decorated Electrospun Polymeric Fibers Polymeric Fibers. J. Ind. Eng. Chem. 2020, 82, 341–348. DOI: 10.1016/j.jiec.2019.10.032.
  • Yang, Y.; Zhang, Z.; Wan, M.; Wang, Z.; Zhao, Y.; Sun, L. Highly Sensitive Surface-Enhanced Raman Spectroscopy Substrates of Ag@PAN Electrospinning Nanofibrous Membranes for Direct Detection of Bacteria. ACS Omega. 2020, 5, 19834–19843. DOI: 10.1021/acsomega.0c02735.
  • Zhao, L. M.; Wu, W.; Shen, X. Q.; Liu, Q.; He, Y.; Song, K. Y.; Li, H. H.; Chen, Z. R. Nonvolatile Electrical Bistability Behaviors Observed in Au/Ag Nanoparticle-Embedded MOFs and Switching Mechanisms. ACS Appl. Mater. Interfaces 2019, 11, 47073–47082. DOI: 10.1021/acsami.9b17000.
  • Li, C.; Qu, Y. T.; Du, L.; Chen, G. Y.; Lou, S. F.; Gao, Y. Z.; Yin, G. P. Synthesis of Well-Defined Pt-Based Catalysts for Methanol Oxidation Reaction Based on Electron-Hole Separation Effects. ACS Sustainable Chem. Eng. 2019, 7, 8597–8603. DOI: 10.1021/acssuschemeng.9b00377.
  • Zhang, P. Y.; Song, T.; Wang, T. T.; Zeng, H. P. Plasmonic Cu Nanoparticle on Reduced Graphene Oxide Nanosheet Support: An Efficient Photocatalyst for Improvement of near-Infrared Photocatalytic H2 Evolution. Appl. Catal. B-Environ. 2018, 225, 172–179. DOI: 10.1016/j.apcatb.2017.11.076.
  • Ma, J. Q.; Guo, X. H.; Ge, H. G.; Tian, G. H.; Zhang, Q. Seed-Mediated Photodeposition Route to Ag-Decorated SiO2@TiO2 Microspheres with Ideal Core-Shell Structure and Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2018, 434, 1007–1014. DOI: 10.1016/j.apsusc.2017.11.020.
  • Zhao, X.; Wang, W. Z.; Liang, Y. J.; Fu, J. L.; Zhu, M.; Shi, H. L.; Lei, S. J.; Tao, C. J. Visible-Light-Driven Charge Transfer to Significantly Improve Surface-Enhanced Raman Scattering (SERS) Activity of Self-Cleaning TiO2/Au Nanowire Arrays as Highly Sensitive and Recyclable SERS Sensor. Sens. Actuators B 2019, 279, 313–319. DOI: 10.1016/j.snb.2018.10.010.
  • Taniguchi, T.; Nurdiwijayanto, L.; Li, S. S.; Lim, H. E.; Miyata, Y.; Lu, X. Y.; Ma, R. Z.; Tang, D. M.; Ueda, S.; Tsukagoshi, K.; et al. On/off Boundary of Photocatalytic Activity between Single- and Bilayer MoS2. ACS Nano. 2020, 14, 6663–6672. DOI: 10.1021/acsnano.9b09253.
  • Cao, H. L.; Liu, C.; Cai, F. Y.; Qiao, X. X.; Dichiara, A. B.; Tian, C. G.; Lu, J. In Situ Immobilization of Ultra-Fine Ag NPs onto Magnetic Ag@RF@Fe3O4 Core-Satellite Nanocomposites for the Rapid Catalytic Reduction of Nitrophenols. Water Res. 2020, 179, 115882. DOI: 10.1016/j.watres.2020.115882.
  • Liu, X.; Wang, L.; Chen, S.; Zha, L. Silver Nanoparticles Embedded Temperature-Sensitive Nanofibrous Membrane as a Smart Free-Standing SERS Substrate. Chinese Chem. Lett. 2019, 30, 2021–2026. DOI: 10.1016/j.cclet.2019.04.031.
  • Yang, H.; Huang, C. Z. Polymethacrylic Acid-Facilitated Nanofiber Matrix Loading Ag Nanoparticles for SERS Measurements. RSC Adv. 2014, 4, 38783–38790. DOI: 10.1039/C4RA05737F.
  • Yang, T.; Yang, H.; Zhen, S. J.; Huang, C. Z. Hydrogen-Bond-Mediated in Situ Fabrication of AgNPs/Agar/PAN Electrospun Nanofibers as Reproducible SERS Substrates. ACS Appl. Mater. Interfaces 2015, 7, 1586–1594. DOI: 10.1021/am507010q.
  • Wu, L. P.; Li, Y. Z.; Wang, B. J.; Mao, Z. P.; Xu, H.; Zhong, Y.; Zhang, L. P.; Sui, X. F. Electroless Ag-Plated Sponges by Tunable Deposition onto Cellulose-Derived Templates for Ultra-High Electromagnetic Interference Shielding. Mater. Des. 2018, 159, 47–56. DOI: 10.1016/j.matdes.2018.08.037.
  • Mao, S.; Bao, R.; Fang, D.; Yi, J. H. Fabrication of Sliver/Graphitic Carbon Nitride Photocatalyst with Enhanced Visible-Light Photocatalytic Efficiency through Ultrasonic Spray Atomization. J. Colloid Interface Sci. 2019, 538, 15–24. DOI: 10.1016/j.jcis.2018.11.078.
  • Xing, D.; Lu, L. S.; Xie, Y. X.; Tang, Y.; Teh, K. S. Highly Flexible and Ultra-Thin Carbon-Fabric/Ag/Waterborne Polyurethane Film for Ultra-Efficient EMI Shielding. Mater. Des. 2020, 185, 108277.
  • Guo, M. C.; Yi, X. S.; Rudd, C.; Liu, X. L. Preparation of Highly Electrically Conductive Carbon-Fiber Composites with High Interlaminar Fracture Toughness by Using Silver-Plated Interleaves. Compos. Sci. Technol. 2019, 176, 29–36. DOI: 10.1016/j.compscitech.2019.03.014.
  • Wang, Q.; Zhang, S. Y.; Liu, G. M.; Lin, T. S.; He, P. The Mixture of Silver Nanowires and Nanosilver-Coated Copper Micronflakes for Electrically Conductive Adhesives to Achieve High Electrical Conductivity with Low Percolation Threshold. J. Alloy. Compd. 2020, 820, 153184. DOI: 10.1016/j.jallcom.2019.153184.
  • Wang, N.; Han, G. Y.; Song, H.; Xiao, Y. M.; Li, Y. P.; Zhang, Y.; Wang, H. F. Integrated Flexible Supercapacitor Based on Poly (3, 4-Ethylene Dioxythiophene) Deposited on Au/Porous Polypropylene Film/Au. J. Power Sources 2018, 395, 228–236. DOI: 10.1016/j.jpowsour.2018.05.074.
  • Han, F.; Su, X. Y.; Huang, M. Q.; Li, J. H.; Zhang, Y.; Zhao, S. F.; Liu, F.; Zhang, B.; Wang, Y.; Zhang, G. P.; et al. Fabrication of a Flexible and Stretchable Three-Dimensional Conductor Based on Au-Ni@Graphene Coated Polyurethane Sponge by Electroless Plating. J. Mater. Chem. C. 2018, 6, 8135–8143. DOI: 10.1039/C8TC02413H.
  • Le, H. T.; Tran, D. T.; Doan, T. L. L.; Kim, N. H.; Lee, J. H. Hierarchical Cu@CuxO Nanowires Arrays-Coated Gold Nanodots as a Highly Sensitive Self-Supported Electrocatalyst for L-Cysteine Oxidation. Biosens. Bioelectron. 2019, 139, 111327. DOI: 10.1016/j.bios.2019.111327.
  • Grell, M.; Dincer, C.; Le, T.; Lauri, A.; Bajo, E. N.; Kasimatis, M.; Barandun, G.; Maier, S. A.; Cass, A. E. G.; Guder, F. Autocatalytic Metallization of Fabrics Using Si Ink, for Biosensors, Batteries and Energy Harvesting. Adv. Funct. Mater. 2019, 29, 1804798. DOI: 10.1002/adfm.201804798.
  • Li, P.; Wang, X.; Ma, J. G.; Wang, T. F.; Zhang, W.; Xu, H. Y.; Liu, Y. C. Interface Engineering of Solution-Grown Silver Nanofiber Networks Designed as Flexible Transparent Electrodes. J. Mater. Chem. C. 2019, 7, 3924–3933. DOI: 10.1039/C8TC06047A.
  • Amarjargal, A.; Tijing, L. D.; Shon, H. K.; Park, C.-H.; Kim, C. S. Facile in Situ Growth of Highly Monodispersed Ag Nanoparticles on Electrospun PU Nanofiber Membranes: Flexible and High Efficiency Substrates for Surface Enhanced Raman Scattering. Appl. Surf. Sci. 2014, 308, 396–401. DOI: 10.1016/j.apsusc.2014.04.188.
  • Zhao, Y.; Sun, L.; Xi, M.; Feng, Q.; Jiang, C. Y.; Fong, H. Electrospun TiO2 Nanofelt Surface-Decorated with Ag Nanoparticles as Sensitive and UV-Cleanable Substrate for Surface Enhanced Raman Scattering. ACS Appl. Mater. Interfaces 2014, 6, 5759–5767. DOI: 10.1021/am5005859.
  • Saveleva, M.; Prikhozhdenko, E.; Gorin, D.; Skirtach, A. G.; Yashchenok, A.; Parakhonskiy, B. Polycaprolactone-Based, Porous CaCO3 and Ag Nanoparticle Modified Scaffolds as a SERS Platform with Molecule-Specific Adsorption. Front. Chem. 2019, 7, 888. DOI: 10.3389/fchem.2019.00888.
  • Zhang, L.; Gong, X.; Bao, Y.; Zhao, Y.; Xi, M.; Jiang, C.; Fong, H. Electrospun Nanofibrous Membranes Surface-Decorated with Silver Nanoparticles as Flexible and Active/Sensitive Substrates for Surface-Enhanced Raman Scattering. Langmuir 2012, 28, 14433–14440. DOI: 10.1021/la302779q.
  • Jia, P.; Qu, J.; Cao, B.; Liu, Y. X.; Luo, C.; An, J. H.; Pan, K. Controlled Growth of Polyhedral and Plate-Like Ag Nanocrystals on a Nanofiber Mat as a SERS Substrate. Analyst 2015, 140, 5190–5197. DOI: 10.1039/c5an00305a.
  • Li, M.; Xing, Z. P.; Jiang, J. J.; Li, Z. Z.; Yin, J. W.; Kuang, J. Y.; Tan, S. Y.; Zhu, Q.; Zhou, W. Surface Plasmon Resonance-Enhanced Visible-Light-Driven Photocatalysis by Ag Nanoparticles Decorated S-TiO2-x Nanorods. J. Taiwan Inst. Chem. Eng. 2018, 82, 198–204. DOI: 10.1016/j.jtice.2017.11.023.
  • Gu, Y.; Jiao, Y. Q.; Zhou, X. G.; Wu, A. P.; Buhe, B.; Fu, H. G. Strongly Coupled Ag/TiO2 Heterojunctions for Effective and Stable Photothermal Catalytic Reduction of 4-Nitrophenol. Nano Res. 2018, 11, 126–141. DOI: 10.1007/s12274-017-1612-5.
  • Zhang, Y. T.; Deng, D. M.; Zhu, X. L.; Liu, S.; Zhu, Y.; Han, L.; Luo, L. Q. Electrospun Bimetallic Au-Ag/Co3O4 Nanofibers for Sensitive Detection of Hydrogen Peroxide Released from Human Cancer Cells. Anal. Chim. Acta 2018, 1042, 20–28. DOI: 10.1016/j.aca.2018.07.065.
  • Wang, Y. Z.; Li, Y. X.; Yang, S. T.; Zhang, G. L.; An, D. M.; Wang, C.; Yang, Q. B.; Chen, X. S.; Jing, X. B.; Wei, Y. A Convenient Route to Polyvinyl Pyrrolidone/Silver Nanocomposite by Electrospinning. Nanotechnology 2006, 17, 3304–3307. DOI: 10.1088/0957-4484/17/13/037.
  • Dong, G.; Xiao, X.; Liu, X.; Qian, B.; Liao, Y.; Wang, C.; Chen, D.; Qiu, J. Functional Ag Porous Films Prepared by Electrospinning. Appl. Surf. Sci. 2009, 255, 7623–7626. DOI: 10.1016/j.apsusc.2009.04.039.
  • Wang, W.; Feng, Z.; Jiang, W.; Zhan, J. Electrospun Porous CuO-Ag Nanofibers for Quantitative Sensitive SERS Detection. Crystengcomm 2013, 15, 1339–1344. DOI: 10.1039/c2ce26591e.
  • Chou, H. L.; Wu, C. M.; Lin, F. D.; Rick, J. Interactions between Silver Nanoparticles and Polyvinyl Alcohol Nanofibers. AIP Adv. 2014, 4, 087111. DOI: 10.1063/1.4890290.
  • Song, W.; Yang, Z. Z.; Ma, F. Q.; Chi, M. Q.; Zhao, B.; Lu, X. F. Electrospun Magnetic CoFe2O4/Ag Hybrid Nanotubes for Sensitive SERS Detection and Monitoring of the Catalytic Degradation of Organic Pollutants. RSC Adv. 2017, 7, 40334–40341. DOI: 10.1039/C7RA07786F.
  • Pradhan, A. C.; Uyar, T. Morphological Control of Mesoporosity and Nanoparticles within Co3O4-CuO Electrospun Nanofibers: Quantum Confinement and Visible Light Photocatalysis Performance. ACS Appl. Mater. Interfaces 2017, 9, 35757–35774. DOI: 10.1021/acsami.7b09026.
  • Singh, N.; Prakash, J.; Misra, M.; Sharma, A.; Gupta, R. K. Dual Functional Ta-Doped Electrospun TiO2 Nanofibers with Enhanced Photocatalysis and SERS Detection for Organic Compounds. ACS Appl. Mater. Interfaces 2017, 9, 28495–28507. DOI: 10.1021/acsami.7b07571.
  • Wu, H. X.; Sun, X. C.; Hou, C. J.; Hou, J. Z.; Lei, Y. Preparation of Quasi-Three-Dimensional Porous Ag and Ag-NiO Nanofibrous Mats for SERS Application. Sensors 2018, 18, 2862. DOI: 10.3390/s18092862.
  • Campagnolo, L.; Lauciello, S.; Athanassiou, A.; Fragouli, D. Au/ZnO Hybrid Nanostructures on Electrospun Polymeric Mats for Improved Photocatalytic Degradation of Organic Pollutants. Water 2019, 11, 1787. DOI: 10.3390/w11091787.
  • Fathima, S. J. H.; Paul, J.; Valiyaveettil, S. Surface-Structured Gold-Nanotube Mats: Fabrication, Characterization, and Application in Surface-Enhanced Raman Scattering. Small 2010, 6, 2443–2447. DOI: 10.1002/smll.201000342.
  • Wu, H.; Lin, D.; Pan, W. High Performance Surface-Enhanced Raman Scattering Substrate Combining Low Dimensional and Hierarchical Nanostructures. Langmuir 2010, 26, 6865–6868. DOI: 10.1021/la1000649.
  • Zhang, W. Y.; Xiao, X. Z.; Lv, C.; Zhao, J.; Wang, G.; Gu, X.; Zhang, R.; Xu, B. B.; Zhang, D. D.; Li, A. W.; et al. Fabrication of Photopolymer Hierarchical Micronanostructures by Coupling Electrospinning and Photolithography for SERS Substrates. Macromol. Res. 2013, 21, 306–310. DOI: 10.1007/s13233-013-1140-4.
  • He, H.; Cai, W. P.; Lin, Y. X.; Dai, Z. F. Silver Porous Nanotube Built Three-Dimensional Films with Structural Tunability Based on the Nanofiber Template-Plasma Etching Strategy. Langmuir 2011, 27, 1551–1555. DOI: 10.1021/la104833e.
  • He, H.; Li, K.; Dong, J.; Xia, J.; Zhang, Y.; Yang, T. H.; Zhao, X. L.; Huang, Q. L.; Zeng, X. H. Mesoporous Au Nanotube-Constructed Three-Dimensional Films with Excellent SERS Performance Based on the Nanofiber Template-Displacement Reaction Strategy. RSC Adv. 2016, 6, 4429–4433. DOI: 10.1039/C5RA19704J.
  • Szymborski, T.; Witkowska, E.; Adamkiewicz, W.; Waluk, J.; Kamińska, A. Electrospun Polymer Mat as a SERS Platform for the Immobilization and Detection of Bacteria from Fluids. Analyst 2014, 139, 5061–5064. DOI: 10.1039/c4an01137f.
  • Barrientos, L.; Allende, P.; Laguna-Bercero, M. A.; Pastrian, J.; Rodriguez-Becerra, J.; Caceres-Jensen, L. Controlled Ag-TiO2 Heterojunction Obtained by Combining Physical Vapor Deposition and Bifunctional Surface Modifiers. J. Phys. Chem. Solids 2018, 119, 147–156. DOI: 10.1016/j.jpcs.2018.03.046.
  • Park, Y. S.; Kim, J.; Oh, J. M.; Park, S.; Cho, S.; Ko, H.; Cho, Y. K. Near-Field Electrospinning for Three-Dimensional Stacked Nanoarchitectures with High Aspect Ratios. Nano Lett. 2020, 20, 441–448. DOI: 10.1021/acs.nanolett.9b04162.
  • Roque-Ruiz, J. H.; Martinez-Maynez, H.; Zalapa-Garibay, M. A.; Arizmendi-Moraquecho, A.; Farias, R.; Reyes-Lopez, S. Y. Surface Enhanced Raman Spectroscopy in Nanofibers Mats of SiO2-TiO2-Ag. Results Phys. 2017, 7, 2520–2527. DOI: 10.1016/j.rinp.2017.07.006.
  • Li, F.; Zhou, H. P.; Fan, J. J.; Xiang, Q. J. Amine-Functionalized Graphitic Carbon Nitride Decorated with Small-Sized Au Nanoparticles for Photocatalytic CO2 Reduction. J. Colloid Interface Sci. 2020, 570, 11–19. DOI: 10.1016/j.jcis.2020.02.108.
  • Yang, C.; Yu, Y.; Xie, Y. J.; Zhang, D.; Zeng, P.; Dong, Y. R.; Yang, B. L.; Liang, R. Q.; Ou, Q. R.; Zhang, S. Y. One-Step Synthesis of Size-Tunable Gold Nanoparticles/Reduced Graphene Oxide Nanocomposites Using Argon Plasma and Their Applications in Sensing and Catalysis. Appl. Surf. Sci. 2019, 473, 83–90. DOI: 10.1016/j.apsusc.2018.12.125.
  • Bai, L.; Jia, L.; Yan, Z. D.; Liu, Z. C.; Liu, Y. Q. Plasma-Assisted Fabrication of Nanoparticle-Decorated Electrospun Nanofibers. J. Taiwan Inst. Chem. Eng. 2018, 82, 360–366. DOI: 10.1016/j.jtice.2017.11.022.
  • He, D.; Hu, B.; Yao, Q. F.; Wang, K.; Yu, S. H. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles. ACS Nano. 2009, 3, 3993–4002. DOI: 10.1021/nn900812f.
  • Cao, M. H.; Cheng, S.; Zhou, X. Z.; Tao, Z. X.; Yao, J. L.; Fan, L. J. Preparation and Surface-Enhanced Raman Performance of Electrospun Poly(Vinyl Alcohol)/High-Concentration-Gold Nanofibers. J. Polym. Res. 2012, 19, 9810.
  • Li, X.; Cao, M.; Zhang, H.; Zhou, L.; Cheng, S.; Yao, J.-L.; Fan, L.-J. Surface-Enhanced Raman Scattering-Active Substrates of Electrospun Polyvinyl Alcohol/Gold-Silver Nanofibers. J. Colloid Interface Sci. 2012, 382, 28–35. DOI: 10.1016/j.jcis.2012.05.048.
  • Zhang, C. L.; Lv, K. P.; Cong, H. P.; Yu, S. H. Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning. Small 2012, 8, 648–653. DOI: 10.1002/smll.201102230.
  • Zhang, C. L.; Lv, K. P.; Huang, H. T.; Cong, H. P.; Yu, S. H. Co-Assembly of Au Nanorods with Ag Nanowires within Polymer Nanofiber Matrix for Enhanced SERS Property by Electrospinning. Nanoscale 2012, 4, 5348–5355. DOI: 10.1039/c2nr30736g.
  • Celebioglu, A.; Aytac, Z.; Umu, O. C. O.; Dana, A.; Tekinay, T.; Uyar, T. One-Step Synthesis of Size-Tunable Ag Nanoparticles Incorporated in Electrospun PVA/Cyclodextrin Nanofibers. Carbohydr. Polym. 2014, 99, 808–816. DOI: 10.1016/j.carbpol.2013.08.097.
  • Gao, W.; Chen, G.; Xu, W.; Yang, C.; Xu, S. Surface-Enhanced Raman Scattering (SERS) Chips Made from Metal Nanoparticle-Doped Polymer Fibers. RSC Adv. 2014, 4, 23838–23845. DOI: 10.1039/C4RA01432D.
  • Park, J. H.; Joo, Y. L. Tailoring Nanorod Alignment in a Polymer Matrix by Elongational Flow under Confinement: Simulation, Experiments, and Surface Enhanced Raman Scattering Application. Soft Matter. 2014, 10, 3494–3505. DOI: 10.1039/c4sm00096j.
  • Camposeo, A.; Spadaro, D.; Magri, D.; Moffa, M.; Gucciardi, P. G.; Persano, L.; Marago, O. M.; Pisignano, D. Surface-Enhanced Raman Spectroscopy in 3D Electrospun Nanofiber Mats Coated with Gold Nanorods. Anal. Bioanal. Chem. 2016, 408, 1357–1364. DOI: 10.1007/s00216-015-9226-9.
  • Ren, S. X.; Dong, L. L.; Zhang, X. Q.; Lei, T. Z.; Ehrenhauser, F.; Song, K. L.; Li, M. C.; Sun, X. X.; Wu, Q. L. Electrospun Nanofibers Made of Silver Nanoparticles, Cellulose Nanocrystals, and Polyacrylonitrile as Substrates for Surface-Enhanced Raman Scattering. Materials 2017, 10, 68. DOI: 10.3390/ma10010068.
  • Shi, J. H.; You, T. T.; Gao, Y. K.; Liang, X.; Li, C. L.; Yin, P. G. Large-Scale Preparation of Flexible and Reusable Surface-Enhanced Raman Scattering Platform Based on Electrospinning AgNPs/PCL Nanofiber Membrane. RSC Adv. 2017, 7, 47373–47379. DOI: 10.1039/C7RA09726C.
  • Liu, Z. C.; Yan, Z. D.; Bai, L. Electrospun Nanofiber Templated Assembly of Hybrid Nanoparticles. RSC Adv. 2018, 8, 9344–9352. DOI: 10.1039/C8RA00665B.
  • Zhang, Z. J.; Wu, Y. P.; Wang, Z. H.; Zou, X. Y.; Zhao, Y. B.; Sun, L. Fabrication of Silver Nanoparticles Embedded into Polyvinyl Alcohol (Ag/PVA) Composite Nanofibrous Films through Electrospinning for Antibacterial and Surface-Enhanced Raman Scattering (SERS) Activities. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 462–469. DOI: 10.1016/j.msec.2016.07.015.
  • Chen, S. Y.; Liu, X. Y.; Zhou, J. F.; Zha, L. S. Fabrication and SERS Application of the Thermoresponsive Nanofibers with Monodisperse Au@Ag Bimetallic Nanorods Loaded Shells. J. Appl. Polym. Sci. 2017, 134, 45375. DOI: 10.1002/app.45375.
  • Wang, L.; Zhang, Y.; Zhang, W. Q.; Ren, T. R.; Wang, F.; Yang, H. F. Laser-Induced Plasmonic Heating on Silver Nanoparticles/Poly(N-Isopropylacrylamide) Mats for Optimizing SERS Detection. J. Raman Spectrosc. 2017, 48, 243–250. DOI: 10.1002/jrs.5012.
  • Celebioglu, A.; Topuz, F.; Yildiz, Z. I.; Uyar, T. One-Step Green Synthesis of Antibacterial Silver Nanoparticles Embedded in Electrospun Cyclodextrin Nanofibers. Carbohydr. Polym. 2019, 207, 471–479. DOI: 10.1016/j.carbpol.2018.12.008.
  • Zhao, X. F.; Li, C. H.; Li, Z.; Yu, J.; Pan, J.; Si, H. P.; Yang, C.; Jiang, S. Z.; Zhang, C.; Man, B. Y. In-Situ Electrospun Aligned and Maize-like AgNPs/PVA@Ag Nanofibers for Surface-Enhanced Raman Scattering on Arbitrary Surface. Nanophotonics 2019, 8, 1719–1729. DOI: 10.1515/nanoph-2019-0124.
  • Chen, S. L.; Ding, C.; Lin, Y.; Wu, X. Z.; Yuan, W.; Meng, X. Q.; Su, W. M.; Zhang, K. Q. SERS-Active Substrate Assembled by Ag NW-Embedded Porous Polystyrene Fibers. RSC Adv. 2020, 10, 21845–21851. DOI: 10.1039/D0RA01454K.
  • Karagoz, S.; Kiremitler, N. B.; Sakir, M.; Salem, S.; Onses, M. S.; Sahmetlioglu, E.; Ceylan, A.; Yilmaz, E. Synthesis of Ag and TiO2 Modified Polycaprolactone Electrospun Nanofibers (PCL/TiO2-Ag NFs) as a Multifunctional Material for SERS, Photocatalysis and Antibacterial Applications. Ecotoxicol. Environ. Saf. 2020, 188, 109856. DOI: 10.1016/j.ecoenv.2019.109856.
  • Jalaja, K.; Bhuvaneswari, S.; Ganiga, M.; Divyamol, R.; Anup, S.; Cyriac, J.; George, B. K. Effective SERS Detection Using a Flexible Wiping Substrate Based on Electrospun Polystyrene Nanofibers. Anal. Methods 2017, 9, 3998–4003. DOI: 10.1039/C7AY00882A.
  • Chamuah, N.; Bhuyan, N.; Das, P. P.; Ojah, N.; Choudhary, A. J.; Medhi, T.; Nath, P. Gold-Coated Electrospun PVA Nanofibers as SERS Substrate for Detection of Pesticides. Sens. Actuators B 2018, 273, 710–717. DOI: 10.1016/j.snb.2018.06.079.
  • Lu, G.; Johns, A. J.; Neupane, B.; Phan, H. T.; Cwiertny, D. M.; Forbes, T. Z.; Haes, A. J. Matrix-Independent Surface-Enhanced Raman Scattering Detection of Uranyl Using Electrospun Amidoximated Polyacrylonitrile Mats and Gold Nanostars. Anal. Chem. 2018, 90, 6766–6772. DOI: 10.1021/acs.analchem.8b00655.
  • Saravanan, R. K.; Naqvi, T. K.; Patil, S.; Dwivedi, P. K.; Verma, S. Purine-Blended Nanofiber Woven Flexible Nanomats for SERS-Based Analyte Detection. Chem. Commun. 2020, 56, 5795–5798. DOI: 10.1039/d0cc00648c.
  • Shao, F.; Cao, J.; Ying, Y.; Liu, Y.; Wang, D.; Guo, X.; Wu, Y.; Wen, Y.; Yang, H. Preparation of Hydrophobic Film by Electrospinning for Rapid SERS Detection of Trace Triazophos. Sensors 2020, 20, 4120. DOI: 10.3390/s20154120.
  • Turasan, H.; Cakmak, M.; Kokini, J. Fabrication of Zein-Based Electrospun Nanofiber Decorated with Gold Nanoparticles as a SERS Platform. J. Mater. Sci. 2019, 54, 8872–8891. DOI: 10.1007/s10853-019-03504-w.
  • Qian, Y. W.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Huang, Z. L.; Sun, K. X.; Chen, B. Flexible Membranes of Ag-Nanosheet-Grafted Polyamide-Nanofibers as Effective 3D SERS Substrates. Nanoscale 2014, 6, 4781–4788. DOI: 10.1039/c3nr06483b.
  • Tang, W.; Chase, D. B.; Rabolt, J. F. Immobilization of Gold Nanorods onto Electrospun Polycaprolactone Fibers via Polyelectrolyte decoration-A 3D SERS Substrate. Anal. Chem. 2013, 85, 10702–10709. DOI: 10.1021/ac400241z.
  • Wang, L.; Sun, Y.; Wang, J.; Li, Z. Assembly of Gold Nanoparticles on Electrospun Polymer Nanofiber Film for SERS Applications. B. Kor. Chem. Soc. 2014, 35, 30–34. DOI: 10.5012/bkcs.2014.35.1.30.
  • Jia, P.; Cao, B.; Wang, J. Q.; Qu, J.; Liu, Y. X.; Pan, K. Self-Assembly of Various Silver Nanocrystals on PmPD/PAN Nanofibers as a High-Performance 3D SERS Substrate. Analyst 2015, 140, 5707–5715. DOI: 10.1039/c5an00716j.
  • Shao, J. D.; Tong, L. P.; Tang, S. Y.; Guo, Z. N.; Zhang, H.; Li, P. H.; Wang, H. Y.; Du, C.; Yu, X. F. PLLA Nanofibrous Paper-Based Plasmonic Substrate with Tailored Hydrophilicity for Focusing SERS Detection. ACS Appl. Mater. Interfaces 2015, 7, 5391–5399. DOI: 10.1021/am508881k.
  • Yang, T.; Ma, J.; Zhen, S. J.; Huang, C. Z. Electrostatic Assemblies of Well-Dispersed AgNPs on the Surface of Electrospun Nanofibers as Highly Active SERS Substrates for Wide-Range pH Sensing. ACS Appl. Mater. Interfaces 2016, 8, 14802–14811. DOI: 10.1021/acsami.6b03720.
  • Liu, Z. C.; Jia, L.; Yan, Z. D.; Bai, L. Plasma-Treated Electrospun Nanofibers as a Template for the Electrostatic Assembly of Silver Nanoparticles. New J. Chem. 2018, 42, 11185–11191. DOI: 10.1039/C8NJ01151F.
  • Ocal, S. K.; Patarroyo, J.; Kiremitler, N. B.; Pekdemir, S.; Puntes, V. F.; Onses, M. S. Plasmonic Assemblies of Gold Nanorods on Nanoscale Patterns of Poly(ethylene Glycol): Application in Surface-Enhanced Raman Spectroscopy. J. Colloid Interface Sci. 2018, 532, 449–455. DOI: 10.1016/j.jcis.2018.07.124.
  • Kurniawan, A.; Wang, M. J. Gold Nanoparticles-Decorated Electrospun Poly(N-Vinyl-2-Pyrrolidone) Nanofibers with Tunable Size and Coverage Density for Nanomolar Detection of Single and Binary Component Dyes by Surface-Enhanced Raman Spectroscopy. Nanotechnology 2017, 28, 355703. DOI: 10.1088/1361-6528/aa7ba8.
  • Armenta-Monzon, F.; Aguilar-Hernandez, I.; Garcia-Garcia, A.; Holmberg, S.; Pisano, E.; Morales-Luna, G.; Garcia-Mendez, M.; Ornelas-Soto, N. Characterization of Rhodamine 110 Adsorbed on Carbon-Based Electrospun Nanofibers Decorated with Gold Nanoparticles by Raman Spectroscopy and SERS. Mater. Res. Express 2019, 6, 125012. DOI: 10.1088/2053-1591/ab53f0.
  • Zhu, H.; Du, M. L.; Zhang, M.; Wang, P.; Bao, S. Y.; Zou, M. L.; Fu, Y. Q.; Yao, J. M. Self-Assembly of Various Au Nanocrystals on Functionalized Water-Stable PVA/PEI Nanofibers: A Highly Efficient Surface-Enhanced Raman Scattering Substrates with High Density of "Hot" Spots. Biosens. Bioelectron. 2014, 54, 91–101. DOI: 10.1016/j.bios.2013.10.047.
  • Liu, Z. C.; Yan, Z. D.; Jia, L.; Song, P.; Mei, L. Y.; Bai, L.; Liu, Y. Q. Gold Nanoparticle Decorated Electrospun Nanofibers: A 3D Reproducible and Sensitive SERS Substrate. Appl. Surf. Sci. 2017, 403, 29–34. DOI: 10.1016/j.apsusc.2017.01.157.
  • Guo, B.; Han, G.; Li, M.; Zhao, S. Deposition of the Fractal-like Gold Particles onto Electrospun Polymethylmethacrylate Fibrous Mats and Their Application in Surface-Enhanced Raman Scattering. Thin Solid Films 2010, 518, 3228–3233. DOI: 10.1016/j.tsf.2009.10.148.
  • Li, D. Y.; Gu, Y.; Feng, Y. Q.; Xu, X. R.; Wang, M. M.; Liu, Y. L. Synthesis of Silver Nanoplates on Electrospun Fibers via Tollens Reaction for SERS Sensing of Pesticide Residues. Microchim. Acta 2020, 187, 560.
  • Wan, M. H.; Zhao, H. D.; Wang, Z. H.; Zhao, Y. B.; Sun, L. Preparation of Ag@PDA@SiO2 Electrospinning Nanofibrous Membranes for Direct Bacteria SERS Detection and Antimicrobial Activities. Mater. Res. Express 2020, 7, 095012. DOI: 10.1088/2053-1591/abb8a0.
  • Ke, Y.; Meng, G. W.; Huang, Z. L.; Zhou, N. N. Electrosprayed Large-Area Membranes of Ag-Nanocubes Embedded in Cellulose Acetate Microspheres as Homogeneous SERS Substrates. J. Mater. Chem. C 2017, 5, 1402–1408. DOI: 10.1039/C6TC04579K.
  • Ke, Y.; Chen, B.; Zhou, N. N.; Huang, Z. L.; Meng, G. W. Surface-Enhanced Raman Scattering from Electrospun Cellulose Acetate Nanofibers Loaded with Aggregated Ag-Nanocubes. J. Chin. Cera. Soc. 2021, 49, 220–228.
  • Mashtalir, O.; Cook, K. M.; Mochalin, V. N.; Crowe, M.; Barsoum, M. W.; Gogotsi, Y. Dye Adsorption and Decomposition on Two-Dimensional Titanium Carbide in Aqueous Media. J. Mater. Chem. A 2014, 2, 14334–14338. DOI: 10.1039/C4TA02638A.
  • Saeed, A.; Sharif, M.; Iqbal, M. Application Potential of Grapefruit Peel as Dye Sorbent: Kinetics, Equilibrium and Mechanism of Crystal Violet Adsorption. J. Hazard. Mater. 2010, 179, 564–572. DOI: 10.1016/j.jhazmat.2010.03.041.
  • Yagub, M. T.; Sen, T. K.; Afroze, S.; Ang, H. M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. DOI: 10.1016/j.cis.2014.04.002.
  • Gomes, H. I.; Dias-Ferreira, C.; Ribeiro, A. B. Overview of in Situ and Ex Situ Remediation Technologies for PCB-Contaminated Soils and Sediments and Obstacles for Full-Scale Application. Sci. Total Environ. 2013, 445-446, 237–260. DOI: 10.1016/j.scitotenv.2012.11.098.
  • Salthammer, T.; Zhang, Y. P.; Mo, J. H.; Koch, H. M.; Weschler, C. J. Assessing Human Exposure to Organic Pollutants in the Indoor Environment. Angew. Chem. Int. Ed. Engl. 2018, 57, 12228–12263. DOI: 10.1002/anie.201711023.
  • Tang, N.; Liang, J.; Niu, C. G.; Wang, H.; Luo, Y.; Xing, W. L.; Ye, S. J.; Liang, C.; Guo, H.; Guo, J. Y.; et al. Amidoxime-Based Materials for Uranium Recovery and Removal. J. Mater. Chem. A 2020, 8, 7588–7625., DOI: 10.1039/C9TA14082D.
  • Ma, F. Q.; Gui, Y. Y.; Liu, P.; Xue, Y.; Song, W. Functional Fibrous Materials-Based Adsorbents for Uranium Adsorption and Environmental Remediation. Chem. Eng. J. 2020, 390, 124597. DOI: 10.1016/j.cej.2020.124597.
  • Xie, Y.; Chen, C. L.; Ren, X. M.; Wang, X. X.; Wang, H. Y.; Wang, X. K. Emerging Natural and Tailored Materials for Uranium-Contaminated Water Treatment and Environmental Remediation. Prog. Mater. Sci. 2019, 103, 180–234. DOI: 10.1016/j.pmatsci.2019.01.005.
  • Huang, Y. Q.; Wang, X. H.; Lai, K. Q.; Fan, Y. X.; Rasco, B. A. Trace Analysis of Organic Compounds in Foods with Surface-Enhanced Raman Spectroscopy: Methodology, Progress, and Challenges. Compr. Rev. Food Sci. Food Saf. 2020, 19, 622–642. DOI: 10.1111/1541-4337.12531.
  • Jiang, Y. F.; Sun, D. W.; Pu, H. B.; Wei, Q. Y. Surface Enhanced Raman Spectroscopy (SERS): A Novel Reliable Technique for Rapid Detection of Common Harmful Chemical Residues. Trends Food Sci. Tech. 2018, 75, 10–22. DOI: 10.1016/j.tifs.2018.02.020.
  • Pang, S. T. R.; Yang, T. X.; He, L. L. Review of Surface Enhanced Raman Spectroscopic (SERS) Detection of Synthetic Chemical Pesticides. TrAC Trends Anal. Chem. 2016, 85, 73–82. DOI: 10.1016/j.trac.2016.06.017.
  • Wilkowska, A.; Biziuk, M. Determination of Pesticide Residues in Food Matrices Using the QuEChERS Methodology. Food Chem. 2011, 125, 803–812. DOI: 10.1016/j.foodchem.2010.09.094.
  • Pareja, L.; Fernandez-Alba, A. R.; Cesio, V.; Heinzen, H. Analytical Methods for Pesticide Residues in Rice. TrAC Trends Anal. Chem. 2011, 30, 270–291. DOI: 10.1016/j.trac.2010.12.001.
  • Kosikowska, M.; Biziuk, M. Review of the Determination of Pesticide Residues in Ambient Air. TrAC Trends Anal. Chem. 2010, 29, 1064–1072. DOI: 10.1016/j.trac.2010.06.008.
  • Hu, Y. X.; Feng, S. L.; Gao, F.; Li-Chan, E. C. Y.; Grant, E.; Lu, X. N. Detection of Melamine in Milk Using Molecularly Imprinted Polymers-Surface Enhanced Raman Spectroscopy. Food Chem. 2015, 176, 123–129. DOI: 10.1016/j.foodchem.2014.12.051.
  • Sun, F. X.; Ma, W.; Xu, L. G.; Zhu, Y. Y.; Liu, L. Q.; Peng, C. F.; Wang, L. B.; Kuang, H.; Xu, C. L. Analytical Methods and Recent Developments in the Detection of Melamine. TrAC Trends Anal. Chem. 2010, 29, 1239–1249. DOI: 10.1016/j.trac.2010.06.011.
  • Tang, G. C.; Du, L. P.; Su, X. G. Detection of Melamine Based on the Fluorescence Resonance Energy Transfer between CdTe QDs and Rhodamine B. Food Chem. 2013, 141, 4060–4065. DOI: 10.1016/j.foodchem.2013.06.135.
  • Kuang, H.; Chen, W.; Yan, W. J.; Xu, L. G.; Zhu, Y. Y.; Liu, L. Q.; Chu, H. Q.; Peng, C. F.; Wang, L. B.; Kotov, N. A.; Xu, C. L. Crown Ether Assembly of Gold Nanoparticles: Melamine Sensor. Biosens. Bioelectron. 2011, 26, 2032–2037. DOI: 10.1016/j.bios.2010.08.081.
  • Salinas, Y.; Martinez-Manez, R.; Marcos, M. D.; Sancenon, F.; Costero, A. M.; Parra, M.; Gil, S. Optical Chemosensors and Reagents to Detect Explosives. Chem. Soc. Rev. 2012, 41, 1261–1296. DOI: 10.1039/c1cs15173h.
  • Sun, X. C.; Wang, Y.; Lei, Y. Fluorescence Based Explosive Detection: From Mechanisms to Sensory Materials. Chem. Soc. Rev. 2015, 44, 8019–8061. DOI: 10.1039/c5cs00496a.
  • Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection. Chem. Soc. Rev. 2014, 43, 5815–5840. DOI: 10.1039/c4cs00010b.
  • Bao, Y.; Lai, C. L.; Zhu, Z. T.; Fong, H.; Jiang, C. Y. SERS-Active Silver Nanoparticles on Electrospun Nanofibers Facilitated via Oxygen Plasma Etching. RSC Adv. 2013, 3, 8998–9004. DOI: 10.1039/c3ra41322e.
  • Amarjargal, A.; Tijing, L. D.; Kim, C. S. Simple Fabrication of Ag Nanoparticle-Impregnated Electrospun Nanofibres as SERS Substrates. Bull. Mater. Sci. 2015, 38, 267–270. DOI: 10.1007/s12034-014-0808-5.
  • Xu, S. Y.; Tang, W. Q.; Chase, D. B.; Sparks, D. L.; Rabolt, J. F. A Highly Sensitive, Selective, and Reproducible SERS Sensor for Detection of Trace Metalloids in the Environment. ACS Appl. Nano Mater. 2018, 1, 1257–1264. DOI: 10.1021/acsanm.7b00301.
  • Chen, X. J.; Cabello, G.; Wu, D. Y.; Tian, Z. Q. Surface-Enhanced Raman Spectroscopy toward Application in Plasmonic Photocatalysis on Metal Nanostructures. J. Photochem. Photobiol. C 2014, 21, 54–80. DOI: 10.1016/j.jphotochemrev.2014.10.003.
  • Xie, W.; Walkenfort, B.; Schlucker, S. Label-Free SERS Monitoring of Chemical Reactions Catalyzed by Small Gold Nanoparticles Using 3D Plasmonic Superstructures. J. Am. Chem. Soc. 2013, 135, 1657–1660. DOI: 10.1021/ja309074a.
  • Chen, S. Y.; Wang, L. Y.; Dong, X.; Liu, X. Y.; Zhou, J. F.; Yang, J. M.; Zha, L. S. Fabrication of Monodispersed Au@Ag Bimetallic Nanorod-Loaded Nanofibrous Membrane with Fast Thermo-Responsiveness and Its Use as a Smart Free-Standing SERS Substrate. RSC Adv. 2016, 6, 48479–48488. DOI: 10.1039/C6RA04247C.
  • Jin, J.; Song, W.; Zhang, N.; Li, L.; Liu, H.; Yang, B.; Zhao, B. Highly Efficient Core–Shell Ag@Carbon Dot Modified TiO2 Nanofibers for Photocatalytic Degradation of Organic Pollutants and Their SERS Monitoring. RSC Adv. 2020, 10, 26639–26645. DOI: 10.1039/D0RA00168F.
  • Song, W.; Ji, W.; Vantasin, S.; Tanabe, I.; Zhao, B.; Ozaki, Y. Fabrication of a Highly Sensitive Surface-Enhanced Raman Scattering Substrate for Monitoring the Catalytic Degradation of Organic Pollutants. J. Mater. Chem. A. 2015, 3, 13556–13562. DOI: 10.1039/C5TA01974E.
  • Wu, Y. G.; He, Y.; Yang, X.; Yuan, R.; Chai, Y. Q. A Novel Recyclable Surface-Enhanced Raman Spectroscopy Platform with Duplex-Specific Nuclease Signal Amplification for Ultrasensitive Analysis of microRNA 155. Sens. Actuators B 2018, 275, 260–266. DOI: 10.1016/j.snb.2018.08.057.
  • Gao, Y. K.; Yang, N.; You, T. T.; Zhang, C. M.; Yin, P. G. Superhydrophobic "Wash Free" 3D Nanoneedle Array for Rapid, Recyclable and Sensitive SERS Sensing in Real Environment. Sens. Actuators B 2018, 267, 129–135. DOI: 10.1016/j.snb.2018.04.025.
  • Chen, Y.; Liu, H. M.; Tian, Y. R.; Du, Y. Y.; Ma, Y.; Zeng, S. W.; Gu, C. J.; Jiang, T.; Zhou, J. In Situ Recyclable Surface-Enhanced Raman Scattering-Based Detection of Multicomponent Pesticide Residues on Fruits and Vegetables by the Flower-like MoS2@Ag Hybrid Substrate. ACS Appl. Mater. Interfaces 2020, 12, 14386–14399. DOI: 10.1021/acsami.9b22725.
  • Chang, I. C.-Y.; Sun, Y.-S.; Yang, Y.-W.; Wang, C.-H.; Cheng, S.-L.; Hu, W.-W. Effects of Graphitization and Bonding Configuration in Iron-Nitrogen-Doped Carbon Nanostructures on Surface-Enhanced Raman Scattering. ACS Appl. Nano Mater. 2020, 3, 858–868. DOI: 10.1021/acsanm.9b02363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.